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1 Introduction
This document describes VkFFT - Vulkan/CUDA/HIP/OpenCL/Level Zero Fast Fourier
Transform library. It describes the features and current limitations of VkFFT, explains the
API and compares it to other FFT libraries (like FFTW and cuFFT) on the set of examples.
It is by no means the final version, so if there is something unclear - feel free to contact me
(dtolm96@gmail.com), so I can update it.
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2 Using the VkFFT API
This chapter will cover the basics of VkFFT. Fourier transform of a sequence is called Discrete
Fourier Transform (DFT). It is defined by the following formula:

Xk =
N−1∑
n=0

xne
− 2πi

N
nk = DFTN(xn, k), (1)

where xnis the input sequence, N is the length of the input sequence and k ∈ [0, N−1], k ∈ Zis
the output index, corresponding to frequency in Fourier space. Corresponding to that, inverse
DFT is defined as following:

xn =
N−1∑
k=0

Xke
2πi
N

nk = iDFTN(Xk, n) (2)

VkFFT follows the same definitions as FFTW and cuFFT - forward FFT has the exponent
sign −1, while the inverse has the exponent sign 1. Note, that inverse transform by default
is unnormalized, so to get the input sequence after FFT + iFFT, the user has to divide the
result by N .

2.1 Installing VkFFT
VkFFT is distributed as a header-only library. The installation process consists of the fol-
lowing steps:

1. Copy vkFFT.h file into one of the directories included in the user’s project.

2. Define VKFFT_BACKEND as a number corresponding to the API used in the user’s
project: 0 - Vulkan, 1 - CUDA, 2 - HIP, 3 - OpenCL, 4 - Level Zero. Definition is done
like:
-DVKFFT_BACKEND=X

in GCC or as
set(VKFFT_BACKEND 1 CACHE STRING "0 - Vulkan, 1 - CUDA, 2

- HIP, 3 - OpenCL, 4 - Level Zero")↪→

in CMake.

3. Depending on the API backend, the project must use additional libraries for run-time
compilation:

(a) Vulkan API: SPIRV, glslang and Vulkan. Define VK_API_VERSION to the
available Vulkan version. Sample CMakeLists can look like this:
find_package(Vulkan REQUIRED)
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target_compile_definitions(${PROJECT_NAME} PUBLIC
-DVK_API_VERSION=11)#10 - Vulkan 1.0, 11 - Vulkan
1.1, 12 - Vulkan 1.2

↪→

↪→

target_include_directories(${PROJECT_NAME} PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/glslang-
master/glslang/Include/)

↪→

↪→

add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/glslang-
master)↪→

target_include_directories(${PROJECT_NAME} PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/vkFFT/)↪→

add_library(VkFFT INTERFACE)
target_compile_definitions(VkFFT INTERFACE

-DVKFFT_BACKEND=0)↪→

target_link_libraries(${PROJECT_NAME} PUBLIC SPIRV
glslang Vulkan::Vulkan VkFFT)↪→

(b) CUDA API: CUDA and NVRTC. Sample CMakeLists can look like this:
find_package(CUDA 9.0 REQUIRED)
enable_language(CUDA)
set_property(TARGET ${PROJECT_NAME} PROPERTY

CUDA_ARCHITECTURES 35 60 70 75 80 86)↪→

target_compile_options(${PROJECT_NAME} PUBLIC
"$<$<COMPILE_LANGUAGE:CUDA>:SHELL:↪→

-DVKFFT_BACKEND=${VKFFT_BACKEND}
-gencode arch=compute_35,code=compute_35
-gencode arch=compute_60,code=compute_60
-gencode arch=compute_70,code=compute_70
-gencode arch=compute_75,code=compute_75
-gencode arch=compute_80,code=compute_80
-gencode arch=compute_86,code=compute_86>")

set_target_properties(${PROJECT_NAME} PROPERTIES
CUDA_SEPARABLE_COMPILATION ON)↪→

set_target_properties(${PROJECT_NAME} PROPERTIES
CUDA_RESOLVE_DEVICE_SYMBOLS ON)↪→

find_library(CUDA_NVRTC_LIB libnvrtc nvrtc HINTS
"${CUDA_TOOLKIT_ROOT_DIR}/lib64"
"${LIBNVRTC_LIBRARY_DIR}"
"${CUDA_TOOLKIT_ROOT_DIR}/lib/x64" /usr/lib64
/usr/local/cuda/lib64)

↪→

↪→

↪→

↪→
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target_include_directories(${PROJECT_NAME} PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/vkFFT/)↪→

add_library(VkFFT INTERFACE)
target_compile_definitions(VkFFT INTERFACE

-DVKFFT_BACKEND=1)↪→

target_link_libraries(${PROJECT_NAME} PUBLIC
${CUDA_LIBRARIES} cuda ${CUDA_NVRTC_LIB} VkFFT)↪→

(c) HIP API: HIP and HIPRTC. Sample CMakeLists can look like this:
list(APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)
find_package(hip)

target_include_directories(${PROJECT_NAME} PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/vkFFT/)↪→

add_library(VkFFT INTERFACE)
target_compile_definitions(VkFFT INTERFACE

-DVKFFT_BACKEND=2)↪→

#target_compile_definitions(${PROJECT_NAME} PUBLIC
-DVKFFT_OLD_ROCM) #ROCm versions before 4.5 needed
kernel include of hiprtc

↪→

↪→

target_link_libraries(${PROJECT_NAME} PUBLIC hip::host
VkFFT)↪→

(d) OpenCL API: OpenCL. Sample CMakeLists can look like this:
find_package(OpenCL REQUIRED)

target_include_directories(${PROJECT_NAME} PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/vkFFT/)↪→

add_library(VkFFT INTERFACE)
target_compile_definitions(VkFFT INTERFACE

-DVKFFT_BACKEND=3)↪→

target_link_libraries(${PROJECT_NAME} PUBLIC
OpenCL::OpenCL VkFFT)↪→

(e) Level Zero API: Level Zero; Clang and llvm-spirv must be in the system path (for
kernel compilation). Sample CMakeLists can look like this:
set(LevelZero_LIBRARY "/usr/lib/x86_64-linux-gnu/")
set(LevelZero_INCLUDE_DIR "/usr/include/")
find_library(

LevelZero_LIB
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NAMES "ze_loader"
PATHS ${LevelZero_LIBRARY}
PATH_SUFFIXES "lib" "lib64"
NO_DEFAULT_PATH

)
find_path(

LevelZero_INCLUDES
NAMES "ze_api.h"
PATHS ${LevelZero_INCLUDE_DIR}
PATH_SUFFIXES "include"
NO_DEFAULT_PATH

)
target_include_directories(${PROJECT_NAME} PUBLIC

${LevelZero_INCLUDES})↪→

add_library(VkFFT INTERFACE)
target_compile_definitions(VkFFT INTERFACE

-DVKFFT_BACKEND=4)↪→

target_link_libraries(${PROJECT_NAME} PUBLIC LevelZero
VkFFT)↪→

2.2 Fourier Transform Setup
VkFFT follows a plan structure like FFTW/cuFFT with a notable difference - there is a
unified interface to all transforms. This means that there are no separate functions like
fftPlan1D/fftPlan2D/fftPlanMany/etc. The initialization is done through a single configu-
ration struct - VkFFTConfiguration. Each parameter of it will be covered in detail in this
document. Plans in VkFFT are called VkFFTApplication and they are created with a unified
initializeVkFFT call.

As the code is written in C, don’t forget to zero-initialize used structs!

During the initializeVkFFT(VkFFTApplication* app, VkFFTConfiguration inputLaunch-
Configuration) call VkFFT performs kernel generation and compilation from scratch (kernel
reuse may be added later). The overall process of initialization looks like this:

1. Get device parameters, perform default initialization of internal copy of configuration
struct inside the VkFFTApplication, then fill in user-defined parameters from input-
LaunchConfiguration. VkFFTApplication is passed as a pointer, so initializeVkFFT
modifies the user-provided application.

2. By default, there are two internal FFT plans created - inverse and forward. Multidi-
mensional FFT is done as a combination of 1D FFTs in each axis direction. For each
axis, the VkFFTPlanAxis function is called.

3. VkFFTPlanAxis configures parameters for each axis. It may perform additional mem-
ory allocations (see: memory allocated by VkFFT).
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4. shaderGenVkFFT generates corresponding to the axis code in a char buffer (each axis
may require more than one kernel: see Four-step FFT, Bluestein’s algorithm for FFT).

5. Code is then compiled with the run-time compiler of the specified backend.

Once the plan is no longer need, a call to the deleteVkFFT function frees all the allocated
resources. There are no processes launched that continue to work outside of the VkFFT
related function calls.

2.3 Fourier Transform types and their definitions
VkFFT supports commonly used Complex to complex (C2C), real to complex (R2C), com-
plex to real (C2R) transformations and real to real (R2R) Discrete Cosine Transformations of
types II, III and IV. VkFFT uses the same definitions as FFTW, except for the multidimen-
sional FFT axis ordering: in FFTW dimensions are ordered with the decrease in consecutive
elements stride, while VkFFT does the opposite - the first axis is the non-strided axis (the
one that has elements located consecutively in memory with no gaps, usually named as the
X-axis). So, in FFTW dimensions are specified as ZYX and in VkFFT as XYZ. This felt
more logical to me - no matter if there are 1, 2 or 3 dimensions, the user can always find the
axis with the same stride at the same position. This choice doesn’t require any modification
in the user’s data management - just provide the FFT dimensions in the reverse order to
VkFFT.

In addition to up to the 3 dimensions of FFT, VkFFT supports two forms of batching: the
number of coordinates and the number of systems. The choice of two distinct batching ways
is made to support matrix-vector convolutions, where the kernel is presented as a matrix.
Overall, the layout of VkFFT can be described as WHDCN - width, height, depth, coordinate
and number of systems (in order of increasing strides, starting with 1 for width). Coordinate
and number of systems can be 1, if the user has 1 as one of the FFT dimensions, the user
can omit it from setup altogether as FFT of size 1 produces the same number as the input.
Often, the coordinate part of the layout is not used, so the main batching is done by specifying
N.

VkFFT assumes that complex numbers are stored consecutively in memory: RIRIRI... where
R denotes the real part of the complex number and I denotes the imaginary part. There is
no difference between using a float2/double2/half2 container or access memory as float/dou-
ble/half as long as the byte order remains the same.

This section and the next one will cover the basics of VkFFT data layouts and memory
management.

2.3.1 C2C transforms

The base FFT algorithm - C2C in VkFFT has the same definition as FFTW. Forward
FFT has the exponent sign −1, while the inverse has the exponent sign 1. By default, the
inverse transform is unnormalized. NxNyNz complex numbers map to NxNyNz complex
numbers and no additional padding is required. The resulting data order will be the same
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as in FFTW/cuFFT, unless special parameters are provided in configuration (see: advanced
memory management)

2.3.2 R2C/C2R transforms

R2C/C2R transforms can be explained as C2C transforms with imaginary part set to zero.
They exploit Hermitian symmetry of the result: Xk = X∗

N−k on the non-strided axis (the one
that has elements located consecutively in memory with no gaps). This results in s reduction
of required memory to store the complex result - we may only store floor(Nx

2
) + 1 complex

numbers instead of Nx. However, this results in memory requirements mismatch between
input and output in R2C: floor(Nx

2
) + 1 complex elements will require Nx + 2 real numbers

worth of memory for even Nx and Nx + 1 real numbers worth of memory for odd Nx. For
C2R the situation is reversed. There are two approaches to this problem: pad each sequence
of the non-strided axis with zeros to the required length or use out-of-place mode. More
information on how to do this will be given in the next section.

2.3.3 R2R (DCT) transforms

R2R transforms in VkFFT are implemented in the form of Discrete cosine transforms of
types I, II, III and IV. Their definitions and transforms results match FFTW:

1. DCT-I: Xk = x0 + (−1)kxN−1 + 2
N−2∑
n=1

xncos(
π

N−1
nk), inverse of DCT-I (itself)

2. DCT-II: Xk = 2
N−1∑
n=1

xncos(
π
N
(n+ 1

2
)k), inverse of DCT-III

3. DCT-III: Xk = x0 + 2
N−1∑
n=1

xncos(
π
N
n(k + 1

2
)), inverse of DCT-II

4. DCT-IV: Xk = 2
N−1∑
n=0

xncos(
π
N
(n+ 1

2
)(k + 1

2
)), inverse of DCT-IV (itself)

R2R transforms are performed by redefinition of them to the C2C transforms (internal C2C
sequence length can be different from the input R2R sequence length). R2R transform per-
forms a one-to-one mapping between real numbers, so they don’t require stride management,
unlike R2C/C2R.

2.4 Memory management, data layouts for different transforms
2.4.1 VkFFT buffers

VkFFT allows for explicit control over the data flow, which makes both in-place and out-
of-place transforms possible. Buffers are passed to VkFFT as VkBuffer pointer in Vulkan,
as double void pointers in CUDA/HIP/Level Zero and as cl_mem pointer in OpenCL. This
is done to maintain a uniform data pattern because some of the buffers can be allocated
automatically.
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The main buffer is called buffer and it always has to be provided, either during the plan
creation or when the plan is executed. All calculations are performed in this buffer and it
is always overwritten. To do calculations out-of-place, VkFFT provides an option to specify
inputBuffer/outputBuffer buffer. The logic behind their usage is fairly simple - the user
specifies inputBuffer if the input data has to be read from a buffer, different from the main
buffer. As the data is read only once and nothing is written back to the inputBuffer, this
allows doing truly out-of-place transformations. The same logic applies to outputBuffer with
the difference that it is responsible for the absolute last write of the VkFFT. It is possible to
use all three buffers to create complex data management paths.

It must be noted, that sometimes FFT can not be done inside one buffer (see: Four-Step FFT
algorithm, Bluestein’s algorithm). To compute FFT in these cases, there exists tempBuffer
buffer and data is transferred between the main buffer and tempBuffer during the FFT
execution. The ordering of transfers between the main buffer and tempBuffer is done in such
a way, so the initial data read and final data write are obeying the configuration from the
previous paragraph. Users can allocate tempBuffer themselves of some memory that does not
have any useful information at the time of FFT execution (the tempBuffer size can depend on
the configuration, so this is a rather advanced operation - read more in the advanced memory
management section) or allow VkFFT to manage tempBuffer allocation itself (tempBuffer
will be freed at the deleteVkFFT call).

To compute convolutions and cross-correlations, a kernel buffer has to be specified. It must
have the same layout as the result of the FFT transform.

2.4.2 VkFFT buffers strides. A special case of R2C/C2R transforms

To have better control of memory, the user can specify the strides between consecutive
elements of different axis for H (height), D (depth) and C (coordinate) parts of the WHDCN
layout (W (width) stride is fixed to be 1, N (number of systems) stride will be consecutive
of C in memory if C is used, otherwise N will propagate the previous non-uniform stride
multiplied by the corresponding axis length). Strides are specified not in bytes, but in the
element type used - similar to the way how the user would access the corresponding element
in the array. If all elements are consecutive in C2C, stride for H will be equal to the FFT
length of W axis, stride for D will be multiplication of first two FFT axis lengths, stride for
C will be multiplication of first three FFT axis lengths, etc. These are the default values of
C2C and R2R strides if they are not explicitly specified.

One of the main use-cases of strides comes to solve the R2C/C2R Hermitian symmetry
H stride mismatch - for real space, it is equal to Nx real elements and for the frequency
space it is equal to floor(Nx

2
) + 1 complex numbers. So, with strides it is possible to use a

buffer, padded to 2 · (floor(Nx

2
) + 1) real elements in H stride (all elements between Nx and

2 · (floor(Nx

2
) + 1) will not be read so it does not matter what data is there before the write

stage). All other strides are done as a multiplication between the previous stride and the
number of elements in the previous axis. These are the default values of R2C/C2R strides if
they are not explicitly specified.

It is possible to specify separate sets of strides for all user-defined buffers: bufferStride for the
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main buffer, inputStride for input buffer, outputStride for output buffer (kernel stride is as-
sumed to be the same as bufferStride, tempBuffer strides are configured automatically).

For an out-of-place R2C FFT, there is no need to pad buffer with real numbers, but user
must specify H stride there (as it differs to default one) - Nx real elements for real space and
floor(Nx

2
) + 1 complex numbers for the frequency space.

An out-of-place C2R FFT is a more tricky transform. In the multidimensional case, the
main buffer will be written to and read from multiple times. The intermediate stores have
a complex layout, which requires more space than the output real layout, so in order not
to modify the input data, there exist two options. First, pad the real data layout has to
2 · (floor(Nx

2
) + 1) real elements in H stride (complex buffer will be used as inputBuffer, real

buffer as buffer). Second, use the third buffer, so both input and output buffers have their
original layouts (complex buffer will be used as inputBuffer, the main buffer for calculations
is buffer and output real buffer as outputBuffer). If you use inverseReturnToInputBuffer
option, where R2C is configured to read from input buffer and C2R is configured to write to
the input buffer; C2R will modify the buffer it reads from in some cases (see issue #58)

2.5 VkFFT algorithms
VkFFT implements a wide range of algorithms to compute different types of FFTs but all of
them can be reduced to a mixed-radix Cooley-Tukey FFT algorithm in the Stockham autosort
form. The main idea behind it is to decompose the sequence as a set of primes, for each of
which FFT can be written down exactly. As of now, VkFFT has radix implementations for
primes up to 13, so all C2C sequences decomposable into a multiplication of such primes
will be done purely with the Stockham algorithm. Below additional algorithms and their
use-cases are described.

2.5.1 Bluestein’s algorithm

A complex algorithm that is used in cases where the sequence is not decomposable with
implemented radix butterflies (currently - primes up to 13). It is derived by replacing nk =
(n2 + k2 − (n− k)2) /2 in 1:

Xk =
(
e−πi k

2

N

) N−1∑
n=0

(
xne

−πin
2

N

)(
eπi

(k−n)2

N

)
= b∗k

N−1∑
n=0

anbk−n (3)

an = xnb
∗
n (4)

bn = eπi
n2

N (5)

Here FFT is represented as a convolution between two sequences: an and bn, which can be
performed by the means of convolution theorem:

F{a ∗ b} = F{a} · F{b} (6)
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By padding an and bn to a sequence length decomposable with implemented radix butterflies
with a size of at least 2N − 1 (because the length of bn is 2N − 1), we can perform FFT
of any length. FFT of bn can be precomputed, so overall this algorithm requires at least
4x the computations and more memory transfers. This algorithm can be combined with all
other algorithms implemented in VkFFT. If an FFT can not be done in a single upload, a
tempBuffer has to be allocated (because the logical FFT buffer size is bigger than the original
system).

2.5.2 The Four-Step FFT algorithm

GPUs and CPUs have a hierarchical memory model - the closer memory to the unit that
performs the computations, the faster its speed and the lower the size. So it is advantageous
to split FFTs, not to the lowest primes, but to some bigger multiplication of those primes,
then upload this subsequence to the closest cache level to the cores and do the final prime
split there. The absolute lowest level is the register file, however, it does not allow for thread
communications outside the warp. For this purpose, modern GPUs employ shared memory
- a fast memory with a bank structure that is visible to all threads in a thread block. The
usual sizes of it change on a scale from 16KB to 192KB and it is often beneficial to use it
fully. However, if the full sequence can not fit inside the shared memory, FFT has to be
done in multiple uploads - with the Four Step FFT algorithm. The main idea behind it is to
represent a big 1D sequence as a 2D (or 3D for the three-upload scheme) FFT - we first do
FFT along the columns, then the rows, then transpose the result and multiply by a special set
of phase vectors. Similar decomposition idea as the main Cooley-Tukey algorithm. However,
performing transpositions in-place is a complicated task - especially for a non-trivial ratio
between dimensions. It will also require an additional read/write stage, as it can not be
merged with the last write of the FFT algorithm. The easiest and the most performant
solution is to use a tempBuffer (it is the main reason for having this functionality, actually)
and store intermediate FFT results out-of-place. This way the last transposition step can be
merged with the write step, as we can overwrite the output buffer without losing data.

To estimate if your sequence size is single upload or not, divide the amount of available
shared memory (48KB - Nvidia GPUs with Vulkan/OpenCL API, 64KB - AMD GPUs,
100KB - Nvidia GPUs in CUDA API) by the complex size used for calculations (8 byte -
single precision, 16 byte - double precision). For 64KB of shared memory, we get 8192 as
max single upload single-precision non-strided FFT, 4096 for double precision. For strided
axes (H and D parts of the layout) these numbers have to be divided by 4 and 2 respectively
to achieve coalescing, resulting in 2048 length for single upload in both precisions. For more
information on coalescing see: coalescing API reference.

In the case of the Four-Step FFT algorithm, tempBuffer size has to be at least the same as
the default main buffer size. It does not matter how many uploads are in the Four Step FFT
algorithm - only a single tempBuffer is required. In this document, all systems that can fit in
the shared memory entirely and be done without the Four Step FFT algorithm (and multiple
uploads) are called single upload systems.

If the last transposition is not required (the output data is allowed to be in not unshuffled
form) it can be disabled during the configuration phase. This way tempBuffer will not be
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needed and all computations will be done in-place (unless Bluestein’s algorithm is used). An
example use-case of this is convolutions - if the kernel is computed with the same operation
ordering, point-wise multiplication in the frequency domain is not dependent on the correct
data ordering and the inverse FFT will restore the original layout.

2.5.3 R2C/C2R FFTs

A typical approach to a single upload R2C/C2R system is to just set the imaginary part
to zero inside the shared memory and do a simple C2C transform. This doesn’t affect the
amount of memory transferred from VRAM and is not a bad approach as FFT is a memory-
bound algorithm, however, this can be improved in multidimensional (in HDCN part of the
layout) case by the composition of a single C2C sequence from two real sequences and some
write for R2C/read for C2R post-processing. Both of these algorithms are implemented in
VkFFT. Note, that R2C/C2R only affects the non-strided axis (W). All strided axes are still
done as C2C.

2.5.4 R2C/C2R multi-upload FFT algorithm

For even sequences there exists an easy mapping between R2C/C2R FFTs and the C2C of
half the size. In this case, all even indices (starting from 0) are read as the real values of a
complex number and all odd indices are read as the imaginary values. This C2C sequence
can be done with the help of the Four-Step FFT algorithm. When FFT is done, separate
post-processing for R2C/pre-processing for C2R is applied.

2.5.5 R2R Discrete Cosine Transforms

There exist many different mappings between DCT and FFT. As of now, VkFFT has the
following algorithms implemented (all single-upload for now):

• DCT-I - mapping between R2R and C2C of the 2N − 2 length. For non-strided axis can
use an optimization similar to the R2C/C2R multidimensional case (setting the imaginary
part to the next FFT sequence).

• DCT-II/DCT-III - mapping between R2R and C2C of the same length. For non-strided
axis can use an optimization similar to the R2C/C2R multidimensional case (setting the
imaginary part to the next FFT sequence).

• DCT-IV - for even sizes, mapping between R2R and C2C sequence of half-length. For odd
sizes mapping to the FFT of the same length (for non-strided axis can use an optimization
similar to the R2C/C2R multidimensional case (setting the imaginary part to the next
FFT sequence)).

2.5.6 Register overutilization

Not an FFT algorithm by itself, but an optimization to do bigger sequences in a single
upload instead of switching to the Four Step FFT algorithm. The main idea behind it is
to use a register file (which is often bigger than the amount of shared memory) to store the
sequence and use shared memory only as a communication buffer. This is useful in Vulkan
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and OpenCL APIs on Nvidia GPU, as they are only allowed to allocate 48KB of shared
memory with a register file having the size of 256KB.

2.5.7 Zero padding

Not an FFT algorithm by itself, but a memory management optimization. If the user’s
system has parts that are known to be zero - for example, when an open system is modeled,
to avoid a circular part of the FFT system has to be padded with zeros up to 2x in each
direction. VkFFT can omit sequences full of zeros and don’t perform the corresponding
memory transfers and computations, as the output result will be zero. This way it is possible
to get up to two times speed increase in the 2D case and up to 3x increase in the 3D case.

2.5.8 Convolution and cross-correlation support

With the help of the Convolution theorem, which states that the Fourier transform of a
convolution is the pointwise product of signals Fourier transforms, it is possible to perform
convolution with NlogN complexity, compared to N2 complexity of the simple multiplication
approach. This is extremely useful for kernels spanning more than 50 elements in size. VkFFT
can merge the last step FFT, kernel multiplication in the Fourier domain and the first step of
inverse FFT to provide substantial memory transfer savings. Moreover, FFTs of big sequences
can be performed without data reordering, which results in a better locality.

2.6 VkFFT accuracy
To measure how VkFFT (single/double/half precision) results compare to cuFFT/rocFFT
(single/double/half precision) and FFTW (double precision), multiple sets of systems cov-
ering full supported C2C/R2C+C2R/R2R FFT range are filled with random complex data
on the scale of [-1,1] and one transform was performed on each system. Samples 11(sin-
gle), 12(double), 13(half), 14(non-power of 2 C2C, single), 15(R2C+C2R, single), 16(DCT-
I/II/III/IV, single), 17(DCT-I/II/III/IV, double), 18(non-power of 2 C2C, double) are avail-
able in VkFFT Benchmark Suite to perform VkFFT verification on any of the target plat-
forms. Overall, the Cooley-Tukey algorithm (Stockham autosort) exhibits logarithmic rela-
tive error scaling, similar to those of other GPU FFT libraries. Typically, the more compu-
tationally expensive algorithm is - the worse its precision is. So, Bluestein’s algorithm has
lower accuracy than Stockham autosort algorithm.

Single precision in VkFFT supports two modes of calculation - by using the on-chip Special
Function Units that can compute sines and cosines on the go or by using the precomputed on
CPU look-up tables. For Nvidia and AMD GPUs, SFU provide great precision, while Intel
iGPUs and mobile GPUs must use LUT to perform FFTs correctly.

Double precision in VkFFT also supports two modes of calculation - by using polynomial
sincos approximation and computing them on-chip or by using precomputed LUT as well.
The second option is the better one, as polynomial sincos approximation is too compute-
heavy for modern GPUs. It is selected by default on all devices.

Half precision is currently only supported in the Vulkan backend and is often experiencing
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precision problems with the first number of the resulting FFT sequence, which is the sum
of all input numbers. Half precision is implemented only as a memory trick - all on-chip
computations are done in single precision, but this doesn’t help with the first number problem.
Half precision can use SFU or LUT as well.

VkFFT also supports mixed-precision operations, where memory storing is done at lower
precision, compared to the on-chip calculations. For example, it is possible to read data in
single precision, do calculations in double and store data back in single precision.

2.7 VkFFT additional memory allocations
In this section, all GPU memory allocations that are done by VkFFT are described. There
are up to three situations when VkFFT allocates memory. All of the VkFFT allocated
memory is freed at the deleteVkFFT call.

2.7.1 LUT allocations

This memory is used to store precomputed twiddle factors and phase vectors used during the
computation. This buffer can have:

• twiddle factors for each radix stage of Stockham FFT calculation

• phase vectors used in the Four Step FFT algorithm between stages

• phase vectors used in DCT-II/III/IV to perform a mapping between R2R and C2C

• phase vectors used in post-processing for R2C/pre-processing for C2R for even length
sequences as C2C of half size

VkFFT manages LUT allocations by itself and they are performed during the initializeVkFFT
call. LUT are allocated per axis, though some of them can be reused if the axes have the
same LUT. Inverse and forward FFT plans share the same LUT (conjugation is performed
on-chip).

2.7.2 The Four-Step FFT algorithm - tempBuffer allocation

To perform the merging of the transposition with the last upload of an axis, VkFFT requires
additional memory to mimic an out-of-place execution. This memory is located in tempBuffer
and has to be of at least the same size as the main buffer. It is possible for the users to allocate
it themselves, though if this is not done, VkFFT can do the allocation automatically (the size
of the tempBuffer will be the same as the main buffer, unless the logical dimensions of FFT
are bigger than user-defined - then, it will allocate the system with the minimal size, that
can cover maximal logical system size used in any of the axes - see next subsection).

2.7.3 Bluestein’s buffers allocation

To do Bluestein’s FFT algorithm, precomputed sequences bn = eπi
n2

N , FFT (bn) and iFFT (bn)
are required. For each axis, they can be different and are computed separately (unless
VkFFT can determine that they match, then the buffers are allocated only once). Notably,
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as Bluestein’s algorithm pads the sequence length to at least 2N − 1, if it can not be done
in a single upload and the Four Step algorithm has to be used, the intermediate storage
required will be bigger than the main buffer size. In this case, tempBuffer must always be
allocated. As the padded sequence can be different for each of the dimensions, the required
size of the tempBuffer will also vary. VkFFT determines the biggest size needed among axes
and allocated tempBuffer of this size.
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3 VkFFT API Reference
This section covers error codes, API functions that can be used by the user and configuration
parameters.

3.1 Return value VkFFTResult
All VkFFT Library return values except for VKFFT_SUCCESS are used in case of a failure
and provide information on what has gone wrong. VkFFTResult is unified among different
backends, though some of its values may not be used in specific backends. Possible return
values of VkFFTResult are defined as following:
typedef enum VkFFTResult {
VKFFT_SUCCESS = 0, // The VkFFT operation was successful
VKFFT_ERROR_MALLOC_FAILED = 1, // Some malloc call inside

VkFFT has failed. Report this to the GitHub repo↪→

VKFFT_ERROR_INSUFFICIENT_CODE_BUFFER = 2, // Generated
kernel is bigger than default kernel array. Increase it
with maxCodeLength parameter of configuration.

↪→

↪→

VKFFT_ERROR_INSUFFICIENT_TEMP_BUFFER = 3, // Temporary
string used in kernel generation is bigger than default
temporary string array. Increase it with maxTempLength
parameter of configuration.

↪→

↪→

↪→

VKFFT_ERROR_PLAN_NOT_INITIALIZED = 4, // Code attempts to
use uninitialized plan (it is zero inside
VkFFTApplication)

↪→

↪→

VKFFT_ERROR_NULL_TEMP_PASSED = 5, // Internal kernel
generation error↪→

VKFFT_ERROR_INVALID_PHYSICAL_DEVICE = 1001, // No physical
device is provided (Vulkan API)↪→

VKFFT_ERROR_INVALID_DEVICE = 1002, // No device is provided
(All APIs)↪→

VKFFT_ERROR_INVALID_QUEUE = 1003, // No queue is provided
(Vulkan API)↪→

VKFFT_ERROR_INVALID_COMMAND_POOL = 1004, // No command pool
is provided (Vulkan API)↪→

VKFFT_ERROR_INVALID_FENCE = 1005, // No fence is provided
(Vulkan API)↪→

VKFFT_ERROR_ONLY_FORWARD_FFT_INITIALIZED = 1006, // VkFFT
tries to access inverse FFT plan, when appliction is
created with makeForwardPlanOnly flag

↪→

↪→

VKFFT_ERROR_ONLY_INVERSE_FFT_INITIALIZED = 1007, // VkFFT
tries to access forward FFT plan, when appliction is
created with makeInversePlanOnly flag

↪→

↪→
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VKFFT_ERROR_INVALID_CONTEXT = 1008, // No context is
provided (OpenCL API)↪→

VKFFT_ERROR_INVALID_PLATFORM = 1009, // No platform is
provided (OpenCL API)↪→

VKFFT_ERROR_EMPTY_FILE = 1011,
VKFFT_ERROR_EMPTY_FFTdim = 2001, // Number of dimensions is

not provided in the configuration↪→

VKFFT_ERROR_EMPTY_size = 2002, // Array of dimensions is
not provided in the configuration↪→

VKFFT_ERROR_EMPTY_bufferSize = 2003, // Buffer size has to
be provided during the application creation↪→

VKFFT_ERROR_EMPTY_buffer = 2004, // Buffer has te be
specified either at the application creation stage or
during launch through VkFFTLaunchParams struct

↪→

↪→

VKFFT_ERROR_EMPTY_tempBufferSize = 2005, // Same error as
VKFFT_ERROR_EMPTY_bufferSize if userTempBuffer is enabled↪→

VKFFT_ERROR_EMPTY_tempBuffer = 2006, // Same error as
VKFFT_ERROR_EMPTY_buffer if userTempBuffer is enabled↪→

VKFFT_ERROR_EMPTY_inputBufferSize = 2007, // Same error as
VKFFT_ERROR_EMPTY_bufferSize if isInputFormatted is
enabled

↪→

↪→

VKFFT_ERROR_EMPTY_inputBuffer = 2008, // Same error as
VKFFT_ERROR_EMPTY_buffer if isInputFormatted is enabled↪→

VKFFT_ERROR_EMPTY_outputBufferSize = 2009, // Same error as
VKFFT_ERROR_EMPTY_bufferSize if isOutputFormatted is
enabled

↪→

↪→

VKFFT_ERROR_EMPTY_outputBuffer = 2010, // Same error as
VKFFT_ERROR_EMPTY_buffer if isOutputFormatted is enabled↪→

VKFFT_ERROR_EMPTY_kernelSize = 2011, // Same error as
VKFFT_ERROR_EMPTY_bufferSize if performConvolution is
enabled

↪→

↪→

VKFFT_ERROR_EMPTY_kernel = 2012, // Same error as
VKFFT_ERROR_EMPTY_buffer if performConvolution is enabled↪→

VKFFT_ERROR_EMPRY_useCustomBluesteinPaddingPattern_arrays =
2014, // pointers to primeSizes or paddedSizes arrays
are zero when useCustomBluesteinPaddingPattern is
enabled

↪→

↪→

↪→

VKFFT_ERROR_UNSUPPORTED_RADIX = 3001, // VkFFT has
encountered unsupported radix (more than 13) during
decomposition and Bluestein's FFT fallback did not work

↪→

↪→

VKFFT_ERROR_UNSUPPORTED_FFT_LENGTH = 3002, // VkFFT can not
do this sequence length currently - it requires mor than
three-upload Four step FFT

↪→

↪→
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VKFFT_ERROR_UNSUPPORTED_FFT_LENGTH_R2C = 3003, // VkFFT can
not do this sequence length currently - odd multi-upload
R2C/C2R FFTs

↪→

↪→

VKFFT_ERROR_UNSUPPORTED_FFT_LENGTH_DCT = 3004, // VkFFT can
not do this sequence length currently - multi-upload R2R
transforms, odd DCT-IV transforms

↪→

↪→

VKFFT_ERROR_UNSUPPORTED_FFT_OMIT = 3005, // VkFFT can not
omit sequences in convolution calculations and R2C/C2R
case

↪→

↪→

VKFFT_ERROR_FAILED_TO_ALLOCATE = 4001, // VkFFT failed to
allocate GPU memory↪→

VKFFT_ERROR_FAILED_TO_MAP_MEMORY = 4002, // 4002-4052 are
handlers for errors of used backend APIs. They may
indicate a driver failure. If they are thrown - report to
the GitHub repo

↪→

↪→

↪→

VKFFT_ERROR_FAILED_TO_ALLOCATE_COMMAND_BUFFERS = 4003,
VKFFT_ERROR_FAILED_TO_BEGIN_COMMAND_BUFFER = 4004,
VKFFT_ERROR_FAILED_TO_END_COMMAND_BUFFER = 4005,
VKFFT_ERROR_FAILED_TO_SUBMIT_QUEUE = 4006,
VKFFT_ERROR_FAILED_TO_WAIT_FOR_FENCES = 4007,
VKFFT_ERROR_FAILED_TO_RESET_FENCES = 4008,
VKFFT_ERROR_FAILED_TO_CREATE_DESCRIPTOR_POOL = 4009,
VKFFT_ERROR_FAILED_TO_CREATE_DESCRIPTOR_SET_LAYOUT = 4010,
VKFFT_ERROR_FAILED_TO_ALLOCATE_DESCRIPTOR_SETS = 4011,
VKFFT_ERROR_FAILED_TO_CREATE_PIPELINE_LAYOUT = 4012,
VKFFT_ERROR_FAILED_SHADER_PREPROCESS = 4013,
VKFFT_ERROR_FAILED_SHADER_PARSE = 4014,
VKFFT_ERROR_FAILED_SHADER_LINK = 4015,
VKFFT_ERROR_FAILED_SPIRV_GENERATE = 4016,
VKFFT_ERROR_FAILED_TO_CREATE_SHADER_MODULE = 4017,
VKFFT_ERROR_FAILED_TO_CREATE_INSTANCE = 4018,
VKFFT_ERROR_FAILED_TO_SETUP_DEBUG_MESSENGER = 4019,
VKFFT_ERROR_FAILED_TO_FIND_PHYSICAL_DEVICE = 4020,
VKFFT_ERROR_FAILED_TO_CREATE_DEVICE = 4021,
VKFFT_ERROR_FAILED_TO_CREATE_FENCE = 4022,
VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_POOL = 4023,
VKFFT_ERROR_FAILED_TO_CREATE_BUFFER = 4024,
VKFFT_ERROR_FAILED_TO_ALLOCATE_MEMORY = 4025,
VKFFT_ERROR_FAILED_TO_BIND_BUFFER_MEMORY = 4026,
VKFFT_ERROR_FAILED_TO_FIND_MEMORY = 4027,
VKFFT_ERROR_FAILED_TO_SYNCHRONIZE = 4028,
VKFFT_ERROR_FAILED_TO_COPY = 4029,
VKFFT_ERROR_FAILED_TO_CREATE_PROGRAM = 4030,
VKFFT_ERROR_FAILED_TO_COMPILE_PROGRAM = 4031,

19



VKFFT_ERROR_FAILED_TO_GET_CODE_SIZE = 4032,
VKFFT_ERROR_FAILED_TO_GET_CODE = 4033,
VKFFT_ERROR_FAILED_TO_DESTROY_PROGRAM = 4034,
VKFFT_ERROR_FAILED_TO_LOAD_MODULE = 4035,
VKFFT_ERROR_FAILED_TO_GET_FUNCTION = 4036,
VKFFT_ERROR_FAILED_TO_SET_DYNAMIC_SHARED_MEMORY = 4037,
VKFFT_ERROR_FAILED_TO_MODULE_GET_GLOBAL = 4038,
VKFFT_ERROR_FAILED_TO_LAUNCH_KERNEL = 4039,
VKFFT_ERROR_FAILED_TO_EVENT_RECORD = 4040,
VKFFT_ERROR_FAILED_TO_ADD_NAME_EXPRESSION = 4041,
VKFFT_ERROR_FAILED_TO_INITIALIZE = 4042,
VKFFT_ERROR_FAILED_TO_SET_DEVICE_ID = 4043,
VKFFT_ERROR_FAILED_TO_GET_DEVICE = 4044,
VKFFT_ERROR_FAILED_TO_CREATE_CONTEXT = 4045,
VKFFT_ERROR_FAILED_TO_CREATE_PIPELINE = 4046,
VKFFT_ERROR_FAILED_TO_SET_KERNEL_ARG = 4047,
VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QUEUE = 4048,
VKFFT_ERROR_FAILED_TO_RELEASE_COMMAND_QUEUE = 4049,
VKFFT_ERROR_FAILED_TO_ENUMERATE_DEVICES = 4050,
VKFFT_ERROR_FAILED_TO_GET_ATTRIBUTE = 4051,
VKFFT_ERROR_FAILED_TO_CREATE_EVENT = 4052,
VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_LIST = 4053,
VKFFT_ERROR_FAILED_TO_DESTROY_COMMAND_LIST = 4054,
VKFFT_ERROR_FAILED_TO_SUBMIT_BARRIER = 4055
} VkFFTResult;

3.2 VkFFT application management functions
VkFFT has a unified plan management model - all different transform types/ dimension-
alities/ precision use the same calls with configuration done through VkFFTConfiguration
struct. This section shows how to initialize/use/free VkFFT with this unified model, while
the next one will go into how to configure VkFFTConfiguration correctly. All of the func-
tions operate on VkFFTApplication and VkFFTConfiguration assuming they have been zero-
initialized before usage, so do not forget to do this when initializing:
VkFFTConfiguration configuration = {};
VkFFTApplication app = {};

3.2.1 Function initializeVkFFT()
VkFFTResult initializeVkFFT(VkFFTApplication* app,

VkFFTConfiguration inputLaunchConfiguration)↪→

Creates an FFT application (collection of forward and inverse plans). As forward and inverse
FFTs may have different memory layouts, can have different normalizations - they are done
as separate internal plans inside VkFFTApplication. This call assumes the application to be
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zero-initialized, so can be only done once on a particular application, until it is deleted.

If the initializeVkFFT call fails, it frees all allocated by VkFFT CPU/GPU resources and
sets the application to zero. VkFFTResult is returned with an error code corresponding to
what went wrong.

In case of success, VkFFTApplication will contain initialized plans with compiled kernels
ready for execution with VKFFT_SUCCESS returned.

3.2.2 Function VkFFTAppend()
VkFFTResult VkFFTAppend(VkFFTApplication* app, int inverse,

VkFFTLaunchParams* launchParams)↪→

Performs FFT in the int inverse direction (-1 for forward FFT, 1 for inverse FFT). FFT
plans are selected from the VkFFTApplication collection automatically. VkFFTApplication
must be initialized with initializeVkFFT call before. VkFFTLaunchParams struct allows for
pre-launch configuration of some parameters, namely:

• buffer - similar to how FFTW/cuFFT expects input/output data pointers in *execC2C
(and other) function calls, VkFFT allows specifying memory used for computations at
launch. It must have the same size/layout/strides as defined during the application cre-
ation.

• inputBuffer/outputBuffer/tempBuffer/kernel - other buffers can also be specified at launch.
In addition to them having the same size/layout/strides as defined during the application
creation, the application must be created with flags enabling the corresponding buffer us-
age: isInputFormatted/isOutputFormatted/userTempBuffer/performConvolution respec-
tively.

• bufferOffset/tempBufferOffset/inputBufferOffset/outputBufferOffset/kernelOffset - spec-
ify if VkFFT has to offset the first element position inside the corresponding buffer. In
bytes. Default 0. specifyOffsetsAtLaunch parameter must be enabled during the initial-
izeVkFFT call before.

Depending on the API, the execution model may vary and require additional information at
launch:

• Vulkan API: VkFFT appends a sequence of vkCmdDispatch calls to the user-defined Vk-
CommandBuffer (with respective push constants/descriptor sets/pipelines/memory barri-
ers bindings). VkCommandBuffer must be provided as a pointer in VkFFTLaunchParams.
VkCommandBuffer must be in the writing stage, started with vkBeginCommandBuffer
call. After VkFFTAppend has finished, provided VkCommandBuffer will contain a se-
quence of operations performing FFT. The first call of the sequence has no input memory
barrier, the last call has one, ensuring FFT has finished execution.

• CUDA/HIP API: if the user wants to use streams, they have to be provided during the
application configuration stage. VkFFTAppend performs a series of cuLaunchKernel,
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which are sequential if appended to one stream and synchronized if appended to multiple
streams.

• OpenCL API: similar to Vulkan, VkFFT appends a sequence of clEnqueueNDRangeKernel
calls to user-defined cl_command_queue. Currently, they are all assumed to be sequential.
cl_command_queue must be provided as a pointer in VkFFTLaunchParams.

• Level Zero API: similar to Vulkan, VkFFT appends a sequence of zeCommandListAppend-
LaunchKernel calls to user-defined command list ze_command_list_handle_t. They have
execution barriers between. ze_command_list_handle_t must be provided as a pointer
in VkFFTLaunchParams.

If VkFFT fails during the VkFFTAppend call, it will not free the application and allocated
there resources - use a separate call for that.

3.2.3 Function deleteVkFFT()
void deleteVkFFT(VkFFTApplication* app)

Performs deallocation of resources used in the provided application. Returns application to
the zero-initialized state.

3.2.4 Function VkFFTGetVersion()
int VkFFTGetVersion()

Returns the version of the VkFFT library in the X.XX.XX format (without dots).

3.3 VkFFT configuration
This section will cover all the parameters that can be specified in the VkFFTConfiguration
struct. It will start with a short description of the struct (intended to be used as a cheat
sheet), then go for each field in detail.
typedef struct {
// Required parameters:
uint64_t FFTdim; // FFT dimensionality (1, 2 or 3)
uint64_t size[3]; // WHD - system dimensions
#if(VKFFT_BACKEND==0) //Vulkan API
VkPhysicalDevice* physicalDevice; // Pointer to Vulkan

physical device, obtained from vkEnumeratePhysicalDevices↪→

VkDevice* device; // Pointer to Vulkan device, created with
vkCreateDevice↪→

VkQueue* queue; // Pointer to Vulkan queue, created with
vkGetDeviceQueue↪→

VkCommandPool* commandPool; // Pointer to Vulkan command
pool, created with vkCreateCommandPool↪→
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VkFence* fence; // Pointer to Vulkan fence, created with
vkCreateFence↪→

uint64_t isCompilerInitialized; // Specify if glslang
compiler has been intialized before (0 - off, 1 - on).
Default 0

↪→

↪→

#elif(VKFFT_BACKEND==1) //CUDA API
CUdevice* device; // Pointer to CUDA device, obtained from

cuDeviceGet↪→

cudaStream_t* stream; // Pointer to streams (can be more
than 1), where to execute the kernels. Deafult 0↪→

uint64_t num_streams; // Try to submit CUDA kernels in
multiple streams for asynchronous execution. Default 1↪→

#elif(VKFFT_BACKEND==2) //HIP API
hipDevice_t* device; // Pointer to HIP device, obtained

from hipDeviceGet↪→

hipStream_t* stream; // Pointer to streams (can be more
than 1), where to execute the kernels. Deafult 0↪→

uint64_t num_streams; // Try to submit HIP kernels in
multiple streams for asynchronous execution. Default 1↪→

#elif(VKFFT_BACKEND==3) //OpenCL API
cl_platform_id* platform; // NOT REQUIRED
cl_device_id* device; // Pointer to OpenCL device, obtained

from clGetDeviceIDs↪→

cl_context* context; // Pointer to OpenCL context, obtained
from clCreateContext↪→

#elif(VKFFT_BACKEND==4) //Level Zero API
ze_device_handle_t* device; // Pointer to Level Zero

device, obtained from zeDeviceGet↪→

ze_context_handle_t* context; // Pointer to Level Zero
context, obtained from zeContextCreate↪→

ze_command_queue_handle_t* commandQueue; // Pointer to
Level Zero command queue with compute and copy
capabilities, obtained from zeCommandQueueCreate

↪→

↪→

uint32_t commandQueueID; // ID of the commandQueue with
compute and copy capabilities↪→

#endif

// Data parameters (buffers can be specified at launch):
uint64_t userTempBuffer; // Buffer allocated by app

automatically if needed to reorder Four step algorithm.
Setting to non zero value enables manual user allocation
(0 - off, 1 - on)

↪→

↪→

↪→

uint64_t bufferNum; // Multiple buffer sequence storage is
Vulkan only. Default 1↪→
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uint64_t tempBufferNum; // Multiple buffer sequence storage
is Vulkan only. Default 1, buffer allocated by app
automatically if needed to reorder Four step algorithm.
Setting to non zero value enables manual user allocation

↪→

↪→

↪→

↪→

uint64_t inputBufferNum; // Multiple buffer sequence
storage is Vulkan only. Default 1, if isInputFormatted is
enabled

↪→

↪→

uint64_t outputBufferNum; // Multiple buffer sequence
storage is Vulkan only. Default 1, if isOutputFormatted is
enabled

↪→

↪→

uint64_t kernelNum; // Multiple buffer sequence storage is
Vulkan only. Default 1, if performConvolution is enabled↪→

uint64_t* bufferSize; // Array of buffers sizes in bytes
uint64_t* tempBufferSize; // Array of temp buffers sizes in

bytes. Default set to bufferSize sum, buffer allocated by
app automatically if needed to reorder Four step
algorithm. Setting to non zero value enables manual user
allocation

↪→

↪→

↪→

↪→

uint64_t* inputBufferSize; // Array of input buffers sizes
in bytes, if isInputFormatted is enabled↪→

uint64_t* outputBufferSize; // Array of output buffers
sizes in bytes, if isOutputFormatted is enabled↪→

uint64_t* kernelSize; // Array of kernel buffers sizes in
bytes, if performConvolution is enabled↪→

#if(VKFFT_BACKEND==0) //Vulkan API
VkBuffer* buffer; // Pointer to array of buffers (or one

buffer) used for computations↪→

VkBuffer* tempBuffer; // Needed if reorderFourStep is
enabled to transpose the array. Same sum size or bigger as
buffer (can be split in multiple). Default 0. Setting to
non zero value enables manual user allocation

↪→

↪→

↪→

VkBuffer* inputBuffer; // Pointer to array of input buffers
(or one buffer) used to read data from if isInputFormatted
is enabled

↪→

↪→

VkBuffer* outputBuffer; // Pointer to array of output
buffers (or one buffer) used to write data to if
isOutputFormatted is enabled

↪→

↪→

VkBuffer* kernel; // Pointer to array of kernel buffers (or
one buffer) used to read kernel data from if
performConvolution is enabled

↪→

↪→

#elif(VKFFT_BACKEND==1) //CUDA API
void** buffer; // Pointer to device buffer used for

computations↪→
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void** tempBuffer; // Needed if reorderFourStep is enabled
to transpose the array. Same size as buffer. Default 0.
Setting to non zero value enables manual user allocation

↪→

↪→

void** inputBuffer; // Pointer to device buffer used to
read data from if isInputFormatted is enabled↪→

void** outputBuffer; // Pointer to device buffer used to
write data to if isOutputFormatted is enabled↪→

void** kernel; // Pointer to device buffer used to read
kernel data from if performConvolution is enabled↪→

#elif(VKFFT_BACKEND==2) //HIP API
void** buffer; // Pointer to device buffer used for

computations↪→

void** tempBuffer; // Needed if reorderFourStep is enabled
to transpose the array. Same size as buffer. Default 0.
Setting to non zero value enables manual user allocation

↪→

↪→

void** inputBuffer; // Pointer to device buffer used to
read data from if isInputFormatted is enabled↪→

void** outputBuffer; // Pointer to device buffer used to
write data to if isOutputFormatted is enabled↪→

void** kernel; // Pointer to device buffer used to read
kernel data from if performConvolution is enabled↪→

#elif(VKFFT_BACKEND==3) //OpenCL API
cl_mem* buffer; // Pointer to device buffer used for

computations↪→

cl_mem* tempBuffer; // Needed if reorderFourStep is enabled
to transpose the array. Same size as buffer. Default 0.
Setting to non zero value enables manual user allocation

↪→

↪→

cl_mem* inputBuffer; // Pointer to device buffer used to
read data from if isInputFormatted is enabled↪→

cl_mem* outputBuffer; // Pointer to device buffer used to
write data to if isOutputFormatted is enabled↪→

cl_mem* kernel; // Pointer to device buffer used to read
kernel data from if performConvolution is enabled↪→

#endif
uint64_t bufferOffset; // Specify if VkFFT has to offset

the first element position inside the buffer. In bytes.
Default 0

↪→

↪→

uint64_t tempBufferOffset; // Specify if VkFFT has to
offset the first element position inside the temp buffer.
In bytes. Default 0

↪→

↪→

uint64_t inputBufferOffset; // Specify if VkFFT has to
offset the first element position inside the input buffer.
In bytes. Default 0

↪→

↪→
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uint64_t outputBufferOffset; // Specify if VkFFT has to
offset the first element position inside the output
buffer. In bytes. Default 0

↪→

↪→

uint64_t kernelOffset; // Specify if VkFFT has to offset
the first element position inside the kernel. In bytes.
Default 0

↪→

↪→

uint64_t specifyOffsetsAtLaunch; // Specify if offsets will
be selected with launch parameters VkFFTLaunchParams (0 -
off, 1 - on). Default 0

↪→

↪→

// Optional: (default 0 if not stated otherwise)
uint64_t coalescedMemory; // In bytes, for Nvidia and AMD

is equal to 32, Intel is equal 64, scaled for half
precision. Going to work regardless, but if specified by
user correctly, the performance will be higher.

↪→

↪→

↪→

uint64_t aimThreads; // Aim at this many threads per block.
Default 128↪→

uint64_t numSharedBanks; // How many banks shared memory
has. Default 32↪→

uint64_t inverseReturnToInputBuffer; // return data to the
input buffer in inverse transform (0 - off, 1 - on).
isInputFormatted must be enabled

↪→

↪→

uint64_t numberBatches; // N - used to perform multiple
batches of initial data. Default 1↪→

uint64_t useUint64; // Use 64-bit addressing mode in
generated kernels↪→

uint64_t omitDimension[3]; // Disable FFT for this
dimension (0 - FFT enabled, 1 - FFT disabled). Default 0.
Doesn't work for R2C for now. Doesn't work with
convolutions.

↪→

↪→

↪→

uint64_t performBandwidthBoost; // Try to reduce coalsesced
number by a factor of X to get bigger sequence in one
upload for strided axes. Default: -1 for DCT, 2 for
Bluestein's algorithm (or -1 if DCT), 0 otherwise

↪→

↪→

↪→

uint64_t doublePrecision; // Perform calculations in double
precision (0 - off, 1 - on).↪→

uint64_t halfPrecision; // Perform calculations in half
precision (0 - off, 1 - on)↪→
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uint64_t halfPrecisionMemoryOnly; // Use half precision
only as input/output buffer. Input/Output have to be
allocated as half, buffer/tempBuffer have to be allocated
as float (out-of-place mode only). Specify
isInputFormatted and isOutputFormatted to use (0 - off, 1
- on)

↪→

↪→

↪→

↪→

↪→

uint64_t doublePrecisionFloatMemory; // Use FP64 precision
for all calculations, while all memory storage is done in
FP32.

↪→

↪→

uint64_t performR2C; // Perform R2C/C2R decomposition (0 -
off, 1 - on)↪→

uint64_t performDCT; // Perform DCT transformation (X - DCT
type, 1-4)↪→

uint64_t disableMergeSequencesR2C; // Disable merging of
two real sequences to reduce calculations (0 - off, 1 -
on)

↪→

↪→

uint64_t normalize; // Normalize inverse transform (0 -
off, 1 - on)↪→

uint64_t disableReorderFourStep; // Disables unshuffling of
Four step algorithm. Requires tempbuffer allocation (0 -
off, 1 - on)

↪→

↪→

uint64_t useLUT; // Switches from calculating sincos to
using precomputed LUT tables (0 - off, 1 - on). Configured
by initialization routine

↪→

↪→

uint64_t makeForwardPlanOnly; // Generate code only for
forward FFT (0 - off, 1 - on)↪→

uint64_t makeInversePlanOnly; // Generate code only for
inverse FFT (0 - off, 1 - on)↪→

uint64_t bufferStride[3]; // Buffer strides - default set
to x - x*y - x*y*z values↪→

uint64_t isInputFormatted; // Specify if input buffer is
padded - 0 - padded, 1 - not padded. For example if it is
not padded for R2C if out-of-place mode is selected (only
if numberBatches==1 and numberKernels==1)

↪→

↪→

↪→

uint64_t isOutputFormatted; // Specify if output buffer is
padded - 0 - padded, 1 - not padded. For example if it is
not padded for R2C if out-of-place mode is selected (only
if numberBatches==1 and numberKernels==1)

↪→

↪→

↪→

uint64_t inputBufferStride[3]; // Input buffer strides.
Used if isInputFormatted is enabled. Default set to
bufferStride values

↪→

↪→

uint64_t outputBufferStride[3]; // Output buffer strides.
Used if isInputFormatted is enabled. Default set to
bufferStride values

↪→

↪→
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uint64_t considerAllAxesStrided; // Will create plan for
non-strided axis similar as a strided axis - used with
disableReorderFourStep to get the same layout for
Bluestein kernel (0 - off, 1 - on)

↪→

↪→

↪→

uint64_t keepShaderCode; // Will keep shader code and print
all executed shaders during the plan execution in order (0
- off, 1 - on)

↪→

↪→

uint64_t printMemoryLayout; // Will print order of buffers
used in shaders (0 - off, 1 - on)↪→

uint64_t saveApplicationToString; // Will save all compiled
binaries to VkFFTApplication.saveApplicationString (will
be allocated by VkFFT, deallocated with deleteVkFFT call).
VkFFTApplication.applicationStringSize will contain size
of binary in bytes. (0 - off, 1 - on)

↪→

↪→

↪→

↪→

uint64_t loadApplicationFromString; // Will load all
binaries from loadApplicationString instead of recompiling
them (must be allocated by user, must contain what
saveApplicationToString call generated previously in
VkFFTApplication.saveApplicationString). (0 - off, 1 -
on). Mutually exclusive with saveApplicationToString

↪→

↪→

↪→

↪→

↪→

void* loadApplicationString; // Memory array (uint32_t* for
Vulkan/HIP, char* for CUDA/OpenCL) through which user can
load VkFFT binaries, must be provided by user if
loadApplicationFromString = 1.

↪→

↪→

↪→

//optional Bluestein optimizations: (default 0 if not stated
otherwise)↪→

uint64_t fixMaxRadixBluestein; // controls the padding of
sequences in Bluestein convolution. If specified, padded
sequence will be made of up to fixMaxRadixBluestein
primes. Default: 2 for CUDA and Vulkan/OpenCL/HIP up to
1048576 combined dimension FFT system, 7 for
Vulkan/OpenCL/HIP past after. Min = 2, Max = 13.

↪→

↪→

↪→

↪→

↪→

uint64_t forceBluesteinSequenceSize; // force the sequence
size to pad to in Bluestein's algorithm. Must be at least
2*N-1 and decomposable with primes 2-13.

↪→

↪→

28



uint64_t useCustomBluesteinPaddingPattern; // force the
sequence sizes to pad to in Bluestein's algorithm, but on
a range. This number specifies the number of elements in
primeSizes and in paddedSizes arrays. primeSizes - array
of non-decomposable as radix scheme sizes - 17, 23, 31
etc. paddedSizes - array of lengths to pad to.
paddedSizes[i] will be the padding size for all
non-decomposable sequences from primeSizes[i] to
primeSizes[i+1] (will use default scheme after last one) -
42, 60, 64 for primeSizes before and 37+ will use default
scheme (for example). Default is vendor and API-based
specified in autoCustomBluesteinPaddingPattern.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

uint64_t* primeSizes; // described in
useCustomBluesteinPaddingPattern↪→

uint64_t* paddedSizes; // described in
useCustomBluesteinPaddingPattern↪→

// Optional zero padding control parameters: (default 0 if not
stated otherwise)↪→

uint64_t performZeropadding[3]; // Don't read some
data/perform computations if some input sequences are
zeropadded for each axis (0 - off, 1 - on)

↪→

↪→

uint64_t fft_zeropad_left[3]; // Specify start boundary of
zero block in the system for each axis↪→

uint64_t fft_zeropad_right[3]; // Specify end boundary of
zero block in the system for each axis↪→

uint64_t frequencyZeroPadding; // Set to 1 if zeropadding
of frequency domain, default 0 - spatial zeropadding↪→

// Optional convolution control parameters: (default 0 if not
stated otherwise)↪→

uint64_t performConvolution; // Perform convolution in this
application (0 - off, 1 - on). Disables reorderFourStep
parameter

↪→

↪→

uint64_t coordinateFeatures; // C - coordinate, or
dimension of features vector. In matrix convolution - size
of a vector

↪→

↪→

uint64_t matrixConvolution; // If equal to 2 perform 2x2,
if equal to 3 perform 3x3 matrix-vector convolution.
Overrides coordinateFeatures

↪→

↪→

uint64_t symmetricKernel; // Specify if kernel in 2x2 or
3x3 matrix convolution is symmetric↪→
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uint64_t numberKernels; // N - only used in convolution
step - specify how many kernels were initialized before.
Expands one input to multiple (batched) output

↪→

↪→

uint64_t kernelConvolution; // Specify if this application
is used to create kernel for convolution, so it has the
same properties. performConvolution has to be set to 0 for
kernel creation

↪→

↪→

↪→

// Register overutilization (experimental): (default 0 if not
stated otherwise)↪→

uint64_t registerBoost; // Specify if register file size is
bigger than shared memory and can be used to extend it X
times (on Nvidia 256KB register file can be used instead
of 32KB of shared memory, set this constant to 4 to
emulate 128KB of shared memory). Defaults: Nvidia - 4 in
Vulkan/OpenCL, 1 in CUDA backend; AMD - 2 if shared memory
>= 64KB, else 4 in Vulkan/OpenCL backend, 1 in HIP
backend; Intel - 1 if shared memory >= 64KB, else 2 in
Vulkan/OpenCL/Level Zero backends; Default 1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

uint64_t registerBoostNonPow2; // Specify if register
overutilization should be used on non power of 2 sequences
(0 - off, 1 - on)

↪→

↪→

uint64_t registerBoost4Step; // Specify if register file
overutilization should be used in big sequences (>2^14),
same definition as registerBoost. Default 1

↪→

↪→

//not used techniques:
uint64_t swapTo3Stage4Step; // Specify at which power of 2

to switch from 2 upload to 3 upload 4-step FFT, in case if
making max sequence size lower than coalesced sequence
helps to combat TLB misses. Default 0 - disabled. Must be
at least 17

↪→

↪→

↪→

↪→

uint64_t devicePageSize; // In KB, the size of a page on
the GPU. Setting to 0 disables local buffer split in pages↪→

uint64_t localPageSize; // In KB, the size to split page
into if sequence spans multiple devicePageSize pages↪→

// Automatically filled based on device info (still can be
reconfigured by user):↪→

uint64_t maxComputeWorkGroupCount[3]; //
maxComputeWorkGroupCount from VkPhysicalDeviceLimits↪→

uint64_t maxComputeWorkGroupSize[3]; //
maxComputeWorkGroupCount from VkPhysicalDeviceLimits↪→

uint64_t maxThreadsNum; // Max number of threads from
VkPhysicalDeviceLimits↪→
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uint64_t sharedMemorySizeStatic; // Available for static
allocation shared memory size, in bytes↪→

uint64_t sharedMemorySize; // Available for allocation
shared memory size, in bytes↪→

uint64_t sharedMemorySizePow2; // Power of 2 which is less
or equal to sharedMemorySize, in bytes↪→

uint64_t warpSize; // Number of threads per warp/wavefront.
uint64_t halfThreads; // Intel fix
uint64_t allocateTempBuffer; // Buffer allocated by app

automatically if needed to reorder Four step algorithm.
Parameter to check if it has been allocated

↪→

↪→

uint64_t reorderFourStep; // Unshuffle Four step algorithm.
Requires tempbuffer allocation (0 - off, 1 - on). Default
1.

↪→

↪→

int64_t maxCodeLength; // Specify how big can be buffer
used for code generation (in char). Default 1000000 chars.↪→

int64_t maxTempLength; // Specify how big can be buffer
used for intermediate string sprintfs be (in char).
Default 5000 chars. If code segfaults for some reason -
try increasing this number.

↪→

↪→

↪→

uint64_t autoCustomBluesteinPaddingPattern; // default value
for useCustomBluesteinPaddingPattern↪→

uint64_t vendorID; // vendorID 0x10DE - NVIDIA, 0x8086 -
Intel, 0x1002 - AMD, etc↪→

#if(VKFFT_BACKEND==0) //Vulkan API
VkDeviceMemory tempBufferDeviceMemory; // Filled at app

creation↪→

VkCommandBuffer* commandBuffer; // Filled at app execution
VkMemoryBarrier* memory_barrier; // Filled at app creation
#elif(VKFFT_BACKEND==1) //CUDA API
cudaEvent_t* stream_event; // Filled at app creation
uint64_t streamCounter; // Filled at app creation
uint64_t streamID; // Filled at app creation
#elif(VKFFT_BACKEND==2) //HIP API
hipEvent_t* stream_event; // Filled at app creation
uint64_t streamCounter; // Filled at app creation
uint64_t streamID; // Filled at app creation
#elif(VKFFT_BACKEND==3) //OpenCL API
cl_command_queue* commandQueue; // Filled at app creation
#elif(VKFFT_BACKEND==4)
ze_command_list_handle_t* commandList; // Filled at app

creation↪→

#endif
} VkFFTConfiguration;
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3.3.1 Driver API parameters

In order to work, VkFFT needs some structures that are provided by the driver. They are
backend API-dependent. VkFFT will return corresponding VkFFTResult if one of these
structures are not provided (value equal to zero) unless it is stated that there is a default
value assigned. VkFFT will not modify provided values directly.

Vulkan API will need the following information:

• VkPhysicalDevice* physicalDevice - Pointer to Vulkan physical device, obtained from
vkEnumeratePhysicalDevices()

• VkDevice* device - Pointer to Vulkan device, created with vkCreateDevice()

• VkQueue* queue - Pointer to Vulkan queue, created with vkGetDeviceQueue()

• VkCommandPool* commandPool - Pointer to Vulkan command pool, created with vkCre-
ateCommandPool()

• VkFence* fence - Pointer to Vulkan fence, created with vkCreateFence()

• uint64_t isCompilerInitialized - Specify if glslang compiler has been intialized before (0 -
off, 1 - on). Default 0 - VkFFT will call glslang_initialize_process() at initializeVkFFT()
and glslang_finialize_process() at deleteVkFFT() calls.

CUDA API will need the following information:

• CUdevice* device - Pointer to CUDA device, obtained from cuDeviceGet()

• cudaStream_t* stream - Pointer to streams (can be more than 1), where to execute the
kernels. Default 0. Streams must be associated with the provided device. There is no real
benefit in having more than one, however.

• uint64_t num_streams - Try to submit CUDA kernels in multiple streams for asyn-
chronous execution. Default 1

HIP API will need the following information:

• hipDevice_t* device - Pointer to HIP device, obtained from hipDeviceGet()

• hipStream_t* stream - Pointer to streams (can be more than 1), where to execute the
kernels. Default 0. Streams must be associated with the provided device. There is no real
benefit in having more than one, however.

• uint64_t num_streams - Try to submit HIP kernels in multiple streams for asynchronous
execution. Default 1

OpenCL API will need the following information:

• cl_device_id* device - Pointer to OpenCL device, obtained from clGetDeviceIDs()

• cl_context* context - Pointer to OpenCL context, obtained from clCreateContext()

Level Zero API will need the following information:
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• ze_device_handle_t* device - Pointer to Level Zero device, obtained from zeDeviceGet()

• ze_context_handle_t* context - Pointer to Level Zero context, obtained from zeCon-
textGet()

• ze_command_queue_handle_t* commandQueue - Pointer to Level Zero command queue-
with compute and copy capabilities, obtained from zeCommandQueueCreate()

• uint32_t commandQueueID - ID of the commandQueue with compute and copy capabil-
ities

3.3.2 Memory management parameters

There are five buffer types user can provide to VkFFT:

• the main buffer (buffer)

• temporary buffer used for calculations requiring out-of-place writes (tempBuffer)

• separate input buffer, from which initial read is performed (inputBuffer)

• separate output buffer, to which final write is performed (outputBuffer)

• kernel buffer, used for calculation of convolutions and cross-correlations (kernel)

These buffers must be passed by a pointer: in Vulkan API they are provided as VkBuffer*,
in CUDA, HIP and Level Zero they are provided as void**, in OpenCL, they are provided as
cl_mem*. Even though the underlying structure (VkBuffer, void*, cl_mem) is not a memory
but just a number that the driver can use to access corresponding allocated memory on the
GPU, passing them by a pointer allows for the user to query multiple GPU allocated buffers
for VkFFT to use. Currently, it is only supported in Vulkan API - each of five buffer types can
be made out of multiple separate memory allocations. For example, it is possible to combine
multiple small unused at the point of FFT calculation buffers to form a tempBuffer. This
option also allows Vulkan API to overcome the limit of 4GB for a single memory allocation -
due to the fact that Vulkan can only use 32-bit numbers for addressing (other APIs support
64-bit addressing).

To use the buffers other than the main buffer, the user has to specify this in configuration at
the application creation stage (set to zero by default, optional parameters):

• uint64_t userTempBuffer - enables manual temporary buffer allocation (otherwise it is
managed by VkFFT)

• uint64_t isInputFormatted - specifies that initial read is performed from a separate buffer
(inputBuffer)

• uint64_t isOutputFormatted - specifies that final write is performed to a separate buffer
(outputBuffer)

• uint64_t performConvolution - enables convolution calculations, which requires precom-
puted kernel (kernel)
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Buffer sizes (bufferSize/tempBufferSize/inputBufferSize/outputBufferSize/kernelSize) are pro-
vided as a uint64_t pointer to an array, where each element corresponds to the buffer size
of the buffer with the same placement in the buffer array. Buffer sizes have to be provided
in Vulkan API (due to the stricter memory management model and multiple buffer support)
and are optional in other backends (they can be useful to determine when to switch for 64-bit
addressing).

Buffer number (bufferNum/tempBufferNum/inputBufferNum/outputBufferNum/kernelNum)
corresponds to how many elements are in the buffer and buffer size array. By default it is set
to 1 and is not required to be provided by the user. Non-Vulkan backends currently don’t
support values other than default. Optional parameter.

Buffer offset (bufferOffset/ tempBufferOffset/ inputBufferOffset/ outputBufferOffset/ ker-
nelOffset) specifies offset from the start of the buffer sequence. It must be specified in bytes
and must be divisible by the number type size used in the corresponding array (otherwise,
the offset will be truncated). It is provided as a single uint64_t value. Can be provided
at launch time, if specifyOffsetsAtLaunch parameter is enabled during initialization call.
Optional parameters.

User can provide custom dimension strides for buffer/inputBuffer/outputBuffer buffers -
uint64_t[3] array. Strides are specified in elements used in the array (not bytes). The first
element corresponds to the stride between elements in the H direction, the second corresponds
to the D direction and the third to C (or N, if the number of elements in C is 1). The first axis
is assumed to be non-strided. Must be at least of the same size as default strides, otherwise
the behavior is undefined. Optional parameters.

uint64_t inverseReturnToInputBuffer - an option that allows setting the final output buffer
of the inverse transform to the same buffer, initial read of forward transform is performed
from (inputBuffer, if isInputFormatted enabled). Optional parameter.

3.3.3 General FFT parameters

This section describes part of the configuration structure responsible for FFT specifica-
tion.

uint64_t FFTdim - dimensionality of the transform (1, 2 or 3). Required parameter.

uint64_t size[3] - WHD dimensions of the transform. Required parameter.

uint64_t numberBatches - N parameter of the transform. By default, it is set to 1. Optional
parameter.

uint64_t performR2C - perform R2C/C2R decomposition. performDCT must be set to 0.
Default 0, set to 1 to enable. Optional parameter.

uint64_t performDCT - perform DCT transformation. performR2C must be set to 0. Default
0, set to X for DCT-X (currently supported X: 1, 2, 3 and 4). Optional parameter.

uint64_t normalize - enabling this parameter will make the inverse transform divide the
result by the FFT length. Default 0, set to 1 to enable. Optional parameter.
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3.3.4 Precision parameters (and some things that can affect it):

uint64_t doublePrecision - perform calculations in double precision. Default 0, set to 1 to
enable. In Vulkan/OpenCL/Level Zero your device must support double-precision function-
ality. Optional parameter.

uint64_t doublePrecisionFloatMemory - perform calculations in double precision, but all in-
termediate and final storage in float. Input/Output/main buffers must have single-precision
layout. doublePrecision must be set to 0. This option increases precision, but not that much
to be recommended for actual use. Default 0, set to 1 to enable. In Vulkan/OpenCL/Level
Zero your device must support double-precision functionality. Experimental feature. Op-
tional parameter.

uint64_t halfPrecision - half-precision in VkFFT is implemented only as memory optimiza-
tion. All calculations are done in single precision (similar way as doublePrecisionFloatMem-
ory works for double and single precision). Default 0, set to 1 to enable. Works only in
Vulkan API now, experimental feature (half precision seems to have bad precision for the
first FFT element). Optional parameter.

uint64_t halfPrecisionMemoryOnly - another way of performing half-precision in VkFFT,
it will use half-precision only for initial and final memory storage in input/output buffer.
Input/Output have to be allocated as half, buffer/tempBuffer have to be allocated as float
(out-of-place mode only). Specify isInputFormatted and isOutputFormatted to use. So, for
example, intermediate storage between axes FFTs in the multidimensional case will be done
in single precision, as opposed to half-precision in the base halfPrecision case. halfPrecision
must be set to 1. Default 0, set to 1 to enable. Works only in Vulkan API now, experimental
feature. Optional parameter.

uint64_t useLUT - switches from calculating sines and cosines (via special function units in
single precision or as a polynomial approximation in double precision) to using precomputed
Look-Up Tables. Default 0 in single precision, 1 in double precision, set to 1 to enable. Set to
1 by default for Intel GPUs. If you have issues with single-precision accuracy on your GPU,
try enabling this parameter (mobile GPUs may be affected). Optional parameter.

3.3.5 Advanced parameters (code will work fine without using them)

uint64_t omitDimension[3] - parameter, that disables the FFT calculation for a particular
axis (WHD). Note, that omitted dimensions still need to be included in FFTdim and size.
This parameter simply works as a switch during execution - by not executing the particular
dimension code. It doesn’t work with the non-strided axis (W) of R2C/C2R mode. It doesn’t
work with convolution calculations. Default 0, set to 1 to enable. Optional parameter.

uint64_t useUint64 - forces VkFFT to use 64-bit addressing in generated kernels. It is
automatically enabled if the estimated buffer size is more than 4GB. Doesn’t work with the
Vulkan backend. By default, it is set to 0. Optional parameter.

uint64_t coalescedMemory - number of bytes to coalesce per one transaction. For Nvidia
and AMD is equal to 32, Intel is equal to 64. Going to work regardless, but if specified by the
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user correctly, the performance will be higher. Default 64 for other GPUs. For half-precision
should be multiplied by two. Should be a power of two. Optional parameter.

uint64_t numSharedBanks - configure the number of shared banks on the target GPU.
Default 32. Minor performance boost as it solves shared memory conflicts for the power of
two systems. Optional parameter.

uint64_t aimThreads - try to aim all kernels at this amount of threads. Gains/losses are not
predictable, just a parameter to play with (it is not guaranteed that the target kernel will
use that many threads). Default 128. Optional parameter.

uint64_t useUint64 - forces 64-bit addressing in generated kernels. Should be enabled auto-
matically for systems spanning more than 4GB, but it is better to have an option to force it
as a failsafe. Doesn’t work in Vulkan API (use multiple buffer binding). Default 0, set to 1
to enable. Optional parameter.

uint64_t performBandwidthBoost - try to reduce coalsesced number by a factor of X to get
bigger sequence in one upload for strided axes. Default: -1(inf) for DCT, 2 for Bluestein’s
algorithm (or -1 if DCT), 0 otherwise

uint64_t disableMergeSequencesR2C - disable the optimization that performs merging of
two real sequences to reduce calculations (in R2C/C2R and R2R). If enabled, calculations
will be performed by simply setting the imaginary component to zero. Default 0, set to 1 to
enable. Optional parameter.

uint64_t disableReorderFourStep - disables unshuffling of the Four Step FFT algorithm
(last transposition of data). With this option enabled, tempBuffer will not be needed (unless
it is required by Bluestein’s multi-upload FFT algorithm). Default 0, set to 1 to enable.
Automatically enabled for convolution calculations and Bluestein’s algorithm. Optional pa-
rameter.

uint64_t makeForwardPlanOnly - generate code only for forward FFT. Default 0, set to 1
to enable. Mutually exclusive with makeInversePlanOnly. Optional parameter.

uint64_t makeInversePlanOnly - generate code only for inverse FFT. Default 0, set to 1 to
enable. Mutually exclusive with makeForwardPlan. Optional parameter.

uint64_t considerAllAxesStrided - will create a plan for a non-strided axis similar to a strided
axis (used with disableReorderFourStep to get the same layout for Bluestein kernel). Default
0, set to 1 to enable. Optional parameter.

uint64_t keepShaderCode - debugging option, will keep shader code and print all executed
shaders during the plan execution in order. Default 0, set to 1 to enable. Optional parame-
ter.

uint64_t printMemoryLayout - debugging option, will print order of buffers used in kernels.
Default 0, set to 1 to enable. Optional parameter.

uint64_t saveApplicationToString - will save all compiled binaries to VkFFTApplication.saveAp-
plicationString (will be allocated by VkFFT, deallocated with deleteVkFFT call). VkFF-
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TApplication.applicationStringSize will contain size of binary in bytes. Default 0, set to 1 to
enable. Optional parameter.

uint64_t loadApplicationFromString - will load all binaries from loadApplicationString in-
stead of recompiling them (loadApplicationString must be allocated by user, must contain
what saveApplicationToString call generated previously in VkFFTApplication.saveApplica-
tionString). Default 0, set to 1 to enable. Optional parameter. Mutually exclusive with
saveApplicationToString

void* loadApplicationString - memory array (uint32_t* for Vulkan, HIP and Level Zero,
char* for CUDA/OpenCL) through which user can load VkFFT binaries, must be provided
by user if loadApplicationFromString = 1.

3.3.6 Bluestein control parameters

If the sequence can not be decomposed as a multiplication of primes up to 13, FFT is
performed as a convolution. The sequence to pad to with the best performance is usually
device-dependent. VkFFT uses parameters manually tuned for all sequences between 2 and
4096 for both double and single precision on Nvidia A100 (Nvidia profile) and AMD MI250
(default profile). To control this process, VkFFT allows for the following parameters speci-
fication:

uint64_t fixMaxRadixBluestein - controls the padding of sequences in Bluestein convolution.
If specified, padded sequence will be made of up to fixMaxRadixBluestein primes. Default:
2 for CUDA and Vulkan/OpenCL/HIP up to 1048576 combined dimension FFT system, 7
for Vulkan/OpenCL/HIP past after. Min = 2, Max = 13.

uint64_t forceBluesteinSequenceSize - force the sequence size to pad to in Bluestein’s algo-
rithm. Must be at least 2*N-1 and decomposable with primes 2-13.

uint64_t useCustomBluesteinPaddingPattern - force the sequence sizes to pad to in Bluestein’s
algorithm, but on a range. This number specifies the number of elements in primeSizes and
in paddedSizes arrays. primeSizes - array of non-decomposable as radix scheme sizes - 17, 23,
31 etc. paddedSizes - array of lengths to pad to. paddedSizes[i] will be the padding size for all
non-decomposable sequences from primeSizes[i] to primeSizes[i+1] (will use default scheme
after last one) - 42, 60, 64 for primeSizes before and 37+ will use default scheme (for example).
Default is vendor and API-based specified in autoCustomBluesteinPaddingPattern.

uint64_t* primeSizes - described in useCustomBluesteinPaddingPattern

uint64_t* paddedSizes - described in useCustomBluesteinPaddingPattern

3.3.7 Zero padding parameters

uint64_t performZeropadding[3] - do not read/write some data/perform computations if
some part of the sequence is known to have zeros. Set separately for each axis (WHD). If
enabled, all 1D sequences in this direction will be considered padded (independent of other
zero-padded axes). Default 0, set to 1 to enable. Optional parameter.
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uint64_t fft_zeropad_left[3] - specify start boundary of zero block in the system for each
axis. Default 0, set to the value between 0 and size[X]-1. Optional parameter.

uint64_t fft_zeropad_right[3] - specify end boundary of zero block in the system for each
axis. Default 0, set to the value between fft_zeropad_left[X] and size[X]-1. Optional param-
eter.

uint64_t frequencyZeroPadding - enables zero padding of the frequency domain, so the first
read of inverse FFT will consider the parts of the system from fft_zeropad_left to fft_ze-
ropad_right as zero. Default 0 - spatial zero padding, set to 1 to enable. Optional parame-
ter.

3.3.8 Convolution parameters

uint64_t performConvolution - main parameter that enables convolutions in the application.
If enabled, you must specify kernel buffer, number of kernel buffers and kernel sizes (in Vulkan
API). Disables reordering of the Four Step FFT algorithm. Default 0, set to 1 to enable.
Optional parameter.

uint64_t conjugateConvolution - default 0, set to 1 to enable enables conjugation of the se-
quence FFT is currently done on, 2 to enable conjugation of the convolution kernel. Optional
parameter.

uint64_t crossPowerSpectrumNormalization - normalize the FFT * kernel multiplication in
frequency domain. Default 0, set to 1 to enable. Optional parameter.

uint64_t coordinateFeatures - max coordinate (C), or dimension of the features vector. In
matrix convolution - the size of the vector. The main purpose is to support Matrix-Vector
convolutions. Use numberBatches parameter in tasks, not requiring two separate coordinate-
like enumerations of data. Default 1. Optional parameter.

uint64_t matrixConvolution - set to 2 to perform 2x2, set to 3 to perform 3x3 matrix-vector
convolution. Matrix-vector convolution is a form of point-wise multiplication in the Fourier
space, used by the convolution theorem, where multiplication takes the form of Matrix-
vector multiplication. Overrides coordinateFeatures during execution. Default 0. Optional
parameter.

uint64_t symmetricKernel - specify if kernel in 2x2 or 3x3 matrix convolution is symmetric.
You need to store data as xx, xy, yy (upper-triangular) if enabled and as xx, xy, yx, yy
(along rows then along columns, from left to right) if disabled. Default 0, set to 1 to enable.
Optional parameter.

uint64_t numberKernels - specify how many kernels were initialized before performing one in-
put/multiple output convolutions. Overwrites numberBatches (N). Only used in convolution
step and the following inverse transforms. Default 1. Optional parameter.

uint64_t kernelConvolution - specify if this application is used to create kernel for convolu-
tion, so it has the same properties/memory layout. performConvolution has to be set to 0
for the kernel creation. Default 0, set to 1 to enable. Optional parameter, but it is a required
parameter for kernel generation.
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3.3.9 Register overutilization

Only works in C2C mode, without convolution support. Enabled in Vulkan, OpenCL and
Level Zero APIs only (it works in other APIs, but worse). Experimental feature.

uint64_t registerBoost - specify if the register file size is bigger than shared memory and can
be used to extend it X times (on Nvidia 256KB register file can be used instead of 32KB
of shared memory, set this constant to 4 to emulate 128KB of shared memory). Default 1
- no overutilization. In Vulkan, OpenCL and Level Zero it is set to 4 on Nvidia GPUs, to
2 if the driver shows 64KB or more of shared memory on AMD, to 2 if the driver shows
less than 64KB of shared memory on AMD, to 1 if the driver shows 64KB or more of shared
memory on Intel, to 2 if the driver shows less than 64KB of shared memory on Intel. Optional
parameter.

uint64_t registerBoostNonPow2 - specify if register overutilization should be used on non-
power of 2 sequences. Default 0, set to 1 to enable. Optional parameter.

uint64_t registerBoost4Step - specify if register file overutilization should be used in big
sequences (>2^14), same definition as registerBoost. Default 1. Optional parameter.

3.3.10 Extra advanced parameters (filled automatically)

uint64_t maxComputeWorkGroupCount[3] - how many workgroups can be launched at one
dispatch. Automatically derived from the driver, can be artificially lowered. Then VkFFT
will perform a logical split and extension of the number of workgroups to cover the required
range.

uint64_t maxComputeWorkGroupSize[3] - max dimensions of the workgroup. Automatically
derived from the driver. Can be modified if there are some issues with the driver (as there
were with ROCm 4.0, when it returned 1024 for maxComputeWorkGroupSize and actually
supported only up to 256 threads).

uint64_t maxThreadsNum - max number of threads per block. Similar to maxCompute-
WorkGroupSize, but aggregated. Automatically derived from the driver.

uint64_t sharedMemorySizeStatic - available for static allocation shared memory size, in
bytes. Automatically derived from the driver. Can be controlled by the user, if desired.

uint64_t sharedMemorySize - available for allocation shared memory size, in bytes. VkFFT
uses dynamic shared memory in CUDA/HIP as it allows for bigger allocations. Automatically
derived from the driver. Can be controlled by the user, if desired.

uint64_t sharedMemorySizePow2 - the power of 2 which is less or equal to sharedMemorySize,
in bytes. Automatically computed.

uint64_t warpSize - number of threads per warp/wavefront. Automatically derived from the
driver, but can be modified (can increase performance, though unpredictable as defaults have
good values). Must be a power of two.

uint64_t halfThreads - Intel GPU fix, tries to reduce the amount of dispatched threads in
half to solve performance degradation in the Four Step FFT algorithm. Default 0 for other
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GPUs, try enabling it if performance degrades in the Four Step FFT algorithm for your GPU
as well.

int64_t maxCodeLength - specify how big can the buffer used for code generation be (in
char). Default 1000000 chars.

int64_t maxTempLength - specify how big can the buffer used for intermediate string sprintf’s
be (in char). Default 5000 chars. If code segfaults for some reason - try increasing this
number.

uint64_t autoCustomBluesteinPaddingPattern; // default value for useCustomBluestein-
PaddingPattern

uint64_t vendorID; // vendorID 0x10DE - NVIDIA, 0x8086 - Intel, 0x1002 - AMD, etc.
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4 VkFFT Benchmark/Precision Suite and utils_VkFFT
helper routines

The only licensed (MIT) part of the VkFFT repository is the VkFFT header file - core
library. Other files are either external helper libraries (half, glslang, with their respective
licenses) or unlicensed code that is intended for simple copy-pasting (benchmark_scripts,
utils_VkFFT.h). It is the easiest way to understand how to use VkFFT by taking the
provided scripts and tinker them to the particular task. The current version of the benchmark
and precision verification suite has the following codes available:

• user_benchmark_VkFFT - generalization of the main configuration parameters that can
be used to launch simplest in-place transforms for the most important supported func-
tionality

• Sample 0 - FFT + iFFT C2C benchmark 1D batched in single precision

• Sample 1 - FFT + iFFT C2C benchmark 1D batched in double precision

• Sample 2 - FFT + iFFT C2C benchmark 1D batched in half precision

• Sample 3 - FFT + iFFT C2C multidimensional benchmark in single precision

• Sample 4 - FFT + iFFT C2C multidimensional benchmark in single precision, native
zeropadding

• Sample 5 - FFT + iFFT C2C benchmark 1D batched in single precision, no reshuffling

• Sample 6 - FFT + iFFT R2C / C2R benchmark, in-place.

• Sample 7 - FFT + iFFT C2C Bluestein benchmark in single precision

• Sample 8 - FFT + iFFT C2C Bluestein benchmark in double precision

• Sample 10 - multiple buffers (4 by default) split version of benchmark 0

• Sample 11 - VkFFT / xFFT / FFTW C2C precision test in single precision (xFFT can
be cuFFT or rocFFT)

• Sample 12 - VkFFT / xFFT / FFTW C2C precision test in double precision (xFFT can
be cuFFT or rocFFT)

• Sample 13 - VkFFT / cuFFT / FFTW C2C precision test in half precision

• Sample 14 - VkFFT / FFTW C2C radix 3 / 5 / 7 / 11 / 13 / Bluestein precision test in
single precision

• Sample 15 - VkFFT / xFFT / FFTW R2C+C2R precision test in single precision, out-
of-place. (xFFT can be cuFFT or rocFFT)

• Sample 16 - VkFFT / FFTW R2R DCT-I, II, III and IV precision test in single precision

• Sample 17 - VkFFT / FFTW R2R DCT-I, II, III and IV precision test in double precision
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• Sample 18 - VkFFT / FFTW C2C radix 3 / 5 / 7 / 11 / 13 / Bluestein precision test in
double precision

• Sample 50 - convolution example with identity kernel

• Sample 51 - zero padding convolution example with identity kernel

• Sample 52 - batched convolution example with identity kernel

• Sample 100 - VkFFT FFT + iFFT R2R DCT multidimensional benchmark in single
precision

• Sample 101 - VkFFT FFT + iFFT R2R DCT multidimensional benchmark in double
precision

• Sample 1000 - FFT + iFFT C2C benchmark 1D batched in single precision: all supported
systems from 2 to 4096

• Sample 1001 - FFT + iFFT C2C benchmark 1D batched in single precision: all supported
systems from 2 to 4096

• Sample 1003 - FFT + iFFT C2C benchmark 1D batched in single precision: all supported
systems from 2 to 4096

4.1 utils_VkFFT helper routines
Launching even the simplest Vulkan application can be a non-trivial task. To help with this,
utils_VkFFT contains the routines that can help to create the simplest Vulkan application,
allocate memory, record command buffers and launch them. Code has some comments ex-
plaining what is going on at each step. It also has some useful struct defines (like vkGPU) that
keep the most important handles used in Vulkan Compute. This section may be expanded in
the future to the proper step-by-step guide on Vulkan Compute simple application creation. I
also encourage to check https://github.com/DTolm/VulkanComputeSamples-Transposition
repository for another example of a compute algorithm (matrix transposition) implemented
with Vulkan API.

utils_VkFFT also has a routine that prints the list of available devices.

vkGPU struct has the following definition:
typedef struct {
#if(VKFFT_BACKEND==0) //Vulkan API
VkInstance instance; //a connection between the application

and the Vulkan library↪→

VkPhysicalDevice physicalDevice; //a handle for the graphics
card used in the application↪→

VkPhysicalDeviceProperties physicalDeviceProperties; //bastic
device properties↪→
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VkPhysicalDeviceMemoryProperties
physicalDeviceMemoryProperties; //basic memory properties
of the device

↪→

↪→

VkDevice device; //a logical device, interacting with physical
device↪→

VkDebugUtilsMessengerEXT debugMessenger; //extension for
debugging↪→

uint64_t queueFamilyIndex; //if multiple queues are available,
specify the used one↪→

VkQueue queue; //a place, where all operations are submitted
VkCommandPool commandPool; //an opaque objects that command

buffer memory is allocated from↪→

VkFence fence; //a vkGPU->fence used to synchronize dispatches
std::vector<const char*> enabledDeviceExtensions;
uint64_t enableValidationLayers;
#elif(VKFFT_BACKEND==1) //CUDA API
CUdevice device;
CUcontext context;
#elif(VKFFT_BACKEND==2) //HIP API
hipDevice_t device;
hipCtx_t context;
#elif(VKFFT_BACKEND==3) //OpenCL API
cl_platform_id platform;
cl_device_id device;
cl_context context;
cl_command_queue commandQueue;
#elif(VKFFT_BACKEND==4) //Level Zero API
ze_driver_handle_t driver;
ze_device_handle_t device;
ze_context_handle_t context;
ze_command_queue_handle_t commandQueue;
uint32_t commandQueueID;
#endif
uint64_t device_id; //an id of a device, reported by

devices_list call↪→

} VkGPU;
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5 VkFFT Code Examples
This section will provide some simple pseudocode for VkFFT usage, which will once again
outline important steps required to launch FFT with VkFFT. More information (and fully
working code) can be found in this folder of the VkFFT repository:

/benchmark_samples/vkFFT_scripts/src/

5.1 Driver initializations
Before launching VkFFT, do not forget to do all necessary driver initializations. The following
code specifies them for all the supported backends, though the final implementation may be
different depending on the particular user’s configuration.
#if(VKFFT_BACKEND==0) //Vulkan API
VkResult res = VK_SUCCESS;
//create instance - a connection between the application and

the Vulkan library↪→

res = createInstance(vkGPU, sample_id);
if (res != 0) {

//printf("Instance creation failed, error code: %" PRIu64
"\n", res);↪→

return VKFFT_ERROR_FAILED_TO_CREATE_INSTANCE;
}
//set up the debugging messenger
res = setupDebugMessenger(vkGPU);
if (res != 0) {
//printf("Debug messenger creation failed, error code: %"

PRIu64 "\n", res);↪→

return VKFFT_ERROR_FAILED_TO_SETUP_DEBUG_MESSENGER;
}
//check if there are GPUs that support Vulkan and select one
res = findPhysicalDevice(vkGPU);
if (res != 0) {
//printf("Physical device not found, error code: %" PRIu64

"\n", res);↪→

return VKFFT_ERROR_FAILED_TO_FIND_PHYSICAL_DEVICE;
}
//create logical device representation
res = createDevice(vkGPU, sample_id);
if (res != 0) {
//printf("Device creation failed, error code: %" PRIu64 "\n",

res);↪→

return VKFFT_ERROR_FAILED_TO_CREATE_DEVICE;
}
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//create fence for synchronization
res = createFence(vkGPU);
if (res != 0) {
//printf("Fence creation failed, error code: %" PRIu64 "\n",

res);↪→

return VKFFT_ERROR_FAILED_TO_CREATE_FENCE;
}
//create a place, command buffer memory is allocated from
res = createCommandPool(vkGPU);
if (res != 0) {

//printf("Fence creation failed, error code: %" PRIu64
"\n", res);↪→

return VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_POOL;
}
vkGetPhysicalDeviceProperties(vkGPU->physicalDevice,

&vkGPU->physicalDeviceProperties);↪→

vkGetPhysicalDeviceMemoryProperties(vkGPU->physicalDevice,
&vkGPU->physicalDeviceMemoryProperties);↪→

glslang_initialize_process();
//compiler can be initialized before VkFFT

#elif(VKFFT_BACKEND==1) //CUDA API
CUresult res = CUDA_SUCCESS;
cudaError_t res2 = cudaSuccess;
res = cuInit(0);
if (res != CUDA_SUCCESS) return

VKFFT_ERROR_FAILED_TO_INITIALIZE;↪→

res2 = cudaSetDevice((int)vkGPU->device_id);
if (res2 != cudaSuccess) return

VKFFT_ERROR_FAILED_TO_SET_DEVICE_ID;↪→

res = cuDeviceGet(&vkGPU->device, (int)vkGPU->device_id);
if (res != CUDA_SUCCESS) return

VKFFT_ERROR_FAILED_TO_GET_DEVICE;↪→

res = cuCtxCreate(&vkGPU->context, 0, (int)vkGPU->device);
if (res != CUDA_SUCCESS) return

VKFFT_ERROR_FAILED_TO_CREATE_CONTEXT;↪→

#elif(VKFFT_BACKEND==2) //HIP API
hipError_t res = hipSuccess;
res = hipInit(0);
if (res != hipSuccess) return

VKFFT_ERROR_FAILED_TO_INITIALIZE;↪→

res = hipSetDevice((int)vkGPU->device_id);
if (res != hipSuccess) return

VKFFT_ERROR_FAILED_TO_SET_DEVICE_ID;↪→
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res = hipDeviceGet(&vkGPU->device, (int)vkGPU->device_id);
if (res != hipSuccess) return

VKFFT_ERROR_FAILED_TO_GET_DEVICE;↪→

res = hipCtxCreate(&vkGPU->context, 0, (int)vkGPU->device);
if (res != hipSuccess) return

VKFFT_ERROR_FAILED_TO_CREATE_CONTEXT;↪→

#elif(VKFFT_BACKEND==3) //OpenCL API
cl_int res = CL_SUCCESS;
cl_uint numPlatforms;
res = clGetPlatformIDs(0, 0, &numPlatforms);
if (res != CL_SUCCESS) return

VKFFT_ERROR_FAILED_TO_INITIALIZE;↪→

cl_platform_id* platforms =
(cl_platform_id*)malloc(sizeof(cl_platform_id) *
numPlatforms);

↪→

↪→

if (!platforms) return VKFFT_ERROR_MALLOC_FAILED;
res = clGetPlatformIDs(numPlatforms, platforms, 0);
if (res != CL_SUCCESS) return

VKFFT_ERROR_FAILED_TO_INITIALIZE;↪→

uint64_t k = 0;
for (uint64_t j = 0; j < numPlatforms; j++) {

cl_uint numDevices;
res = clGetDeviceIDs(platforms[j], CL_DEVICE_TYPE_ALL, 0,
0, &numDevices);↪→

cl_device_id* deviceList =
(cl_device_id*)malloc(sizeof(cl_device_id) * numDevices);↪→

if (!deviceList) return VKFFT_ERROR_MALLOC_FAILED;
res = clGetDeviceIDs(platforms[j], CL_DEVICE_TYPE_ALL,
numDevices, deviceList, 0);↪→

if (res != CL_SUCCESS) return
VKFFT_ERROR_FAILED_TO_GET_DEVICE;↪→

for (uint64_t i = 0; i < numDevices; i++) {
if (k == vkGPU->device_id) {

vkGPU->platform = platforms[j];
vkGPU->device = deviceList[i];
vkGPU->context = clCreateContext(NULL, 1,

&vkGPU->device, NULL, NULL, &res);↪→

if (res != CL_SUCCESS) return
VKFFT_ERROR_FAILED_TO_CREATE_CONTEXT;↪→

cl_command_queue commandQueue =
clCreateCommandQueue(vkGPU->context, vkGPU->device, 0,
&res);

↪→

↪→

if (res != CL_SUCCESS) return
VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QUEUE;↪→
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vkGPU->commandQueue = commandQueue;
k++;

}
else {

k++;
}

}
free(deviceList);

}
free(platforms);
#elif(VKFFT_BACKEND==4)

ze_result_t res = ZE_RESULT_SUCCESS;
res = zeInit(0);
if (res != ZE_RESULT_SUCCESS) return
VKFFT_ERROR_FAILED_TO_INITIALIZE;↪→

uint32_t numDrivers = 0;
res = zeDriverGet(&numDrivers, 0);
if (res != ZE_RESULT_SUCCESS) return
VKFFT_ERROR_FAILED_TO_INITIALIZE;↪→

ze_driver_handle_t* drivers =
(ze_driver_handle_t*)malloc(numDrivers *
sizeof(ze_driver_handle_t));

↪→

↪→

if (!drivers) return VKFFT_ERROR_MALLOC_FAILED;
res = zeDriverGet(&numDrivers, drivers);
if (res != ZE_RESULT_SUCCESS) return
VKFFT_ERROR_FAILED_TO_INITIALIZE;↪→

uint64_t k = 0;
for (uint64_t j = 0; j < numDrivers; j++) {

uint32_t numDevices = 0;
res = zeDeviceGet(drivers[j], &numDevices, nullptr);
if (res != ZE_RESULT_SUCCESS) return

VKFFT_ERROR_FAILED_TO_GET_DEVICE;↪→

ze_device_handle_t* deviceList =
(ze_device_handle_t*)malloc(numDevices *
sizeof(ze_device_handle_t));

↪→

↪→

if (!deviceList) return VKFFT_ERROR_MALLOC_FAILED;
res = zeDeviceGet(drivers[j], &numDevices,

deviceList);↪→

if (res != ZE_RESULT_SUCCESS) return
VKFFT_ERROR_FAILED_TO_GET_DEVICE;↪→

for (uint64_t i = 0; i < numDevices; i++) {
if (k == vkGPU->device_id) {

vkGPU->driver = drivers[j];
vkGPU->device = deviceList[i];
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ze_context_desc_t contextDescription = {};
contextDescription.stype =

ZE_STRUCTURE_TYPE_CONTEXT_DESC;↪→

res = zeContextCreate(vkGPU->driver,
&contextDescription, &vkGPU->context);↪→

if (res != ZE_RESULT_SUCCESS) return
VKFFT_ERROR_FAILED_TO_CREATE_CONTEXT;↪→

uint32_t queueGroupCount = 0;
res =

zeDeviceGetCommandQueueGroupProperties(vkGPU->device,
&queueGroupCount, 0);

↪→

↪→

if (res != ZE_RESULT_SUCCESS) return
VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QUEUE;↪→

ze_command_queue_group_properties_t*
cmdqueueGroupProperties =
(ze_command_queue_group_properties_t*)
malloc(queueGroupCount *
sizeof(ze_command_queue_group_properties_t));

↪→

↪→

↪→

↪→

if (!cmdqueueGroupProperties) return
VKFFT_ERROR_MALLOC_FAILED;↪→

res =
zeDeviceGetCommandQueueGroupProperties(vkGPU->device,
&queueGroupCount, cmdqueueGroupProperties);

↪→

↪→

if (res != ZE_RESULT_SUCCESS) return
VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QUEUE;↪→

uint32_t commandQueueID = -1;
for (uint32_t i = 0; i < queueGroupCount; ++i)

{↪→

if ((cmdqueueGroupProperties[i].flags &&
ZE_COMMAND_QUEUE_GROUP_PROPERTY_FLAG_COMPUTE) &&
(cmdqueueGroupProperties[i].flags &&
ZE_COMMAND_QUEUE_GROUP_PROPERTY_FLAG_COPY)) {

↪→

↪→

↪→

commandQueueID = i;
break;

}
}
if (commandQueueID == -1) return

VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QUEUE;↪→

vkGPU->commandQueueID = commandQueueID;
ze_command_queue_desc_t

commandQueueDescription = {};↪→
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commandQueueDescription.stype =
ZE_STRUCTURE_TYPE_COMMAND_QUEUE_DESC;↪→

commandQueueDescription.ordinal =
commandQueueID;↪→

commandQueueDescription.priority =
ZE_COMMAND_QUEUE_PRIORITY_NORMAL;↪→

commandQueueDescription.mode =
ZE_COMMAND_QUEUE_MODE_DEFAULT;↪→

res = zeCommandQueueCreate(vkGPU->context,
vkGPU->device, &commandQueueDescription,
&vkGPU->commandQueue);

↪→

↪→

if (res != ZE_RESULT_SUCCESS) return
VKFFT_ERROR_FAILED_TO_CREATE_COMMAND_QUEUE;↪→

free(cmdqueueGroupProperties);
k++;

}
else {

k++;
}

}

free(deviceList);
}
free(drivers);

#endif

5.2 Simple FFT application example: 1D (one dimensional) C2C
(complex to complex) FP32 (single precision) FFT

This example performs the simplest case of FFT. It shows all the necessary fields that the
user must fill during the configuration and the submission process. Other samples will build
on this one, as driver parameters initialization and code execution commands are the same for
all configurations (except for the launch parameters that can be configured after application
creation).
//zero-initialize configuration + FFT application
VkFFTConfiguration configuration = {};
VkFFTApplication app = {};

configuration.FFTdim = 1; //FFT dimension, 1D, 2D or 3D
configuration.size[0] = Nx; //FFT size
uint64_t bufferSize = (uint64_t)sizeof(float) * 2 *

configuration.size[0];↪→
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//Device management + code submission
configuration.device = &vkGPU->device;

#if(VKFFT_BACKEND==0) //Vulkan API
configuration.queue = &vkGPU->queue;
configuration.fence = &vkGPU->fence;
configuration.commandPool = &vkGPU->commandPool;
configuration.physicalDevice = &vkGPU->physicalDevice;

↪→

configuration.isCompilerInitialized = isCompilerInitialized;
//glslang compiler can be initialized before VkFFT plan
creation. if not, VkFFT will create and destroy one after
initialization

↪→

↪→

↪→

#elif(VKFFT_BACKEND==3) //OpenCL API
configuration.context = &vkGPU->context;
#elif(VKFFT_BACKEND==4)
configuration.context = &vkGPU->context;
configuration.commandQueue = &vkGPU->commandQueue;
configuration.commandQueueID = vkGPU->commandQueueID;
#endif

allocateBuffer(buffer, bufferSize); //Pseudocode for buffer
allocation, differs between APIs↪→

transferDataFromCPU(buffer, cpu_buffer); //Pseudocode for data
transfer from CPU to GPU, differs between APIs↪→

#if(VKFFT_BACKEND==0) //Vulkan API needs bufferSize at
initialization↪→

configuration.bufferSize = &bufferSize;
#endif

VkFFTResult resFFT = initializeVkFFT(&app, configuration);

VkFFTLaunchParams launchParams = {};
launchParams.buffer = &buffer;
#if(VKFFT_BACKEND==0) //Vulkan API
launchParams.commandBuffer = &commandBuffer;
#elif(VKFFT_BACKEND==3) //OpenCL API
launchParams.commandQueue = &commandQueue;
#elif(VKFFT_BACKEND==4) //Level Zero API
launchParams->commandList = &commandList;
#endif
resFFT = VkFFTAppend(app, -1, &launchParams);
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//add synchronization relevant to your API - vkWaitFor-
Fences/cudaDeviceSynchronize/hipDeviceSynchronize/clFinish↪→

transferDataToCPU(cpu_buffer, buffer); //Pseudocode for data
transfer from GPU to CPU, differs between APIs↪→

freeBuffer(buffer, bufferSize); //Pseudocode for buffer
deallocation, differs between APIs↪→

deleteVkFFT(&app);

5.3 Advanced FFT application example: ND, C2C/R2C/R2R, dif-
ferent precisions, batched FFT

This example shows how to configure the main parameters of interest in the VkFFT library:
multidimensional case, different types of transforms, different precision, perform batched
transforms.

In the code below X, Y and Z are the dimensions of FFT, B - number of batches, R2C - real
to complex mode 0 or 1 (on/off), DCT - 0, 1, 2, 3 or 4 (off/DCT type), P - precision (0 -
single, 1 - double, 2 - half).
//zero-initialize configuration + FFT application
VkFFTConfiguration configuration = {};
VkFFTApplication app = {};

configuration.FFTdim = 1; //FFT dimension, 1D, 2D or 3D
configuration.size[0] = X;
configuration.size[1] = Y;
configuration.size[2] = Z;
if (Y > 1) configuration.FFTdim++;
if (Z > 1) configuration.FFTdim++;
configuration.numberBatches = B;
configuration.performR2C = R2C;
configuration.performDCT = DCT;
if (P == 1) configuration.doublePrecision = 1;
if (P == 2) configuration.halfPrecision = 1;

uint64_t bufferSize = 0;

if (R2C) {
bufferSize = (uint64_t)(storageComplexSize / 2) *
(configuration.size[0] + 2) * configuration.size[1] *
configuration.size[2] * configuration.numberBatches;

↪→

↪→

}
else {
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if (DCT) {
bufferSize = (uint64_t)(storageComplexSize / 2) *

configuration.size[0] * configuration.size[1] *
configuration.size[2] * configuration.numberBatches;

↪→

↪→

}
else {

bufferSize = (uint64_t)storageComplexSize *
configuration.size[0] * configuration.size[1] *
configuration.size[2] * configuration.numberBatches;

↪→

↪→

}
} // storageComplexSize - 4/8/16 for FP16/FP32/FP64

respectively.↪→

//Device management + code submission - code is identical to
the previous example↪→

5.4 Advanced FFT application example: out-of-place R2C FFT
with custom strides

In this example, VkFFT is configured to calculate a 3D out-of-place R2C FFT of a system
with custom strides. VkFFT reads data from the inputBuffer and produces the result in the
buffer.
//zero-initialize configuration + FFT application
VkFFTConfiguration configuration = {};
VkFFTApplication app = {};

configuration.FFTdim = 3; //FFT dimension, 1D, 2D or 3D
configuration.size[0] = Nx;
configuration.size[1] = Ny;
configuration.size[2] = Nz;

configuration.performR2C = 1;

//out-of-place - we need to specify that input buffer is
separate from the main buffer↪→

configuration.isInputFormatted = 1;
configuration.inputBufferStride[0] = configuration.size[0];
configuration.inputBufferStride[1] =

configuration.inputBufferStride[0] *
configuration.size[1];

↪→

↪→

configuration.inputBufferStride[2] =
configuration.inputBufferStride[1] *
configuration.size[2];

↪→

↪→
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configuration.bufferStride[0] = (uint64_t)
(configuration.size[0] / 2) + 1;↪→

configuration.bufferStride[1] = configuration.bufferStride[0]
* configuration.size[1];↪→

configuration.bufferStride[2] = configuration.bufferStride[1]*
configuration.size[2];↪→

uint64_t inputBufferSize = (uint64_t)sizeof(float) *
configuration.size[0] * configuration.size[1] *
configuration.size[2];

↪→

↪→

uint64_t bufferSize = (uint64_t)sizeof(float) * 2 *
(configuration.size[0]/2+1) * configuration.size[1] *
configuration.size[2];

↪→

↪→

//Device management + code submission - code is identical to
the first example, except that you need to allocate two
buffers (and provide them in the launch configuration).

↪→

↪→

5.5 Advanced FFT application example: 3D zero-padded FFT
In this example, VkFFT is configured to calculate a 3D FFT of a system. The meaningful
data is located in the first octant of the buffer, the rest is padded with zeros. This configura-
tion removes the circular part of the convolution and allows modelling of open systems.
//zero-initialize configuration + FFT application
VkFFTConfiguration configuration = {};
VkFFTApplication app = {};

configuration.FFTdim = 3; //FFT dimension, 1D, 2D or 3D
configuration.size[0] = Nx;
configuration.size[1] = Ny;
configuration.size[2] = Nz;

configuration.performZeropadding[0] = 1; //Perform padding
with zeros on GPU. Still need to properly align input data
(no need to fill padding area with meaningful data) but
this will increase performance due to the lower amount of
the memory reads/writes and omitting sequences only
consisting of zeros.

↪→

↪→

↪→

↪→

↪→

configuration.performZeropadding[1] = 1;
configuration.performZeropadding[2] = 1;
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configuration.fft_zeropad_left[0] =
(uint64_t)ceil(configuration.size[0] / 2.0);↪→

configuration.fft_zeropad_right[0] = configuration.size[0];
configuration.fft_zeropad_left[1] =

(uint64_t)ceil(configuration.size[1] / 2.0);↪→

configuration.fft_zeropad_right[1] = configuration.size[1];
configuration.fft_zeropad_left[2] =

(uint64_t)ceil(configuration.size[2] / 2.0);↪→

configuration.fft_zeropad_right[2] = configuration.size[2];

uint64_t bufferSize = (uint64_t)storageComplexSize *
configuration.size[0] * configuration.size[1] *
configuration.size[2];

↪→

↪→

//Device management + code submission - code is identical to
the first example↪→

5.6 Convolution application example: 3x3 matrix-vector convolu-
tion in 1D

In this example, VkFFT is configured to calculate a kernel, represented by a 3x3 matrix and
a system, represented by a 3D vector. Their convolution is a matrix-vector multiplication in
the frequency domain.
//zero-initialize configuration + FFT application, we need two

- one for kernel calculation↪→

VkFFTConfiguration kernel_configuration = {};
VkFFTConfiguration convolution_configuration = {};
VkFFTApplication app_kernel = {};
VkFFTApplication app_convolution = {};

kernel_configuration.FFTdim = 1; //FFT dimension, 1D, 2D or 3D
kernel_configuration.size[0] = Nx; //FFT size

uint64_t bufferSize = (uint64_t)sizeof(float) * 2 *
kernel_configuration.size[0];↪→

//configure kernel
kernel_configuration.kernelConvolution = 1; //specify if this

plan is used to create kernel for convolution↪→
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kernel_configuration.coordinateFeatures = 9; //Specify
dimensionality of the input feature vector (default 1).
Each component is stored not as a vector, but as a
separate system and padded on it's own according to other
options (i.e. for x*y system of 3-vector, first x*y
elements correspond to the first dimension, then goes x*y
for the second, etc).

↪→

↪→

↪→

↪→

↪→

↪→

//coordinateFeatures number is an important constant for
convolution. If we perform 1x1 convolution, it is equal to
number of features, but matrixConvolution should be equal
to 1. For matrix convolution, it must be equal to
matrixConvolution parameter. If we perform 2x2
convolution, it is equal to 3 for symmetric kernel (stored
as xx, xy, yy) and 4 for nonsymmetric (stored as xx, xy,
yx, yy). Similarly, 6 (stored as xx, xy, xz, yy, yz, zz)
and 9 (stored as xx, xy, xz, yx, yy, yz, zx, zy, zz) for
3x3 convolutions.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

kernel_configuration.normalize = 1;

//Initialize app_kernel and perform a single forward FFT like
in examples before. You pass kernel as a buffer for the
preparation stage.

↪→

↪→

convolution_configuration = kernel_configuration;
convolution_configuration.kernelConvolution = 0;
convolution_configuration.performConvolution = 1;
convolution_configuration.symmetricKernel = 0;//Specify if

convolution kernel is symmetric. In this case we only pass
upper triangle part of it in the form of: (xx, xy, yy) for
2d and (xx, xy, xz, yy, yz, zz) for 3d.

↪→

↪→

↪→

convolution_configuration.matrixConvolution = 3;//we do matrix
convolution, so kernel is 9 numbers (3x3), but vector
dimension is 3

↪→

↪→

convolution_configuration.coordinateFeatures = 3;//equal to
matrixConvolution size↪→

//Initialize app_convolution and perform a single forward FFT
like in examples before. You pass kernel as kernel and
system to be convolved with it as buffer

↪→

↪→
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5.7 Convolution application example: R2C cross-correlation be-
tween two sets of N images

In this example, VkFFT is configured to calculate a kernel, represented by three 2D vec-
tors (RGB values of a pixel) and a system, also represented by three 2D vectors. There
are N kernels and N systems. Their cross-correlation is a conjugate convolution in the fre-
quency domain. Images are usually stored as real, not complex numbers, so code uses R2C
optimization as well.
//zero-initialize configuration + FFT application, we need two

- one for kernel calculation↪→

VkFFTConfiguration kernel_configuration = {};
VkFFTConfiguration convolution_configuration = {};
VkFFTApplication app_kernel = {};
VkFFTApplication app_convolution = {};

kernel_configuration.FFTdim = 2; //FFT dimension, 1D, 2D or 3D
kernel_configuration.size[0] = Nx;
kernel_configuration.size[1] = Ny;
kernel_configuration.coordinateFeatures = 3;
kernel_configuration.numberBatches = N;
kernel_configuration.performR2C = 1;
kernel_configuration.normalize = 1;

uint64_t bufferSize = (uint64_t)sizeof(float) * 2 *
(kernel_configuration.size[0]/2+1) *
kernel_configuration.size[1] *
kernel_configuration.coordinateFeatures *
kernel_configuration.numberBatches;

↪→

↪→

↪→

↪→

kernel_configuration.kernelConvolution = 1; //specify if this
plan is used to create kernel for convolution↪→

//Initialize app_kernel and perform a single forward FFT like
in examples before. Pad in-place R2C system like this:↪→

for (uint64_t n = 0; n < kernel_configuration.numberBatches;
n++) {↪→

for (uint64_t c = 0; c <
kernel_configuration.coordinateFeatures; c++) {↪→

for (uint64_t j = 0; j < kernel_configuration.size[1];
j++) {↪→

for (uint64_t i = 0; i <
kernel_configuration.size[0]; i++) {↪→
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kernel_padded_GPU[i + j * 2 *
(kernel_configuration.size[0]/2 + 1) + c * 2 *
(kernel_configuration.size[0]/2 + 1) *
kernel_configuration.size[1] + n * 2 *
(kernel_configuration.size[0]/2 + 1) *
kernel_configuration.size[1] *
kernel_configuration.coordinateFeatures] = kernel_input[i
+ j * kernel_configuration.size[0] + c *
kernel_configuration.size[0] *
kernel_configuration.size[1] + n *
kernel_configuration.size[0] *
kernel_configuration.size[1] *
kernel_configuration.coordinateFeatures];

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

}
}

}
}
convolution_configuration = kernel_configuration;
convolution_configuration.kernelConvolution = 0;
convolution_configuration.performConvolution = 1;
convolution_configuration.conjugateConvolution = 1;

//Initialize app_convolution and perform a single forward FFT
like in examples before. Pad the system in the same way as
the kernel

↪→

↪→

5.8 Simple FFT application binary reuse application
This example shows how to save/load binaries generated by VkFFT. This can reduce time
taken by initializeVkFFT call by removing RTC components from it. Be sure that rest of
the configuration stays the same to reuse the binary.
VkFFTConfiguration configuration = {};
VkFFTApplication app = {};

//configuration is initialized like in other examples
configuration.saveApplicationToString = 1;
//configuration.loadApplicationFromString = 1; //choose one to

save/load binary file↪→

if (configuration.loadApplicationFromString) {
FILE* kernelCache;
uint64_t str_len;
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#if((VKFFT_BACKEND==0) || (VKFFT_BACKEND==2) ||
(VKFFT_BACKEND==4))↪→

kernelCache = fopen("VkFFT_binary", "rb"); //Vulkan and
HIP backends load data as a uint32_t sequence↪→

#else
kernelCache = fopen("VkFFT_binary", "r");

#endif
fseek(kernelCache, 0, SEEK_END);
str_len = ftell(kernelCache);
fseek(kernelCache, 0, SEEK_SET);
configuration.loadApplicationString = malloc(str_len);
fread(configuration.loadApplicationString, str_len, 1,
kernelCache);↪→

fclose(kernelCache);
}

resFFT = initializeVkFFT(&app, configuration);
if (resFFT != VKFFT_SUCCESS) return resFFT;

if (configuration.loadApplicationFromString)
free(configuration.loadApplicationString);

if (configuration.saveApplicationToString) {
FILE* kernelCache;

#if((VKFFT_BACKEND==0) || (VKFFT_BACKEND==2) ||
(VKFFT_BACKEND==4))↪→

kernelCache = fopen("VkFFT_binary", "wb"); //Vulkan and
HIP backends save data as a uint32_t sequence↪→

#else
kernelCache = fopen("VkFFT_binary", "w");

#endif
fwrite(app.saveApplicationString,
app.applicationStringSize, 1, kernelCache);↪→

fclose(kernelCache);
}

//application is launched like in other examples
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