
WCSLIB
7.4

Generated by Doxygen 1.9.1

i

1 WCSLIB 7.4 and PGSBOX 7.4 1

1.1 Contents . 1

1.2 Copyright . 2

2 Introduction 2

3 FITS-WCS and related software 3

4 Overview of WCSLIB 5

5 WCSLIB data structures 7

6 Memory management 8

7 Diagnostic output 9

8 Vector API 10

8.1 Vector lengths . 11

8.2 Vector strides . 12

9 Thread-safety 12

10 Limits 13

11 Example code, testing and verification 13

12 WCSLIB Fortran wrappers 14

13 PGSBOX 17

14 WCSLIB version numbers 17

15 Deprecated List 18

16 Data Structure Index 20

16.1 Data Structures . 20

17 File Index 21

17.1 File List . 21

18 Data Structure Documentation 22

18.1 auxprm Struct Reference . 22

18.1.1 Detailed Description . 22

18.1.2 Field Documentation . 22

18.2 celprm Struct Reference . 23

18.2.1 Detailed Description . 23

18.2.2 Field Documentation . 24

18.3 disprm Struct Reference . 26

18.3.1 Detailed Description . 26

Generated by Doxygen

ii

18.3.2 Field Documentation . 27

18.4 dpkey Struct Reference . 30

18.4.1 Detailed Description . 30

18.4.2 Field Documentation . 30

18.5 fitskey Struct Reference . 31

18.5.1 Detailed Description . 32

18.5.2 Field Documentation . 32

18.6 fitskeyid Struct Reference . 35

18.6.1 Detailed Description . 35

18.6.2 Field Documentation . 35

18.7 linprm Struct Reference . 36

18.7.1 Detailed Description . 36

18.7.2 Field Documentation . 36

18.8 prjprm Struct Reference . 40

18.8.1 Detailed Description . 40

18.8.2 Field Documentation . 40

18.9 pscard Struct Reference . 44

18.9.1 Detailed Description . 44

18.9.2 Field Documentation . 44

18.10 pvcard Struct Reference . 45

18.10.1 Detailed Description . 45

18.10.2 Field Documentation . 45

18.11 spcprm Struct Reference . 46

18.11.1 Detailed Description . 46

18.11.2 Field Documentation . 46

18.12 spxprm Struct Reference . 49

18.12.1 Detailed Description . 50

18.12.2 Field Documentation . 50

18.13 tabprm Struct Reference . 54

18.13.1 Detailed Description . 54

18.13.2 Field Documentation . 55

18.14 wcserr Struct Reference . 58

18.14.1 Detailed Description . 58

18.14.2 Field Documentation . 58

18.15 wcsprm Struct Reference . 59

18.15.1 Detailed Description . 61

18.15.2 Field Documentation . 61

18.16 wtbarr Struct Reference . 76

18.16.1 Detailed Description . 77

18.16.2 Field Documentation . 77

19 File Documentation 78

Generated by Doxygen

iii

19.1 cel.h File Reference . 78

19.1.1 Detailed Description . 80

19.1.2 Macro Definition Documentation . 80

19.1.3 Enumeration Type Documentation . 81

19.1.4 Function Documentation . 81

19.1.5 Variable Documentation . 85

19.2 dis.h File Reference . 85

19.2.1 Detailed Description . 86

19.2.2 Macro Definition Documentation . 90

19.2.3 Enumeration Type Documentation . 91

19.2.4 Function Documentation . 91

19.2.5 Variable Documentation . 99

19.3 fitshdr.h File Reference . 99

19.3.1 Detailed Description . 100

19.3.2 Macro Definition Documentation . 100

19.3.3 Typedef Documentation . 101

19.3.4 Enumeration Type Documentation . 101

19.3.5 Function Documentation . 102

19.3.6 Variable Documentation . 103

19.4 getwcstab.h File Reference . 104

19.4.1 Detailed Description . 104

19.4.2 Function Documentation . 104

19.5 lin.h File Reference . 105

19.5.1 Detailed Description . 107

19.5.2 Macro Definition Documentation . 107

19.5.3 Enumeration Type Documentation . 108

19.5.4 Function Documentation . 109

19.5.5 Variable Documentation . 116

19.6 log.h File Reference . 116

19.6.1 Detailed Description . 116

19.6.2 Enumeration Type Documentation . 116

19.6.3 Function Documentation . 117

19.6.4 Variable Documentation . 118

19.7 prj.h File Reference . 118

19.7.1 Detailed Description . 123

19.7.2 Macro Definition Documentation . 125

19.7.3 Enumeration Type Documentation . 126

19.7.4 Function Documentation . 127

19.7.5 Variable Documentation . 144

19.8 spc.h File Reference . 145

19.8.1 Detailed Description . 147

19.8.2 Macro Definition Documentation . 149

Generated by Doxygen

iv

19.8.3 Enumeration Type Documentation . 149

19.8.4 Function Documentation . 150

19.8.5 Variable Documentation . 159

19.9 sph.h File Reference . 160

19.9.1 Detailed Description . 160

19.9.2 Function Documentation . 160

19.10 spx.h File Reference . 163

19.10.1 Detailed Description . 165

19.10.2 Macro Definition Documentation . 167

19.10.3 Enumeration Type Documentation . 167

19.10.4 Function Documentation . 168

19.10.5 Variable Documentation . 174

19.11 tab.h File Reference . 174

19.11.1 Detailed Description . 175

19.11.2 Macro Definition Documentation . 176

19.11.3 Enumeration Type Documentation . 176

19.11.4 Function Documentation . 177

19.11.5 Variable Documentation . 183

19.12 wcs.h File Reference . 183

19.12.1 Detailed Description . 186

19.12.2 Macro Definition Documentation . 187

19.12.3 Enumeration Type Documentation . 189

19.12.4 Function Documentation . 190

19.12.5 Variable Documentation . 202

19.13 wcserr.h File Reference . 202

19.13.1 Detailed Description . 203

19.13.2 Macro Definition Documentation . 203

19.13.3 Function Documentation . 204

19.14 wcsfix.h File Reference . 206

19.14.1 Detailed Description . 207

19.14.2 Macro Definition Documentation . 208

19.14.3 Enumeration Type Documentation . 209

19.14.4 Function Documentation . 210

19.14.5 Variable Documentation . 216

19.15 wcshdr.h File Reference . 216

19.15.1 Detailed Description . 218

19.15.2 Macro Definition Documentation . 219

19.15.3 Enumeration Type Documentation . 224

19.15.4 Function Documentation . 224

19.15.5 Variable Documentation . 242

19.16 wcslib.h File Reference . 243

19.16.1 Detailed Description . 243

Generated by Doxygen

1 WCSLIB 7.4 and PGSBOX 7.4 1

19.17 wcsmath.h File Reference . 243

19.17.1 Detailed Description . 243

19.17.2 Macro Definition Documentation . 243

19.18 wcsprintf.h File Reference . 244

19.18.1 Detailed Description . 245

19.18.2 Macro Definition Documentation . 245

19.18.3 Function Documentation . 245

19.19 wcstrig.h File Reference . 247

19.19.1 Detailed Description . 247

19.19.2 Macro Definition Documentation . 248

19.19.3 Function Documentation . 248

19.20 wcsunits.h File Reference . 251

19.20.1 Detailed Description . 253

19.20.2 Macro Definition Documentation . 253

19.20.3 Enumeration Type Documentation . 255

19.20.4 Function Documentation . 256

19.20.5 Variable Documentation . 261

19.21 wcsutil.h File Reference . 262

19.21.1 Detailed Description . 263

19.21.2 Function Documentation . 263

19.22 wtbarr.h File Reference . 270

19.22.1 Detailed Description . 270

Index 271

1 WCSLIB 7.4 and PGSBOX 7.4

1.1 Contents

• Introduction

• FITS-WCS and related software

• Overview of WCSLIB

• WCSLIB data structures

• Memory management

• Diagnostic output

• Vector API

• Thread-safety

• Limits

• Example code, testing and verification

• WCSLIB Fortran wrappers

• PGSBOX

• WCSLIB version numbers

Generated by Doxygen

2

1.2 Copyright

WCSLIB 7.4 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2021, Mark Calabretta

WCSLIB is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.

WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see http://www.gnu.org/licenses.

Direct correspondence concerning WCSLIB to mark@calabretta.id.au

Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
http://www.atnf.csiro.au/people/Mark.Calabretta
$Id: mainpage.dox,v 7.4 2021/01/31 02:24:52 mcalabre Exp $

2 Introduction

WCSLIB is a C library, supplied with a full set of Fortran wrappers, that implements the "World Coordinate System"
(WCS) standard in FITS (Flexible Image Transport System). It also includes a PGPLOT-based routine, PGSBOX,
for drawing general curvilinear coordinate graticules, and also a number of utility programs.

The FITS data format is widely used within the international astronomical community, from the radio to gamma-ray
regimes, for data interchange and archive, and also increasingly as an online format. It is described in

• "Definition of The Flexible Image Transport System (FITS)", FITS Standard, Version 3.0, 2008 July 10.

available from the FITS Support Office at http://fits.gsfc.nasa.gov.

The FITS WCS standard is described in

• "Representations of world coordinates in FITS" (Paper I), Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395,
1061-1075

• "Representations of celestial coordinates in FITS" (Paper II), Calabretta, M.R., & Greisen, E.W. 2002, A&A,
395, 1077-1122

• "Representations of spectral coordinates in FITS" (Paper III), Greisen, E.W., Calabretta, M.R., Valdes, F.G.,
& Allen, S.L. 2006, A&A, 446, 747

• "Representations of distortions in FITS world coordinate systems", Calabretta, M.R. et al. (WCS Pa-
per IV, draft dated 2004/04/22), available from http://www.atnf.csiro.au/people/Mark.←↩

Calabretta

• "Mapping on the HEALPix Grid" (HPX, Paper V), Calabretta, M.R., & Roukema, B.F. 2007, MNRAS, 381, 865

• "Representing the 'Butterfly' Projection in FITS: Projection Code XPH" (XPH, Paper VI), Calabretta, M.R., &
Lowe, S.R. 2013, PASA, 30, e050

• "Representations of time coordinates in FITS: Time and relative dimension in space" (Paper VII), Rots, A.H.,
Bunclark, P.S., Calabretta, M.R., Allen, S.L., Manchester R.N., & Thompson, W.T. 2015, A&A, 574, A36

Reprints of all published papers may be obtained from NASA's Astrophysics Data System (ADS), http←↩

://adsabs.harvard.edu/. Reprints of Papers I, II (including HPX & XPH), and III are available from
http://www.atnf.csiro.au/people/Mark.Calabretta. This site also includes errata and supple-
mentary material for Papers I, II and III.

Additional information on all aspects of FITS and its various software implementations may be found at the FITS
Support Office http://fits.gsfc.nasa.gov.

Generated by Doxygen

http://fits.gsfc.nasa.gov
http://www.atnf.csiro.au/people/Mark.Calabretta
http://www.atnf.csiro.au/people/Mark.Calabretta
http://adsabs.harvard.edu/
http://adsabs.harvard.edu/
http://www.atnf.csiro.au/people/Mark.Calabretta
http://www.atnf.csiro.au/people/Mark.Calabretta
http://fits.gsfc.nasa.gov

3 FITS-WCS and related software 3

3 FITS-WCS and related software

Several implementations of the FITS WCS standards are available:

• The WCSLIB software distribution (i.e. this library) may be obtained from http://www.atnf.←↩

csiro.au/people/Mark.Calabretta/WCS/. The remainder of this manual describes its use.

WCSLIB is included in the Astrophysics Source Code Library (ASCL https://ascl.net) as record
ascl:1108.003 (https://ascl.net/1108.003), and in the Astrophysics Data System (ADS
https://ui.adsabs.harvard.edu) with bibcode 2011ascl.soft08003C (https://ui.←↩

adsabs.harvard.edu/abs/2011ascl.soft08003C).

• wcstools, developed by Jessica Mink, may be obtained from http://tdc-www.harvard.←↩

edu/software/wcstools/.

ASCL: https://ascl.net/1109.015
ADS: https://ui.adsabs.harvard.edu/abs/2011ascl.soft09015M

• AST, developed by David Berry within the U.K. Starlink project, http://www.starlink.←↩

ac.uk/ast/ and now supported by JAC, Hawaii http://starlink.jach.hawaii.←↩

edu/starlink/. A useful utility for experimenting with FITS WCS descriptions (similar to wcsgrid)
is also provided; go to the above site and then look at the section entitled "FITS-WCS Plotting Demo".

ASCL: https://ascl.net/1404.016
ADS: https://ui.adsabs.harvard.edu/abs/2014ascl.soft04016B

• SolarSoft, http://sohowww.nascom.nasa.gov/solarsoft/, primarily an IDL-based
system for analysis of Solar physics data, contains a module written by Bill Thompson oriented
towards Solar coordinate systems, including spectral, http://sohowww.nascom.nasa.←↩

gov/solarsoft/gen/idl/wcs/.

ASCL: https://ascl.net/1208.013
ADS: https://ui.adsabs.harvard.edu/abs/2012ascl.soft08013F

• The IDL Astronomy Library, http://idlastro.gsfc.nasa.gov/, contains an independent
implementation of FITS-WCS in IDL by Rick Balsano, Wayne Landsman and others. See http←↩

://idlastro.gsfc.nasa.gov/contents.html#C5.

Python wrappers to WCSLIB are provided by

• The Kapteyn Package http://www.astro.rug.nl/software/kapteyn/ by Hans Terlouw and
Martin Vogelaar.

ASCL: https://ascl.net/1611.010
ADS: https://ui.adsabs.harvard.edu/abs/2016ascl.soft11010T

• pywcs, http://stsdas.stsci.edu/astrolib/pywcs/ by Michael Droettboom, which is dis-
tributed within Astropy, https://www.astropy.org.

ASCL (Astropy): https://ascl.net/1304.002
ADS (Astropy): https://ui.adsabs.harvard.edu/abs/2013ascl.soft04002G

Java is supported via

• CADC/CCDA Java Native Interface (JNI) bindings to WCSLIB 4.2 http://www.cadc-ccda.←↩

hia-iha.nrc-cnrc.gc.ca/cadc/source/ by Patrick Dowler.

and Javascript by

Generated by Doxygen

http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/
https://ascl.net
https://ascl.net/1108.003
https://ui.adsabs.harvard.edu
https://ui.adsabs.harvard.edu/abs/2011ascl.soft08003C
https://ui.adsabs.harvard.edu/abs/2011ascl.soft08003C
http://tdc-www.harvard.edu/software/wcstools/
http://tdc-www.harvard.edu/software/wcstools/
https://ascl.net/1109.015
https://ui.adsabs.harvard.edu/abs/2011ascl.soft09015M
http://www.starlink.ac.uk/ast/
http://www.starlink.ac.uk/ast/
http://starlink.jach.hawaii.edu/starlink/
http://starlink.jach.hawaii.edu/starlink/
https://ascl.net/1404.016
https://ui.adsabs.harvard.edu/abs/2014ascl.soft04016B
http://sohowww.nascom.nasa.gov/solarsoft/
http://sohowww.nascom.nasa.gov/solarsoft/gen/idl/wcs/
http://sohowww.nascom.nasa.gov/solarsoft/gen/idl/wcs/
https://ascl.net/1208.013
https://ui.adsabs.harvard.edu/abs/2012ascl.soft08013F
http://idlastro.gsfc.nasa.gov/
http://idlastro.gsfc.nasa.gov/contents.html#C5
http://idlastro.gsfc.nasa.gov/contents.html#C5
http://www.astro.rug.nl/software/kapteyn/
https://ascl.net/1611.010
https://ui.adsabs.harvard.edu/abs/2016ascl.soft11010T
http://stsdas.stsci.edu/astrolib/pywcs/
https://www.astropy.org
https://ascl.net/1304.002
https://ui.adsabs.harvard.edu/abs/2013ascl.soft04002G
http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/source/
http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/source/

4

• wcsjs, https://github.com/astrojs/wcsjs, a port created by Amit Kapadia using Emscripten,
an LLVM to Javascript compiler. wcsjs provides a code base for running WCSLIB on web browsers.

Julia wrappers (https://en.wikipedia.org/wiki/Julia_(programming_language)) are pro-
vided by

• WCS.jl, https://github.com/JuliaAstro/WCS.jl, a component of Julia Astro, https←↩

://github.com/JuliaAstro.

An interface for the R programming language (https://en.wikipedia.org/wiki/R_(programming←↩

_language)) is available at

• Rwcs, https://github.com/asgr/Rwcs/ by Aaron Robotham.

Recommended WCS-aware FITS image viewers:

• Bill Joye's DS9, http://hea-www.harvard.edu/RD/ds9/, and

ASCL: https://ascl.net/0003.002
ADS: https://ui.adsabs.harvard.edu/abs/2000ascl.soft03002S

• Fv by Pan Chai, http://heasarc.gsfc.nasa.gov/ftools/fv/.

ASCL: https://ascl.net/1205.005
ADS: https://ui.adsabs.harvard.edu/abs/2012ascl.soft05005P

both handle 2-D images.

Currently (2013/01/29) I know of no image viewers that handle 1-D spectra properly nor multi-dimensional data, not
even multi-dimensional data with only two non-degenerate image axes (please inform me if you know otherwise).

Pre-built WCSLIB packages are available, generally a little behind the main release (this list will probably be stale
by the time you read it, best do a web search):

• archlinux (tgz), https://www.archlinux.org/packages/extra/i686/wcslib.

• Debian (deb), http://packages.debian.org/search?keywords=wcslib.

• Fedora (RPM), https://admin.fedoraproject.org/pkgdb/package/wcslib.

• Fresh Ports (RPM), http://www.freshports.org/astro/wcslib.

• Gentoo, http://packages.gentoo.org/package/sci-astronomy/wcslib.

• Homebrew (MacOSX), https://github.com/Homebrew/homebrew-science.

• RPM (general) http://rpmfind.net/linux/rpm2html/search.php?query=wcslib,
http://www.rpmseek.com/rpm-pl/wcslib.html.

• Ubuntu (deb), https://launchpad.net/ubuntu/+source/wcslib.

Bill Pence's general FITS IO library, CFITSIO is available from http://heasarc.gsfc.nasa.←↩

gov/fitsio/. It is used optionally by some of the high-level WCSLIB test programs and is required by
two of the utility programs.

ASCL: https://ascl.net/1010.001
ADS: https://ui.adsabs.harvard.edu/abs/2010ascl.soft10001P

PGPLOT, Tim Pearson's Fortran plotting package on which PGSBOX is based, also used by some of the WCSLIB
self-test suite and a utility program, is available from http://astro.caltech.edu/∼tjp/pgplot/.

ASCL: https://ascl.net/1103.002
ADS: https://ui.adsabs.harvard.edu/abs/2011ascl.soft03002P

Generated by Doxygen

https://github.com/astrojs/wcsjs
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://github.com/JuliaAstro/WCS.jl
https://github.com/JuliaAstro
https://github.com/JuliaAstro
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://github.com/asgr/Rwcs/
http://hea-www.harvard.edu/RD/ds9/
https://ascl.net/0003.002
https://ui.adsabs.harvard.edu/abs/2000ascl.soft03002S
http://heasarc.gsfc.nasa.gov/ftools/fv/
https://ascl.net/1205.005
https://ui.adsabs.harvard.edu/abs/2012ascl.soft05005P
https://www.archlinux.org/packages/extra/i686/wcslib
http://packages.debian.org/search?keywords=wcslib
https://admin.fedoraproject.org/pkgdb/package/wcslib
http://www.freshports.org/astro/wcslib
http://packages.gentoo.org/package/sci-astronomy/wcslib
https://github.com/Homebrew/homebrew-science
http://rpmfind.net/linux/rpm2html/search.php?query=wcslib
http://www.rpmseek.com/rpm-pl/wcslib.html
http://www.rpmseek.com/rpm-pl/wcslib.html
https://launchpad.net/ubuntu/+source/wcslib
http://heasarc.gsfc.nasa.gov/fitsio/
http://heasarc.gsfc.nasa.gov/fitsio/
https://ascl.net/1010.001
https://ui.adsabs.harvard.edu/abs/2010ascl.soft10001P
http://astro.caltech.edu/~tjp/pgplot/
https://ascl.net/1103.002
https://ui.adsabs.harvard.edu/abs/2011ascl.soft03002P

4 Overview of WCSLIB 5

4 Overview of WCSLIB

WCSLIB is documented in the prologues of its header files which provide a detailed description of the purpose of
each function and its interface (this material is, of course, used to generate the doxygen manual). Here we explain
how the library as a whole is structured. We will normally refer to WCSLIB 'routines', meaning C functions or Fortran
'subroutines', though the latter are actually wrappers implemented in C.

WCSLIB is layered software, each layer depends only on those beneath; understanding WCSLIB first means un-
derstanding its stratigraphy. There are essentially three levels, though some intermediate levels exist within these:

• The top layer consists of routines that provide the connection between FITS files and the high-level WCSLIB
data structures, the main function being to parse a FITS header, extract WCS information, and copy it into
a wcsprm struct. The lexical parsers among these are implemented as Flex descriptions (source files with .l
suffix) and the C code generated from these by Flex is included in the source distribution.

– wcshdr.h,c – Routines for constructing wcsprm data structures from information in a FITS header and
conversely for writing a wcsprm struct out as a FITS header.

– wcspih.l – Flex implementation of wcspih(), a lexical parser for WCS "keyrecords" in an image header.
A keyrecord (formerly called "card image") consists of a keyword, its value - the keyvalue - and an
optional comment, the keycomment.

– wcsbth.l – Flex implementation of wcsbth() which parses binary table image array and pixel list headers
in addition to image array headers.

– getwcstab.h,c – Implementation of a -TAB binary table reader in CFITSIO.

A generic FITS header parser is also provided to handle non-WCS keyrecords that are ignored by wcspih():

• fitshdr.h,l – Generic FITS header parser (not WCS-specific).

The philosophy adopted for dealing with non-standard WCS usage is to translate it at this level so that the middle-
and low-level routines need only deal with standard constructs:

• wcsfix.h,c – Translator for non-standard FITS WCS constructs (uses wcsutrne()).

• wcsutrn.l – Lexical translator for non-standard units specifications.

As a concrete example, within this layer the CTYPEia keyvalues would be extracted from a FITS header and copied
into the ctype[] array within a wcsprm struct. None of the header keyrecords are interpreted.

• The middle layer analyses the WCS information obtained from the FITS header by the top-level routines,
identifying the separate steps of the WCS algorithm chain for each of the coordinate axes in the image. It
constructs the various data structures on which the low-level routines are based and invokes them in the
correct sequence. Thus the wcsprm struct is essentially the glue that binds together the low-level routines
into a complete coordinate description.

– wcs.h,c – Driver routines for the low-level routines.

– wcsunits.h,c – Unit conversions (uses wcsulexe()).

– wcsulex.l – Lexical parser for units specifications.

Generated by Doxygen

6

To continue the above example, within this layer the ctype[] keyvalues in a wcsprm struct are analysed to determine
the nature of the coordinate axes in the image.

• Applications programmers who use the top- and middle-level routines generally need know nothing about
the low-level routines. These are essentially mathematical in nature and largely independent of FITS itself.
The mathematical formulae and algorithms cited in the WCS Papers, for example the spherical projection
equations of Paper II and the lookup-table methods of Paper III, are implemented by the routines in this layer,
some of which serve to aggregate others:

– cel.h,c – Celestial coordinate transformations, combines prj.h,c and sph.h,c.

– spc.h,c – Spectral coordinate transformations, combines transformations from spx.h,c.

The remainder of the routines in this level are independent of everything other than the grass-roots mathematical
functions:

• lin.h,c – Linear transformation matrix.

• dis.h,c – Distortion functions.

• log.h,c – Logarithmic coordinates.

• prj.h,c – Spherical projection equations.

• sph.h,c – Spherical coordinate transformations.

• spx.h,c – Basic spectral transformations.

• tab.h,c – Coordinate lookup tables.

As the routines within this layer are quite generic, some, principally the implementation of the spherical projec-
tion equations, have been used in other packages (AST, wcstools) that provide their own implementations of the
functionality of the top and middle-level routines.

• At the grass-roots level there are a number of mathematical and utility routines.

When dealing with celestial coordinate systems it is often desirable to use an angular measure that provides
an exact representation of the latitude of the north or south pole. The WCSLIB routines use the following
trigonometric functions that take or return angles in degrees:

– cosd(), sind(), sincosd(), tand(), acosd(), asind(), atand(), atan2d()

These "trigd" routines are expected to handle angles that are a multiple of 90◦ returning an exact result. Some C
implementations provide these as part of a system library and in such cases it may (or may not!) be preferable to
use them. wcstrig.c provides wrappers on the standard trig functions based on radian measure, adding tests for
multiples of 90◦.

However, wcstrig.h also provides the choice of using preprocessor macro implementations of the trigd func-
tions that don't test for multiples of 90◦ (compile with -DWCSTRIG_MACRO). These are typically 20% faster but
may lead to problems near the poles.

• wcsmath.h – Defines mathematical and other constants.

• wcstrig.h,c – Various implementations of trigd functions.

Generated by Doxygen

5 WCSLIB data structures 7

• wcsutil.h,c – Simple utility functions for string manipulation, etc. used by WCSLIB.

Complementary to the C library, a set of wrappers are provided that allow all WCSLIB C functions to be called by
Fortran programs, see below.

Plotting of coordinate graticules is one of the more important requirements of a world coordinate system. WCSLIB
provides a PGPLOT-based subroutine, PGSBOX (Fortran), which handles general curvilinear coordinates via a
user-supplied function - PGWCSL provides the interface to WCSLIB. A C wrapper, cpgsbox(), is also provided, see
below.

Several utility programs are distributed with WCSLIB:

• wcsgrid extracts the WCS keywords for an image from the specified FITS file and uses cpgsbox() to plot a
2-D coordinate graticule for it. It requires WCSLIB, PGSBOX and CFITSIO.

• wcsware extracts the WCS keywords for an image from the specified FITS file and constructs wcsprm structs
for each coordinate representation found. The structs may then be printed or used to transform pixel coordi-
nates to world coordinates. It requires WCSLIB and CFITSIO.

• HPXcvt reorganises HEALPix data into a 2-D FITS image with HPX coordinate system. The input data may
be stored in a FITS file as a primary image or image extension, or as a binary table extension. Both NESTED
and RING pixel indices are supported. It uses CFITSIO.

• fitshdr lists headers from a FITS file specified on the command line, or else on stdin, printing them as 80-
character keyrecords without trailing blanks. It is independent of WCSLIB.

5 WCSLIB data structures

The WCSLIB routines are based on data structures specific to them: wcsprm for the wcs.h,c routines, celprm for
cel.h,c, and likewise spcprm, linprm, prjprm, tabprm, and disprm, with struct definitions contained in the corre-
sponding header files: wcs.h, cel.h, etc. The structs store the parameters that define a coordinate transformation
and also intermediate values derived from those parameters. As a high-level object, the wcsprm struct contains
linprm, tabprm, spcprm, and celprm structs, and in turn the linprm struct contains disprm structs, and the celprm
struct contains a prjprm struct. Hence the wcsprm struct contains everything needed for a complete coordinate
description.

Applications programmers who use the top- and middle-level routines generally only need to pass wcsprm structs
from one routine that fills them to another that uses them. However, since these structs are fundamental to WCSLIB
it is worthwhile knowing something about the way they work.

Three basic operations apply to all WCSLIB structs:

• Initialize. Each struct has a specific initialization routine, e.g. wcsinit(), celini(), spcini(), etc. These allocate
memory (if required) and set all struct members to default values.

• Fill in the required values. Each struct has members whose values must be provided. For example, for
wcsprm these values correspond to FITS WCS header keyvalues as are provided by the top-level header
parsing routine, wcspih().

• Compute intermediate values. Specific setup routines, e.g. wcsset(), celset(), spcset(), etc., compute inter-
mediate values from the values provided. In particular, wcsset() analyses the FITS WCS keyvalues provided,
fills the required values in the lower-level structs contained in wcsprm, and invokes the setup routine for each
of them.

Generated by Doxygen

8

Each struct contains a flag member that records its setup state. This is cleared by the initialization routine and
checked by the routines that use the struct; they will invoke the setup routine automatically if necessary, hence it
need not be invoked specifically by the application programmer. However, if any of the required values in a struct
are changed then either the setup routine must be invoked on it, or else the flag must be zeroed to signal that the
struct needs to be reset.

The initialization routine may be invoked repeatedly on a struct if it is desired to reuse it. However, the flag member
of structs that contain allocated memory (wcsprm, linprm, tabprm, and disprm) must be set to -1 before the first
initialization to initialize memory management, but not subsequently or else memory leaks will result.

Each struct has one or more service routines: to do deep copies from one to another, to print its contents, and to
free allocated memory. Refer to the header files for a detailed description.

6 Memory management

The initialization routines for certain of the WCSLIB data structures allocate memory for some of their members:

• wcsinit() optionally allocates memory for the crpix, pc, cdelt, crval, cunit, ctype, pv, ps, cd, crota, colax,
cname, crder, and csyer arrays in the wcsprm struct (using lininit() for certain of these). Note that wcsinit()
does not allocate memory for the tab array - refer to the usage notes for wcstab() in wcshdr.h. If the pc matrix
is not unity, wcsset() (via linset()) also allocates memory for the piximg and imgpix arrays.

• lininit(): optionally allocates memory for the crpix, pc, and cdelt arrays in the linprm struct. If the pc matrix is
not unity, linset() also allocates memory for the piximg and imgpix arrays. Typically these would be used by
wcsinit() and wcsset().

• tabini(): optionally allocates memory for the K, map, crval, index, and coord arrays (including the arrays
referenced by index[]) in the tabprm struct. tabmem() takes control of any of these arrays that may have been
allocated by the user, specifically in that tabfree() will then free it. tabset() also allocates memory for the
sense, p0, delta and extrema arrays.

• disinit(): optionally allocates memory for the dtype, dp, and maxdis arrays. disset() also allocates memory for
a number of arrays that hold distortion parmeters and intermediate values: axmap, Nhat, offset, scale, iparm,
and dparm, and also several private work arrays: disp2x, disx2p, and tmpmem.

The caller may load data into these arrays but must not modify the struct members (i.e. the pointers) themselves or
else memory leaks will result.

wcsinit() maintains a record of memory it has allocated and this is used by wcsfree() which wcsinit() uses to free
any memory that it may have allocated on a previous invokation. Thus it is not necessary for the caller to invoke
wcsfree() separately if wcsinit() is invoked repeatedly on the same wcsprm struct. Likewise, wcsset() deallocates
memory that it may have allocated on a previous invokation. The same comments apply to lininit(), linfree(), and
linset(), to tabini(), tabfree(), and tabset(), and to disinit(), disfree() and disset().

A memory leak will result if a wcsprm, linprm, tabprm, or disprm struct goes out of scope before the memory has
been free'd, either by the relevant routine, wcsfree(), linfree(), tabfree(), or disfree() or otherwise. Likewise, if one
of these structs itself has been malloc'd and the allocated memory is not free'd when the memory for the struct is
free'd. A leak may also arise if the caller interferes with the array pointers in the "private" part of these structs.

Beware of making a shallow copy of a wcsprm, linprm, tabprm, or disprm struct by assignment; any changes made
to allocated memory in one would be reflected in the other, and if the memory allocated for one was free'd the other
would reference unallocated memory. Use the relevant routine instead to make a deep copy: wcssub(), lincpy(),
tabcpy(), or discpy().

Generated by Doxygen

7 Diagnostic output 9

7 Diagnostic output

All WCSLIB functions return a status value, each of which is associated with a fixed error message which may be
used for diagnostic output. For example

int status;
struct wcsprm wcs;

...

if ((status = wcsset(&wcs)) {
fprintf(stderr, "ERROR %d from wcsset(): %s.\n", status, wcs_errmsg[status]);
return status;

}

This might produce output like

ERROR 5 from wcsset(): Invalid parameter value.

The error messages are provided as global variables with names of the form cel_errmsg, prj_errmsg, etc. by
including the relevant header file.

As of version 4.8, courtesy of Michael Droettboom (pywcs), WCSLIB has a second error messaging system which
provides more detailed information about errors, including the function, source file, and line number where the error
occurred. For example,

struct wcsprm wcs;

/* Enable wcserr and send messages to stderr. */
wcserr_enable(1);
wcsprintf_set(stderr);

...

if (wcsset(&wcs) {
wcsperr(&wcs);
return wcs.err->status;

}

In this example, if an error was generated in one of the prjset() functions, wcsperr() would print an error traceback
starting with wcsset(), then celset(), and finally the particular projection-setting function that generated the error. For
each of them it would print the status return value, function name, source file, line number, and an error message
which may be more specific and informative than the general error messages reported in the first example. For
example, in response to a deliberately generated error, the twcs test program, which tests wcserr among other
things, produces a traceback similar to this:

ERROR 5 in wcsset() at line 1564 of file wcs.c:
Invalid parameter value.

ERROR 2 in celset() at line 196 of file cel.c:
Invalid projection parameters.

ERROR 2 in bonset() at line 5727 of file prj.c:
Invalid parameters for Bonne’s projection.

Each of the structs in WCSLIB includes a pointer, called err, to a wcserr struct. When an error occurs, a struct is
allocated and error information stored in it. The wcserr pointers and the memory allocated for them are managed
by the routines that manage the various structs such as wcsinit() and wcsfree().

wcserr messaging is an opt-in system enabled via wcserr_enable(), as in the example above. If enabled, when
an error occurs it is the user's responsibility to free the memory allocated for the error message using wcsfree(),
celfree(), prjfree(), etc. Failure to do so before the struct goes out of scope will result in memory leaks (if execution
continues beyond the error).

Generated by Doxygen

10

8 Vector API

WCSLIB's API is vector-oriented. At the least, this allows the function call overhead to be amortised by spreading
it over multiple coordinate transformations. However, vector computations may provide an opportunity for caching
intermediate calculations and this can produce much more significant efficiencies. For example, many of the spher-
ical projection equations are partially or fully separable in the mathematical sense, i.e. (x, y) = f(φ)g(θ), so if θ
was invariant for a set of coordinate transformations then g(θ) would only need to be computed once. Depending
on the circumstances, this may well lead to speedups of a factor of two or more.

WCSLIB has two different categories of vector API:

• Certain steps in the WCS algorithm chain operate on coordinate vectors as a whole rather than particular
elements of it. For example, the linear transformation takes one or more pixel coordinate vectors, multiples
by the transformation matrix, and returns whole intermediate world coordinate vectors.
The routines that implement these steps, wcsp2s(), wcss2p(), linp2x(), linx2p(), tabx2s(), tabs2x(), disp2x()
and disx2p() accept and return two-dimensional arrays, i.e. a number of coordinate vectors. Because WC-
SLIB permits these arrays to contain unused elements, three parameters are needed to describe them:

– naxis: the number of coordinate elements, as per the FITS NAXIS or WCSAXES keyvalues,

– ncoord: the number of coordinate vectors,

– nelem: the total number of elements in each vector, unused as well as used. Clearly, nelem must equal
or exceed naxis. (Note that when ncoord is unity, nelem is irrelevant and so is ignored. It may be set to
0.)

ncoord and nelem are specified as function arguments while naxis is provided as a member of the wcsprm (or
linprm or disprm) struct.
For example, wcss2p() accepts an array of world coordinate vectors, world[ncoord][nelem]. In the following example,
naxis = 4, ncoord = 5, and nelem = 7:

s1 x1 y1 t1 u u u
s2 x2 y2 t2 u u u
s3 x3 y3 t3 u u u
s4 x4 y4 t4 u u u
s5 x5 y5 t5 u u u

where u indicates unused array elements, and the array is laid out in memory as

s1 x1 y1 t1 u u u s2 x2 y2 ...

Note that the stat[] vector returned by routines in this category is of length ncoord, as are the intermediate phi[] and
theta[] vectors returned by wcsp2s() and wcss2p().
Note also that the function prototypes for routines in this category have to declare these two-dimensional arrays
as one-dimensional vectors in order to avoid warnings from the C compiler about declaration of "incomplete types".
This was considered preferable to declaring them as simple pointers-to-double which gives no indication that storage
is associated with them.

• Other steps in the WCS algorithm chain typically operate only on a part of the coordinate vector. For example,
a spectral transformation operates on only one element of an intermediate world coordinate that may also
contain celestial coordinate elements. In the above example, spcx2s() might operate only on the s (spectral)
coordinate elements.
Routines like spcx2s() and celx2s() that implement these steps accept and return one-dimensional vectors in
which the coordinate element of interest is specified via a starting address, a length, and a stride. To continue
the previous example, the starting address for the spectral elements is s1, the length is 5, and the stride is 7.

Generated by Doxygen

8.1 Vector lengths 11

8.1 Vector lengths

Routines such as spcx2s() and celx2s() accept and return either one coordinate vector, or a pair of coordinate
vectors (one-dimensional C arrays). As explained above, the coordinate elements of interest are usually embedded
in a two-dimensional array and must be selected by specifying a starting point, length and stride through the array.
For routines such as spcx2s() that operate on a single element of each coordinate vector these parameters have a
straightforward interpretation.

However, for routines such as celx2s() that operate on a pair of elements in each coordinate vector, WCSLIB allows
these parameters to be specified independently for each input vector, thereby providing a much more general
interpretation than strictly needed to traverse an array.

This is best described by illustration. The following diagram describes the situation for cels2x(), as a specific
example, with nlng = 5, and nlat = 3:

lng[0] lng[1] lng[2] lng[3] lng[4]
------ ------ ------ ------ ------

lat[0] | x,y[0] x,y[1] x,y[2] x,y[3] x,y[4]
lat[1] | x,y[5] x,y[6] x,y[7] x,y[8] x,y[9]
lat[2] | x,y[10] x,y[11] x,y[12] x,y[13] x,y[14]

In this case, while only 5 longitude elements and 3 latitude elements are specified, the world-to-pixel routine would
calculate nlng ∗ nlat = 15 (x,y) coordinate pairs. It is the responsibility of the caller to ensure that sufficient space
has been allocated in all of the output arrays, in this case phi[], theta[], x[], y[] and stat[].

Vector computation will often be required where neither lng nor lat is constant. This is accomplished by setting nlat
= 0 which is interpreted to mean nlat = nlng but only the matrix diagonal is to be computed. Thus, for nlng = 3 and
nlat = 0 only three (x,y) coordinate pairs are computed:

lng[0] lng[1] lng[2]
------ ------ ------

lat[0] | x,y[0]
lat[1] | x,y[1]
lat[2] | x,y[2]

Note how this differs from nlng = 3, nlat = 1:

lng[0] lng[1] lng[2]
------ ------ ------

lat[0] | x,y[0] x,y[1] x,y[2]

The situation for celx2s() is similar; the x-coordinate (like lng) varies fastest.

Similar comments can be made for all routines that accept arguments specifying vector length(s) and stride(s).
(tabx2s() and tabs2x() do not fall into this category because the -TAB algorithm is fully N-dimensional so there is
no way to know in advance how many coordinate elements may be involved.)

The reason that WCSLIB allows this generality is related to the aforementioned opportunities that vector computa-
tions may provide for caching intermediate calculations and the significant efficiencies that can result. The high-level
routines, wcsp2s() and wcss2p(), look for opportunities to collapse a set of coordinate transformations where one
of the coordinate elements is invariant, and the low-level routines take advantage of such to cache intermediate
calculations.

Generated by Doxygen

12

8.2 Vector strides

As explained above, the vector stride arguments allow the caller to specify that successive elements of a vector are
not contiguous in memory. This applies equally to vectors given to, or returned from a function.

As a further example consider the following two arrangements in memory of the elements of four (x,y) coordinate
pairs together with an s coordinate element (e.g. spectral):

• x1 x2 x3 x4 y1 y2 y3 y4 s1 s2 s3 s4
the address of x[] is x1, its stride is 1, and length 4,
the address of y[] is y1, its stride is 1, and length 4,
the address of s[] is s1, its stride is 1, and length 4.

• x1 y1 s1 x2 y2 s2 x3 y3 s3 x4 y4 s4
the address of x[] is x1, its stride is 3, and length 4,
the address of y[] is y1, its stride is 3, and length 4,
the address of s[] is s1, its stride is 3, and length 4.

For routines such as cels2x(), each of the pair of input vectors is assumed to have the same stride. Each of the
output vectors also has the same stride, though it may differ from the input stride. For example, for cels2x() the input
lng[] and lat[] vectors each have vector stride sll, while the x[] and y[] output vectors have stride sxy. However, the
intermediate phi[] and theta[] arrays each have unit stride, as does the stat[] vector.

If the vector length is 1 then the stride is irrelevant and so ignored. It may be set to 0.

9 Thread-safety

Thanks to feedback and patches provided by Rodrigo Tobar Carrizo, as of release 5.18, WCSLIB is now completely
thread-safe, with only a couple of minor provisos.

In particular, a number of new routines were introduced to preclude altering the global variables NPVMAX, NPS-
MAX, and NDPMAX, which determine how much memory to allocate for storing PVi_ma, PSi_ma, DPja, and DQia
keyvalues: wcsinit(), lininit(), lindist(), and disinit(). Specifically, these new routines are now used by various WC-
SLIB routines, such as the header parsers, which previously temporarily altered the global variables, thus posing a
thread hazard.

In addition, the Flex scanners were made reentrant and consequently should now be thread-safe. This was achieved
by rewriting them as thin wrappers (with the same API) over scanners that were modified (with changed API), as
required to use Flex's "reentrant" option.

For complete thread-safety, please observe the following provisos:

• The low-level routines wcsnpv(), wcsnps(), and disndp() are not thread-safe, but they are not used within
WCSLIB itself other than to get (not set) the values of the global variables NPVMAX, NPSMAX, and NDPMAX.

wcsinit() and disinit() only do so to get default values if the relevant parameters are not provided as function
arguments. Note that wcsini() invokes wcsinit() with defaults which cause this behavior, as does disini()
invoking disinit().

The preset values of NPVMAX(=64), NPSMAX(=8), and NDPMAX(=256) are large enough to cover most
practical cases. However, it may be desirable to tailor them to avoid allocating memory that remains unused.
If so, and thread-safety is an issue, then use wcsinit() and disinit() instead with the relevant values speci-
fied. This is what WCSLIB routines, such as the header parsers wcspih() and wcsbth(), do to avoid wasting
memory.

• wcserr_enable() sets a static variable and so is not thread-safe. However, the error reporting facility is not
intended to be used dynamically. If detailed error messages are required, enable wcserr when execution
starts and don't change it.

Note that diagnostic routines that print the contents of the various structs, namely celprt(), disprt(), linprt(), prjprt(),
spcprt(), tabprt(), wcsprt(), and wcsperr() use printf() which is thread-safe by the POSIX requirement on stdio.
However, this is only at the function level. Where multiple threads invoke these routines simultaneously their output
is likely to be interleaved.

Generated by Doxygen

10 Limits 13

10 Limits

While the FITS WCS standard imposes a limit of 99 on the number of image coordinate axes, WCSLIB has a limit
of 32 on the number it can handle – enforced by wcsset(), though allowed by wcsinit(). This arises in wcsp2s() and
wcss2p() from the use of the stat[] vector as a bit mask to indicate invalid pixel or world coordinate elements.

In the unlikely event that it ever becomes necessary to handle more than 32 axes, it would be a simple matter
to modify the stat[] bit mask so that bit 32 applies to all axes beyond 31. However, it was not considered worth
introducing the various tests required just for the sake of pandering to unrealistic possibilities.

In addition, wcssub() has a hard-coded limit of 32 coordinate elements (matching the stat[] bit mask), and likewise
for tabs2p() (via a static helper function, tabvox()). While it would be a simple matter to generalise this by allocating
memory from the heap, since tabvox() calls itself recursively and needs to be as fast as possible, again it was not
considered worth pandering to unrealistic possibilities.

11 Example code, testing and verification

WCSLIB has an extensive test suite that also provides programming templates as well as demonstrations. Test
programs, with names that indicate the main WCSLIB routine under test, reside in ./{C,Fortran}/test and each
contains a brief description of its purpose.

The high- and middle-level test programs are more instructive for applications programming, while the low-level tests
are important for verifying the integrity of the mathematical routines.

• High level:
twcstab provides an example of high-level applications programming using WCSLIB and CFITSIO. It con-
structs an input FITS test file, specifically for testing TAB coordinates, partly using wcstab.keyrec, and
then extracts the coordinate description from it following the steps outlined in wcshdr.h.

tpih1 and tpih2 verify wcspih(). The first prints the contents of the structs returned by wcspih() using
wcsprt() and the second uses cpgsbox() to draw coordinate graticules. Input for these comes from a FITS
WCS test header implemented as a list of keyrecords, wcs.keyrec, one keyrecord per line, together with
a program, tofits, that compiles these into a valid FITS file.

tbth1 tests wcsbth() by reading a test header and printing the resulting wcsprm structs. In the process
it also tests wcsfix().

tfitshdr also uses wcs.keyrec to test the generic FITS header parsing routine.

twcsfix sets up a wcsprm struct containing various non-standard constructs and then invokes wcsfix() to
translate them all to standard usage.

twcslint tests the syntax checker for FITS WCS keyrecords (wcsware -l) on a specially constructed header
riddled with invalid entries.

tdis3 uses wcsware to test the handling of different types of distortion functions encoded in a set of test
FITS headers.

• Middle level:
twcs tests closure of wcss2p() and wcsp2s() for a number of selected projections. twcsmix verifies wcsmix()
on the 1◦ grid of celestial longitude and latitude for a number of selected projections. It plots a test grid
for each projection and indicates the location of successful and failed solutions. tdis2 and twcssub test the
extraction of a coordinate description for a subimage from a wcsprm struct by wcssub().

tunits tests wcsutrne(), wcsunitse() and wcsulexe(), the units specification translator, converter and parser,
either interactively or using a list of units specifications contained in units_test.

twcscompare tests particular aspects of the comparison routine, wcscompare().

Generated by Doxygen

14

• Low level:
tdis1, tlin, tlog, tprj1, tspc, tsph, tspx, and ttab1 test "closure" of the respective routines. Closure tests
apply the forward and reverse transformations in sequence and compare the result with the original value.
Ideally, the result should agree exactly, but because of floating point rounding errors there is usually a small
discrepancy so it is only required to agree within a "closure tolerance".

tprj1 tests for closure separately for longitude and latitude except at the poles where it only tests for
closure in latitude. Note that closure in longitude does not deal with angular displacements on the sky. This
is appropriate for many projections such as the cylindricals where circumpolar parallels are projected at the
same length as the equator. On the other hand, tsph does test for closure in angular displacement.

The tolerance for reporting closure discrepancies is set at 10−10 degree for most projections; this is
slightly less than 3 microarcsec. The worst case closure figure is reported for each projection and this is
usually better than the reporting tolerance by several orders of magnitude. tprj1 and tsph test closure at all
points on the 1◦ grid of native longitude and latitude and to within 5◦ of any latitude of divergence for those
projections that cannot represent the full sphere. Closure is also tested at a sequence of points close to the
reference point (tprj1) or pole (tsph).

Closure has been verified at all test points for SUN workstations. However, non-closure may be observed for
other machines near native latitude −90◦ for the zenithal, cylindrical and conic equal area projections (ZEA,
CEA and COE), and near divergent latitudes of projections such as the azimuthal perspective and stereo-
graphic projections (AZP and STG). Rounding errors may also carry points between faces of the quad-cube
projections (CSC, QSC, and TSC). Although such excursions may produce long lists of non-closure points,
this is not necessarily indicative of a fundamental problem.

Note that the inverse of the COBE quad-qube projection (CSC) is a polynomial approximation and its
closure tolerance is intrinsically poor.

Although tests for closure help to verify the internal consistency of the routines they do not verify them
in an absolute sense. This is partly addressed by tcel1, tcel2, tprj2, ttab2 and ttab3 which plot graticules for
visual inspection of scaling, orientation, and other macroscopic characteristics of the projections.

There are also a number of other special-purpose test programs that are not automatically exercised by
the test suite.

12 WCSLIB Fortran wrappers

The Fortran subdirectory contains wrappers, written in C, that allow Fortran programs to use WCSLIB. The wrappers
have no associated C header files, nor C function prototypes, as they are only meant to be called by Fortran code.
Hence the C code must be consulted directly to determine the argument lists. This resides in files with names of the
form ∗_f.c. However, there are associated Fortran INCLUDE files that declare function return types and various
parameter definitions. There are also BLOCK DATA modules, in files with names of the form ∗_data.f, used solely
to initialise error message strings.

A prerequisite for using the wrappers is an understanding of the usage of the associated C routines, in particular the
data structures they are based on. The principle difficulty in creating the wrappers was the need to manage these
C structs from within Fortran, particularly as they contain pointers to allocated memory, pointers to C functions, and
other structs that themselves contain similar entities.

To this end, routines have been provided to set and retrieve values of the various structs, for example WCSPUT
and WCSGET for the wcsprm struct, and CELPUT and CELGET for the celprm struct. These must be used in
conjunction with wrappers on the routines provided to manage the structs in C, for example WCSINIT, WCSSUB,
WCSCOPY, WCSFREE, and WCSPRT which wrap wcsinit(), wcssub(), wcscopy(), wcsfree(), and wcsprt().

Compilers (e.g. gfortran) may warn of inconsistent usage of the third argument in the various ∗PUT and ∗GET
routines, and as of gfortran 10, these warnings have been promoted to errors. Thus, type-specific variants are

Generated by Doxygen

12 WCSLIB Fortran wrappers 15

provided for each of the ∗PUT routines, ∗PTI, ∗PTD, and ∗PTC for int, double, or char[], and likewise ∗GTI, ∗GTD,
and ∗GTC for the ∗GET routines. While, for brevity, we will here continue to refer to the ∗PUT and ∗GET routines,
as compilers are generally becoming stricter, use of the type-specific variants is recommended.

The various ∗PUT and ∗GET routines are based on codes defined in Fortran include files (∗.inc). If your Fortran
compiler does not support the INCLUDE statement then you will need to include these manually in your code as
necessary. Codes are defined as parameters with names like WCS_CRPIX which refers to wcsprm::crpix (if your
Fortran compiler does not support long symbolic names then you will need to rename these).

The include files also contain parameters, such as WCSLEN, that define the length of an INTEGER array that
must be declared to hold the struct. This length may differ for different platforms depending on how the C compiler
aligns data within the structs. A test program for the C library, twcs, prints the size of the struct in sizeof(int) units
and the values in the Fortran include files must equal or exceed these. On some platforms, such as Suns, it is
important that the start of the INTEGER array be aligned on a DOUBLE PRECISION boundary, otherwise a
mysterious BUS error may result. This may be achieved via an EQUIVALENCE with a DOUBLE PRECISION
variable, or by sequencing variables in a COMMON block so that the INTEGER array follows immediately after a
DOUBLE PRECISION variable.

The ∗PUT routines set only one element of an array at a time; the final one or two integer arguments of these
routines specify 1-relative array indices (N.B. not 0-relative as in C). The one exception is the prjprm::pv array.

The ∗PUT routines also reset the flag element to signal that the struct needs to be reinitialized. Therefore, if you
wanted to set wcsprm::flag itself to -1 prior to the first call to WCSINIT, for example, then that WCSPUT must be
the last one before the call.

The ∗GET routines retrieve whole arrays at a time and expect array arguments of the appropriate length where
necessary. Note that they do not initialize the structs, i.e. via wcsset(), prjset(), or whatever.

A basic coding fragment is

INTEGER LNGIDX, STATUS
CHARACTER CTYPE1*72

INCLUDE ’wcs.inc’

* WCSLEN is defined as a parameter in wcs.inc.
INTEGER WCS(WCSLEN)
DOUBLE PRECISION DUMMY
EQUIVALENCE (WCS, DUMMY)

* Allocate memory and set default values for 2 axes.
STATUS = WCSPTI (WCS, WCS_FLAG, -1, 0, 0)
STATUS = WCSINI (2, WCS)

* Set CRPIX1, and CRPIX2; WCS_CRPIX is defined in wcs.inc.
STATUS = WCSPTD (WCS, WCS_CRPIX, 512D0, 1, 0)
STATUS = WCSPTD (WCS, WCS_CRPIX, 512D0, 2, 0)

* Set PC1_2 to 5.0 (I = 1, J = 2).
STATUS = WCSPTD (WCS, WCS_PC, 5D0, 1, 2)

* Set CTYPE1 to ’RA---SIN’; N.B. must be given as CHARACTER*72.
CTYPE1 = ’RA---SIN’
STATUS = WCSPTC (WCS, WCS_CTYPE, CTYPE1, 1, 0)

* Use an alternate method to set CTYPE2.
STATUS = WCSPTC (WCS, WCS_CTYPE, ’DEC--SIN’//CHAR(0), 2, 0)

* Set PV1_3 to -1.0 (I = 1, M = 3).
STATUS = WCSPTD (WCS, WCS_PV, -1D0, 1, 3)

etc.

* Initialize.
STATUS = WCSSET (WCS)

Generated by Doxygen

16

IF (STATUS.NE.0) THEN
CALL FLUSH (6)
STATUS = WCSPERR (WCS, ’EXAMPLE: ’//CHAR(0))

ENDIF

* Find the "longitude" axis.
STATUS = WCSGTI (WCS, WCS_LNG, LNGIDX)

* Free memory.
STATUS = WCSFREE (WCS)

Refer to the various Fortran test programs for further programming examples. In particular, twcs and twcsmix show
how to retrieve elements of the celprm and prjprm structs contained within the wcsprm struct.

Treatment of CHARACTER arguments in wrappers such as SPCTYPE, SPECX, and WCSSPTR, depends on
whether they are given or returned. Where a CHARACTER variable is returned, its length must match the de-
clared length in the definition of the C wrapper. The terminating null character in the C string, and all following it up
to the declared length, are replaced with blanks. If the Fortran CHARACTER variable were shorter than the declared
length, an out-of-bounds memory access error would result. If longer, the excess, uninitialized, characters could
contain garbage.

If the CHARACTER argument is given, a null-terminated CHARACTER variable may be provided as input, e.g.
constructed using the Fortran CHAR(0) intrinsic as in the example code above. The wrapper makes a character-
by-character copy, searching for a NULL character in the process. If it finds one, the copy terminates early, resulting
in a valid C string. In this case any trailing blanks before the NULL character are preserved if it makes sense to
do so, such as in setting a prefix for use by the ∗PERR wrappers, such as WCSPERR in the example above. If a
NULL is not found, then the CHARACTER argument must be at least as long as the declared length, and any trailing
blanks are stripped off. Should a CHARACTER argument exceed the declared length, the excess characters are
ignored.

There is one exception to the above caution regarding CHARACTER arguments. The WCSLIB_VERSION wrapper
is unusual in that it provides for the length of its CHARACTER argument to be specified, and only so many characters
as fit within that length are returned.

Note that the data type of the third argument to the ∗PUT (or ∗PTI, ∗PTD, or ∗PTC) and ∗GET (or ∗GTI, ∗GTD, or
∗GTC) routines differs depending on the data type of the corresponding C struct member, be it int, double, or char[].
It is essential that the Fortran data type match that of the C struct for int and double types, and be a CHARACTER
variable of the correct length for char[] types, or else be null-terminated, as in the coding example above. As a
further example, in the two equivalent calls

STATUS = PRJGET (PRJ, PRJ_NAME, NAME)
STATUS = PRJGTC (PRJ, PRJ_NAME, NAME)

which return a character string, NAME must be a CHARACTER variable of length 40, as declared in the prjprm
struct, no less and no more, the comments above pertaining to wrappers that contain CHARACTER arguments also
applying here. However, a few exceptions have been made to simplify coding. The relevant ∗PUT (or ∗PTC) wrap-
pers allow unterminated CHARACTER variables of less than the declared length for the following: prjprm::code
(3 characters), spcprm::type (4 characters), spcprm::code (3 characters), and fitskeyid::name (8
characters). It doesn't hurt to specify longer CHARACTER variables, but the trailing characters will be ignored.
Notwithstanding this simplification, the length of the corresponding variables in the ∗GET (or ∗GTC) wrappers must
match the length declared in the struct.

When calling wrappers for C functions that print to stdout, such as WCSPRT, and WCSPERR, or that may print to
stderr, such as WCSPIH, WCSBTH, WCSULEXE, or WCSUTRNE, it may be necessary to flush the Fortran I/O buffers
beforehand so that the output appears in the correct order. The wrappers for these functions do call fflush(←↩

NULL), but depending on the particular system, this may not succeed in flushing the Fortran I/O buffers. Most
Fortran compilers provide the non-standard intrinsic FLUSH(), which is called with unit number 6 to flush stdout
(as in the example above), and unit 0 for stderr.

A basic assumption made by the wrappers is that an INTEGER variable is no less than half the size of a DOUBLE
PRECISION.

Generated by Doxygen

13 PGSBOX 17

13 PGSBOX

PGSBOX, which is provided as a separate part of WCSLIB, is a PGPLOT routine (PGPLOT being a Fortran graph-
ics library) that draws and labels curvilinear coordinate grids. Example PGSBOX grids can be seen at http←↩

://www.atnf.csiro.au/people/Mark.Calabretta/WCS/PGSBOX/index.html.

The prologue to pgsbox.f contains usage instructions. pgtest.f and cpgtest.c serve as test and demonstration
programs in Fortran and C and also as well- documented examples of usage.

PGSBOX requires a separate routine, EXTERNAL NLFUNC, to define the coordinate transformation. Fortran sub-
routine PGCRFN (pgcrfn.f) is provided to define separable pairs of non-linear coordinate systems. Linear, logarithmic
and power-law axis types are currently defined; further types may be added as required. A C function, pgwcsl←↩

_(), with Fortran-like interface defines an NLFUNC that interfaces to WCSLIB 4.x for PGSBOX to draw celestial
coordinate grids.

PGPLOT is implemented as a Fortran library with a set of C wrapper routines that are generated by a software
tool. However, PGSBOX has a more complicated interface than any of the standard PGPLOT routines, especially
in having an EXTERNAL function in its argument list. Consequently, PGSBOX is implemented in Fortran but with a
hand-coded C wrapper, cpgsbox().

As an example, in this suite the C test/demo program, cpgtest, calls the C wrapper, cpgsbox(), passing it a pointer
to pgwcsl_(). In turn, cpgsbox() calls PGSBOX, which invokes pgwcsl_() as an EXTERNAL subroutine. In this
sequence, a complicated C struct defined by cpgtest is passed through PGSBOX to pgwcsl_() as an INTEGER
array.

While there are no formal standards for calling Fortran from C, there are some fairly well established conventions.
Nevertheless, it's possible that you may need to modify the code if you use a combination of Fortran and C compilers
with linkage conventions that differ from that of the GNU compilers, gcc and g77.

14 WCSLIB version numbers

The full WCSLIB/PGSBOX version number is composed of three integers in fields separated by periods:

• Major: the first number changes only when the ABI changes, a rare occurence (and the API never changes).
Typically, the ABI changes when the contents of a struct change. For example, the contents of the linprm
struct changed between 4.25.1 and 5.0.

In practical terms, this number becomes the major version number of the WCSLIB sharable library, libwcs.←↩

so.<major>. To avoid possible segmentation faults or bus errors that may arise from the altered ABI, the
dynamic (runtime) linker will not allow an application linked to a sharable library with a particular major version
number to run with that of a different major version number.

Application code must be recompiled and relinked to use a newer version of the WCSLIB sharable library with
a new major version number.

• Minor: the second number changes when existing code is changed, whether due to added function-
ality or bug fixes. This becomes the minor version number of the WCSLIB sharable library, libwcs.←↩

so.<major>.<minor>.

Because the ABI remains unchanged, older applications can use the new sharable library without needing to
be recompiled, thus obtaining the benefit of bug fixes, speed enhancements, etc.

Application code written subsequently to use the added functionality would, of course, need to be recompiled.

• Patch: the third number, which is often omitted, indicates a change to the build procedures, documentation,
or test suite. It may also indicate changes to the utility applications (wcsware, HPXcvt, etc.), including the
addition of new ones.

However, the library itself, including the definitions in the header files, remains unaltered, so there is no point
in recompiling applications.

Generated by Doxygen

http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/PGSBOX/index.html
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/PGSBOX/index.html

18

The following describes what happens (or should happen) when WCSLIB's installation procedures are used on a
typical Linux system using the GNU gcc compiler and GNU linker.

The sharable library should be installed as libwcs.so.<major>.<minor>, say libwcs.so.5.4 for concreteness, and a
number of symbolic links created as follows:

libwcs.so -> libwcs.so.5
libwcs.so.5 -> libwcs.so.5.4
libwcs.so.5.4

When an application is linked using '-lwcs', the linker finds libwcs.so and the symlinks lead it to libwcs.so.5.4.
However, that library's SONAME is actually 'libwcs.so.5', by virtue of linker options used when the sharable library
was created, as can be seen by running

readelf -d libwcs.so.5.4

Thus, when an application that was compiled and linked to libwcs.so.5.4 begins execution, the dynamic linker, ld.so,
will attempt to bind it to libwcs.so.5, as can be seen by running

ldd <application>

Later, when WCSLIB 5.5 is installed, the library symbolic links will become

libwcs.so -> libwcs.so.5
libwcs.so.5 -> libwcs.so.5.5
libwcs.so.5.4
libwcs.so.5.5

Thus, even without being recompiled, existing applications will link automatically to libwcs.so.5.5 at runtime. In fact,
libwcs.so.5.4 would no longer be used and could be deleted.

If WCSLIB 6.0 were to be installed at some later time, then the libwcs.so.6 libraries would be used for new compila-
tions. However, the libwcs.so.5 libraries must be left in place for existing executables that still require them:

libwcs.so -> libwcs.so.6
libwcs.so.6 -> libwcs.so.6.0
libwcs.so.6.0
libwcs.so.5 -> libwcs.so.5.5
libwcs.so.5.5

15 Deprecated List

Global celini_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Global celprt_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Global cels2x_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Global celset_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Generated by Doxygen

15 Deprecated List 19

Global celx2s_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Global cylfix_errmsg

Added for backwards compatibility, use wcsfix_errmsg directly now instead.

Global FITSHDR_CARD

Added for backwards compatibility, use FITSHDR_KEYREC instead.

Global lincpy_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linfree_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linini_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linp2x_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linprt_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linset_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linx2p_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global prjini_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjprt_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjs2x_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjset_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjx2s_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global spcini_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcprt_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcs2x_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcset_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcx2s_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global tabcpy_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabfree_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Generated by Doxygen

20

Global tabini_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabprt_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabs2x_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabset_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabx2s_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global wcscopy_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsfree_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsini_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsmix_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsp2s_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsprt_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcss2p_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsset_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcssub_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

16 Data Structure Index

16.1 Data Structures

Here are the data structures with brief descriptions:

auxprm
Additional auxiliary parameters 22

celprm
Celestial transformation parameters 23

disprm
Distortion parameters 26

dpkey
Store for DPja and DQia keyvalues 30

Generated by Doxygen

17 File Index 21

fitskey
Keyword/value information 31

fitskeyid
Keyword indexing 35

linprm
Linear transformation parameters 36

prjprm
Projection parameters 40

pscard
Store for PSi_ma keyrecords 44

pvcard
Store for PVi_ma keyrecords 45

spcprm
Spectral transformation parameters 46

spxprm
Spectral variables and their derivatives 49

tabprm
Tabular transformation parameters 54

wcserr
Error message handling 58

wcsprm
Coordinate transformation parameters 59

wtbarr
Extraction of coordinate lookup tables from BINTABLE 76

17 File Index

17.1 File List

Here is a list of all files with brief descriptions:

cel.h 78

dis.h 85

fitshdr.h 99

getwcstab.h 104

lin.h 105

log.h 116

prj.h 118

spc.h 145

Generated by Doxygen

22

sph.h 160

spx.h 163

tab.h 174

wcs.h 183

wcserr.h 202

wcsfix.h 206

wcshdr.h 216

wcslib.h 243

wcsmath.h 243

wcsprintf.h 244

wcstrig.h 247

wcsunits.h 251

wcsutil.h 262

wtbarr.h 270

18 Data Structure Documentation

18.1 auxprm Struct Reference

Additional auxiliary parameters.

#include <wcs.h>

Data Fields

• double rsun_ref
• double dsun_obs
• double crln_obs
• double hgln_obs
• double hglt_obs

18.1.1 Detailed Description

The auxprm struct holds auxiliary coordinate system information of a specialist nature. It is anticipated that this
struct will expand in future to accomodate additional parameters.

All members of this struct are to be set by the user.

18.1.2 Field Documentation

Generated by Doxygen

18.2 celprm Struct Reference 23

18.1.2.1 rsun_ref double auxprm::rsun_ref

(Given, auxiliary) Reference radius of the Sun used in coordinate calculations (m).

18.1.2.2 dsun_obs double auxprm::dsun_obs

(Given, auxiliary) Distance between the centre of the Sun and the observer (m).

18.1.2.3 crln_obs double auxprm::crln_obs

(Given, auxiliary) Carrington heliographic longitude of the observer (deg).

18.1.2.4 hgln_obs double auxprm::hgln_obs

(Given, auxiliary) Stonyhurst heliographic longitude of the observer (deg).

18.1.2.5 hglt_obs double auxprm::hglt_obs

(Given, auxiliary) Heliographic latitude (Carrington or Stonyhurst) of the observer (deg).

18.2 celprm Struct Reference

Celestial transformation parameters.

#include <cel.h>

Data Fields

• int flag
• int offset
• double phi0
• double theta0
• double ref [4]
• struct prjprm prj
• double euler [5]
• int latpreq
• int isolat
• struct wcserr ∗ err
• void ∗ padding

18.2.1 Detailed Description

The celprm struct contains information required to transform celestial coordinates. It consists of certain members
that must be set by the user (given) and others that are set by the WCSLIB routines (returned). Some of the latter
are supplied for informational purposes and others are for internal use only.

Returned celprm struct members must not be modified by the user.

Generated by Doxygen

24

18.2.2 Field Documentation

18.2.2.1 flag int celprm::flag

(Given and returned) This flag must be set to zero whenever any of the following celprm struct members are set or
changed:

• celprm::offset,

• celprm::phi0,

• celprm::theta0,

• celprm::ref[4],

• celprm::prj:

– prjprm::code,

– prjprm::r0,

– prjprm::pv[],

– prjprm::phi0,

– prjprm::theta0.

This signals the initialization routine, celset(), to recompute the returned members of the celprm struct. celset() will
reset flag to indicate that this has been done.

18.2.2.2 offset int celprm::offset

(Given) If true (non-zero), an offset will be applied to (x, y) to force (x, y) = (0,0) at the fiducial point, (φ0, θ0).
Default is 0 (false).

18.2.2.3 phi0 double celprm::phi0

(Given) The native longitude, φ0 [deg], and ...

18.2.2.4 theta0 double celprm::theta0

(Given) ... the native latitude, θ0 [deg], of the fiducial point, i.e. the point whose celestial coordinates are given
in celprm::ref[1:2]. If undefined (set to a magic value by prjini()) the initialization routine, celset(), will set this to a
projection-specific default.

Generated by Doxygen

18.2 celprm Struct Reference 25

18.2.2.5 ref double celprm::ref

(Given) The first pair of values should be set to the celestial longitude and latitude of the fiducial point [deg] - typically
right ascension and declination. These are given by the CRVALia keywords in FITS.

(Given and returned) The second pair of values are the native longitude, φp [deg], and latitude, θp [deg], of the
celestial pole (the latter is the same as the celestial latitude of the native pole, δp) and these are given by the FITS
keywords LONPOLEa and LATPOLEa (or by PVi_2a and PVi_3a attached to the longitude axis which take
precedence if defined).

LONPOLEa defaults to φ0 (see above) if the celestial latitude of the fiducial point of the projection is greater than or
equal to the native latitude, otherwise φ0 + 180 [deg]. (This is the condition for the celestial latitude to increase in
the same direction as the native latitude at the fiducial point.) ref[2] may be set to UNDEFINED (from wcsmath.h)
or 999.0 to indicate that the correct default should be substituted.

θp, the native latitude of the celestial pole (or equally the celestial latitude of the native pole, δp) is often determined
uniquely by CRVALia and LONPOLEa in which case LATPOLEa is ignored. However, in some circumstances
there are two valid solutions for θp and LATPOLEa is used to choose between them. LATPOLEa is set in ref[3]
and the solution closest to this value is used to reset ref[3]. It is therefore legitimate, for example, to set ref[3] to
+90.0 to choose the more northerly solution - the default if the LATPOLEa keyword is omitted from the FITS header.
For the special case where the fiducial point of the projection is at native latitude zero, its celestial latitude is zero,
and LONPOLEa = ± 90.0 then the celestial latitude of the native pole is not determined by the first three reference
values and LATPOLEa specifies it completely.

The returned value, celprm::latpreq, specifies how LATPOLEa was actually used.

18.2.2.6 prj struct prjprm celprm::prj

(Given and returned) Projection parameters described in the prologue to prj.h.

18.2.2.7 euler double celprm::euler

(Returned) Euler angles and associated intermediaries derived from the coordinate reference values. The first three
values are the Z-, X-, and Z '-Euler angles [deg], and the remaining two are the cosine and sine of the X-Euler
angle.

18.2.2.8 latpreq int celprm::latpreq

(Returned) For informational purposes, this indicates how the LATPOLEa keyword was used

• 0: Not required, θp (== δp) was determined uniquely by the CRVALia and LONPOLEa keywords.

• 1: Required to select between two valid solutions of θp.

• 2: θp was specified solely by LATPOLEa.

18.2.2.9 isolat int celprm::isolat

(Returned) True if the spherical rotation preserves the magnitude of the latitude, which occurs iff the axes of the
native and celestial coordinates are coincident. It signals an opportunity to cache intermediate calculations common
to all elements in a vector computation.

Generated by Doxygen

26

18.2.2.10 err struct wcserr ∗ celprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.2.2.11 padding void ∗ celprm::padding

(An unused variable inserted for alignment purposes only.)

Global variable: const char ∗cel_errmsg[] - Status return messages Status messages to match the status value
returned from each function.

18.3 disprm Struct Reference

Distortion parameters.

#include <dis.h>

Data Fields

• int flag
• int naxis
• char(∗ dtype)[72]
• int ndp
• int ndpmax
• struct dpkey ∗ dp
• double ∗ maxdis
• double totdis
• int ∗ docorr
• int ∗ Nhat
• int ∗∗ axmap
• double ∗∗ offset
• double ∗∗ scale
• int ∗∗ iparm
• double ∗∗ dparm
• int i_naxis
• int ndis
• struct wcserr ∗ err
• int(∗∗ disp2x)(DISP2X_ARGS)
• int(∗∗ disx2p)(DISX2P_ARGS)
• double ∗ tmpmem
• int m_flag
• int m_naxis
• char(∗ m_dtype)[72]
• struct dpkey ∗ m_dp
• double ∗ m_maxdis

18.3.1 Detailed Description

The disprm struct contains all of the information required to apply a set of distortion functions. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned). While the
addresses of the arrays themselves may be set by disinit() if it (optionally) allocates memory, their contents must be
set by the user.

Generated by Doxygen

18.3 disprm Struct Reference 27

18.3.2 Field Documentation

18.3.2.1 flag int disprm::flag

(Given and returned) This flag must be set to zero whenever any of the following members of the disprm struct are
set or modified:

• disprm::naxis,

• disprm::dtype,

• disprm::ndp,

• disprm::dp.

This signals the initialization routine, disset(), to recompute the returned members of the disprm struct. disset() will
reset flag to indicate that this has been done.

PLEASE NOTE: flag must be set to -1 when disinit() is called for the first time for a particular disprm struct in order
to initialize memory management. It must ONLY be used on the first initialization otherwise memory leaks may
result.

18.3.2.2 naxis int disprm::naxis

(Given or returned) Number of pixel and world coordinate elements.

If disinit() is used to initialize the disprm struct (as would normally be the case) then it will set naxis from the value
passed to it as a function argument. The user should not subsequently modify it.

18.3.2.3 dtype disprm::dtype

(Given) Pointer to the first element of an array of char[72] containing the name of the distortion function for each
axis.

18.3.2.4 ndp int disprm::ndp

(Given) The number of entries in the disprm::dp[] array.

18.3.2.5 ndpmax int disprm::ndpmax

(Given) The length of the disprm::dp[] array.

ndpmax will be set by disinit() if it allocates memory for disprm::dp[], otherwise it must be set by the user. See also
disndp().

Generated by Doxygen

28

18.3.2.6 dp struct dpkey disprm::dp

(Given) Address of the first element of an array of length ndpmax of dpkey structs.

As a FITS header parser encounters each DPja or DQia keyword it should load it into a dpkey struct in the array
and increment ndp. However, note that a single disprm struct must hold only DPja or DQia keyvalues, not both.
disset() interprets them as required by the particular distortion function.

18.3.2.7 maxdis double ∗ disprm::maxdis

(Given) Pointer to the first element of an array of double specifying the maximum absolute value of the distortion for
each axis computed over the whole image.

It is not necessary to reset the disprm struct (via disset()) when disprm::maxdis is changed.

18.3.2.8 totdis double disprm::totdis

(Given) The maximum absolute value of the combination of all distortion functions specified as an offset in pixel
coordinates computed over the whole image.

It is not necessary to reset the disprm struct (via disset()) when disprm::totdis is changed.

18.3.2.9 docorr int ∗ disprm::docorr

(Returned) Pointer to the first element of an array of int containing flags that indicate the mode of correction for each
axis.

If docorr is zero, the distortion function returns the corrected coordinates directly. Any other value indicates that
the distortion function computes a correction to be added to pixel coordinates (prior distortion) or intermediate pixel
coordinates (sequent distortion).

18.3.2.10 Nhat int ∗ disprm::Nhat

(Returned) Pointer to the first element of an array of int containing the number of coordinate axes that form the
independent variables of the distortion function for each axis.

18.3.2.11 axmap int ∗∗ disprm::axmap

(Returned) Pointer to the first element of an array of int∗ containing pointers to the first elements of the axis mapping
arrays for each axis.

An axis mapping associates the independent variables of a distortion function with the 0-relative image axis number.
For example, consider an image with a spectrum on the first axis (axis 0), followed by RA (axis 1), Dec (axis2), and
time (axis 3) axes. For a distortion in (RA,Dec) and no distortion on the spectral or time axes, the axis mapping
arrays, axmap[j][], would be
j=0: [-1, -1, -1, -1] ...no distortion on spectral axis,

1: [1, 2, -1, -1] ...RA distortion depends on RA and Dec,
2: [2, 1, -1, -1] ...Dec distortion depends on Dec and RA,
3: [-1, -1, -1, -1] ...no distortion on time axis,

where -1 indicates that there is no corresponding independent variable.

Generated by Doxygen

18.3 disprm Struct Reference 29

18.3.2.12 offset double ∗∗ disprm::offset

(Returned) Pointer to the first element of an array of double∗ containing pointers to the first elements of arrays of
offsets used to renormalize the independent variables of the distortion function for each axis.

The offsets are subtracted from the independent variables before scaling.

18.3.2.13 scale double ∗∗ disprm::scale

(Returned) Pointer to the first element of an array of double∗ containing pointers to the first elements of arrays of
scales used to renormalize the independent variables of the distortion function for each axis.

The scale is applied to the independent variables after the offsets are subtracted.

18.3.2.14 iparm int ∗∗ disprm::iparm

(Returned) Pointer to the first element of an array of int∗ containing pointers to the first elements of the arrays of
integer distortion parameters for each axis.

18.3.2.15 dparm double ∗∗ disprm::dparm

(Returned) Pointer to the first element of an array of double∗ containing pointers to the first elements of the arrays
of floating point distortion parameters for each axis.

18.3.2.16 i_naxis int disprm::i_naxis

(Returned) Dimension of the internal arrays (normally equal to naxis).

18.3.2.17 ndis int disprm::ndis

(Returned) The number of distortion functions.

18.3.2.18 err struct wcserr ∗ disprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.3.2.19 disp2x int(∗∗ disprm::disp2x)(DISP2X_ARGS)

(For internal use only.)

18.3.2.20 disx2p int(∗∗ disprm::disx2p)(DISX2P_ARGS)

(For internal use only.)

18.3.2.21 tmpmem double ∗ disprm::tmpmem

(For internal use only.)

Generated by Doxygen

30

18.3.2.22 m_flag int disprm::m_flag

(For internal use only.)

18.3.2.23 m_naxis int disprm::m_naxis

(For internal use only.)

18.3.2.24 m_dtype disprm::m_dtype

(For internal use only.)

18.3.2.25 m_dp double ∗∗ disprm::m_dp

(For internal use only.)

18.3.2.26 m_maxdis double ∗ disprm::m_maxdis

(For internal use only.)

18.4 dpkey Struct Reference

Store for DPja and DQia keyvalues.

#include <dis.h>

Data Fields

• char field [72]
• int j
• int type
• union {

int i
double f

} value

18.4.1 Detailed Description

The dpkey struct is used to pass the parsed contents of DPja or DQia keyrecords to disset() via the disprm struct.
A disprm struct must hold only DPja or DQia keyvalues, not both.

All members of this struct are to be set by the user.

18.4.2 Field Documentation

Generated by Doxygen

18.5 fitskey Struct Reference 31

18.4.2.1 field char dpkey::field

(Given) The full field name of the record, including the keyword name. Note that the colon delimiter separating the
field name and the value in record-valued keyvalues is not part of the field name. For example, in the following:
DP3A = ’AXIS.1: 2’

the full record field name is "DP3A.AXIS.1", and the record's value is 2.

18.4.2.2 j int dpkey::j

(Given) Axis number (1-relative), i.e. the j in DPja or i in DQia.

18.4.2.3 type int dpkey::type

(Given) The data type of the record's value

• 0: Integer (stored as an int),

• 1: Floating point (stored as a double).

18.4.2.4 i int dpkey::i

18.4.2.5 f double dpkey::f

18.4.2.6 value union dpkey::value

(Given) A union comprised of

• dpkey::i,

• dpkey::f,

the record's value.

18.5 fitskey Struct Reference

Keyword/value information.

#include <fitshdr.h>

Generated by Doxygen

32

Data Fields

• int keyno
• int keyid
• int status
• char keyword [12]
• int type
• int padding
• union {

int i
int64 k
int l [8]
double f
double c [2]
char s [72]

} keyvalue

• int ulen
• char comment [84]

18.5.1 Detailed Description

fitshdr() returns an array of fitskey structs, each of which contains the result of parsing one FITS header keyrecord.
All members of the fitskey struct are returned by fitshdr(), none are given by the user.

18.5.2 Field Documentation

18.5.2.1 keyno int fitskey::keyno

(Returned) Keyrecord number (1-relative) in the array passed as input to fitshdr(). This will be negated if the keyword
matched any specified in the keyids[] index.

18.5.2.2 keyid int fitskey::keyid

(Returned) Index into the first entry in keyids[] with which the keyrecord matches, else -1.

18.5.2.3 status int fitskey::status

(Returned) Status flag bit-vector for the header keyrecord employing the following bit masks defined as preprocessor
macros:

• FITSHDR_KEYWORD: Illegal keyword syntax.

• FITSHDR_KEYVALUE: Illegal keyvalue syntax.

• FITSHDR_COMMENT: Illegal keycomment syntax.

• FITSHDR_KEYREC: Illegal keyrecord, e.g. an END keyrecord with trailing text.

• FITSHDR_TRAILER: Keyrecord following a valid END keyrecord.

The header keyrecord is syntactically correct if no bits are set.

Generated by Doxygen

18.5 fitskey Struct Reference 33

18.5.2.4 keyword char fitskey::keyword

(Returned) Keyword name, null-filled for keywords of less than eight characters (trailing blanks replaced by nulls).

Use
sprintf(dst, "%.8s", keyword)

to copy it to a character array with null-termination, or
sprintf(dst, "%8.8s", keyword)

to blank-fill to eight characters followed by null-termination.

18.5.2.5 type int fitskey::type

(Returned) Keyvalue data type:

• 0: No keyvalue (both the value and type are undefined).

• 1: Logical, represented as int.

• 2: 32-bit signed integer.

• 3: 64-bit signed integer (see below).

• 4: Very long integer (see below).

• 5: Floating point (stored as double).

• 6: Integer complex (stored as double[2]).

• 7: Floating point complex (stored as double[2]).

• 8: String.

• 8+10∗n: Continued string (described below and in fitshdr() note 2).

A negative type indicates that a syntax error was encountered when attempting to parse a keyvalue of the particular
type.

Comments on particular data types:

• 64-bit signed integers lie in the range
(-9223372036854775808 <= int64 < -2147483648) ||

(+2147483647 < int64 <= +9223372036854775807)

A native 64-bit data type may be defined via preprocessor macro WCSLIB_INT64 defined in wcsconfig.h, e.g.
as 'long long int'; this will be typedef'd to 'int64' here. If WCSLIB_INT64 is not set, then int64 is typedef'd to
int[3] instead and fitskey::keyvalue is to be computed as
((keyvalue.k[2]) * 1000000000 +
keyvalue.k[1]) * 1000000000 +
keyvalue.k[0]

and may reported via
if (keyvalue.k[2]) {
printf("%d%09d%09d", keyvalue.k[2], abs(keyvalue.k[1]),

abs(keyvalue.k[0]));
} else {
printf("%d%09d", keyvalue.k[1], abs(keyvalue.k[0]));

}

where keyvalue.k[0] and keyvalue.k[1] range from -999999999 to +999999999.

• Very long integers, up to 70 decimal digits in length, are encoded in keyvalue.l as an array of int[8], each of
which stores 9 decimal digits. fitskey::keyvalue is to be computed as
(((((((keyvalue.l[7]) * 1000000000 +

keyvalue.l[6]) * 1000000000 +
keyvalue.l[5]) * 1000000000 +
keyvalue.l[4]) * 1000000000 +
keyvalue.l[3]) * 1000000000 +
keyvalue.l[2]) * 1000000000 +
keyvalue.l[1]) * 1000000000 +
keyvalue.l[0]

• Continued strings are not reconstructed, they remain split over successive fitskey structs in the keys[] array
returned by fitshdr(). fitskey::keyvalue data type, 8 + 10n, indicates the segment number, n, in the continua-
tion.

Generated by Doxygen

34

18.5.2.6 padding int fitskey::padding

(An unused variable inserted for alignment purposes only.)

18.5.2.7 i int fitskey::i

(Returned) Logical (fitskey::type == 1) and 32-bit signed integer (fitskey::type == 2) data types in the fitskey::keyvalue
union.

18.5.2.8 k int64 fitskey::k

(Returned) 64-bit signed integer (fitskey::type == 3) data type in the fitskey::keyvalue union.

18.5.2.9 l int fitskey::l

(Returned) Very long integer (fitskey::type == 4) data type in the fitskey::keyvalue union.

18.5.2.10 f double fitskey::f

(Returned) Floating point (fitskey::type == 5) data type in the fitskey::keyvalue union.

18.5.2.11 c double fitskey::c

(Returned) Integer and floating point complex (fitskey::type == 6 || 7) data types in the fitskey::keyvalue union.

18.5.2.12 s char fitskey::s

(Returned) Null-terminated string (fitskey::type == 8) data type in the fitskey::keyvalue union.

18.5.2.13 keyvalue union fitskey::keyvalue

(Returned) A union comprised of

• fitskey::i,

• fitskey::k,

• fitskey::l,

• fitskey::f,

• fitskey::c,

• fitskey::s,

used by the fitskey struct to contain the value associated with a keyword.

Generated by Doxygen

18.6 fitskeyid Struct Reference 35

18.5.2.14 ulen int fitskey::ulen

(Returned) Where a keycomment contains a units string in the standard form, e.g. [m/s], the ulen member indicates
its length, inclusive of square brackets. Otherwise ulen is zero.

18.5.2.15 comment char fitskey::comment

(Returned) Keycomment, i.e. comment associated with the keyword or, for keyrecords rejected because of syntax
errors, the compete keyrecord itself with null-termination.

Comments are null-terminated with trailing spaces removed. Leading spaces are also removed from keycomments
(i.e. those immediately following the '/' character), but not from COMMENT or HISTORY keyrecords or keyrecords
without a value indicator (''= '' in columns 9-80).

18.6 fitskeyid Struct Reference

Keyword indexing.

#include <fitshdr.h>

Data Fields

• char name [12]
• int count
• int idx [2]

18.6.1 Detailed Description

fitshdr() uses the fitskeyid struct to return indexing information for specified keywords. The struct contains three
members, the first of which, fitskeyid::name, must be set by the user with the remainder returned by fitshdr().

18.6.2 Field Documentation

18.6.2.1 name char fitskeyid::name

(Given) Name of the required keyword. This is to be set by the user; the '.' character may be used for wildcarding.
Trailing blanks will be replaced with nulls.

18.6.2.2 count int fitskeyid::count

(Returned) The number of matches found for the keyword.

Generated by Doxygen

36

18.6.2.3 idx int fitskeyid::idx

(Returned) Indices into keys[], the array of fitskey structs returned by fitshdr(). Note that these are 0-relative array
indices, not keyrecord numbers.

If the keyword is found in the header the first index will be set to the array index of its first occurrence, otherwise it
will be set to -1.

If multiples of the keyword are found, the second index will be set to the array index of its last occurrence, otherwise
it will be set to -1.

18.7 linprm Struct Reference

Linear transformation parameters.

#include <lin.h>

Data Fields

• int flag
• int naxis
• double ∗ crpix
• double ∗ pc
• double ∗ cdelt
• struct disprm ∗ dispre
• struct disprm ∗ disseq
• double ∗ piximg
• double ∗ imgpix
• int i_naxis
• int unity
• int affine
• int simple
• struct wcserr ∗ err
• double ∗ tmpcrd
• int m_flag
• int m_naxis
• double ∗ m_crpix
• double ∗ m_pc
• double ∗ m_cdelt
• struct disprm ∗ m_dispre
• struct disprm ∗ m_disseq

18.7.1 Detailed Description

The linprm struct contains all of the information required to perform a linear transformation. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).

18.7.2 Field Documentation

Generated by Doxygen

18.7 linprm Struct Reference 37

18.7.2.1 flag int linprm::flag

(Given and returned) This flag must be set to zero whenever any of the following members of the linprm struct are
set or modified:

• linprm::naxis (q.v., not normally set by the user),

• linprm::pc,

• linprm::cdelt,

• linprm::dispre.

• linprm::disseq.

This signals the initialization routine, linset(), to recompute the returned members of the linprm struct. linset() will
reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when lininit() is called for the first time for a particular linprm struct in
order to initialize memory management. It must ONLY be used on the first initialization otherwise memory leaks
may result.

18.7.2.2 naxis int linprm::naxis

(Given or returned) Number of pixel and world coordinate elements.

If lininit() is used to initialize the linprm struct (as would normally be the case) then it will set naxis from the value
passed to it as a function argument. The user should not subsequently modify it.

18.7.2.3 crpix double ∗ linprm::crpix

(Given) Pointer to the first element of an array of double containing the coordinate reference pixel, CRPIXja.

It is not necessary to reset the linprm struct (via linset()) when linprm::crpix is changed.

18.7.2.4 pc double ∗ linprm::pc

(Given) Pointer to the first element of the PCi_ja (pixel coordinate) transformation matrix. The expected order is
struct linprm lin;
lin.pc = {PC1_1, PC1_2, PC2_1, PC2_2};

This may be constructed conveniently from a 2-D array via
double m[2][2] = {{PC1_1, PC1_2},

{PC2_1, PC2_2}};

which is equivalent to
double m[2][2];
m[0][0] = PC1_1;
m[0][1] = PC1_2;
m[1][0] = PC2_1;
m[1][1] = PC2_2;

The storage order for this 2-D array is the same as for the 1-D array, whence
lin.pc = *m;

would be legitimate.

Generated by Doxygen

38

18.7.2.5 cdelt double ∗ linprm::cdelt

(Given) Pointer to the first element of an array of double containing the coordinate increments, CDELTia.

18.7.2.6 dispre struct disprm ∗ linprm::dispre

(Given) Pointer to a disprm struct holding parameters for prior distortion functions, or a null (0x0) pointer if there are
none.

Function lindist() may be used to assign a disprm pointer to a linprm struct, allowing it to take control of any memory
allocated for it, as in the following example:
void add_distortion(struct linprm *lin)
{

struct disprm *dispre;
dispre = malloc(sizeof(struct disprm));
dispre->flag = -1;
lindist(1, lin, dispre, ndpmax);
:
(Set up dispre.)
:

return;
}

Here, after the distortion function parameters etc. are copied into dispre, dispre is assigned using lindist() which
takes control of the allocated memory. It will be freed later when linfree() is invoked on the linprm struct.

Consider also the following erroneous code:
void bad_code(struct linprm *lin)
{

struct disprm dispre;
dispre.flag = -1;
lindist(1, lin, &dispre, ndpmax); // WRONG.
:

return;
}

Here, dispre is declared as a struct, rather than a pointer. When the function returns, dispre will go out of scope and
its memory will most likely be reused, thereby trashing its contents. Later, a segfault will occur when linfree() tries
to free dispre's stale address.

18.7.2.7 disseq struct disprm ∗ linprm::disseq

(Given) Pointer to a disprm struct holding parameters for sequent distortion functions, or a null (0x0) pointer if there
are none.

Refer to the comments and examples given for disprm::dispre.

18.7.2.8 piximg double ∗ linprm::piximg

(Returned) Pointer to the first element of the matrix containing the product of the CDELTia diagonal matrix and the
PCi_ja matrix.

18.7.2.9 imgpix double ∗ linprm::imgpix

(Returned) Pointer to the first element of the inverse of the linprm::piximg matrix.

18.7.2.10 i_naxis int linprm::i_naxis

(Returned) The dimension of linprm::piximg and linprm::imgpix (normally equal to naxis).

Generated by Doxygen

18.7 linprm Struct Reference 39

18.7.2.11 unity int linprm::unity

(Returned) True if the linear transformation matrix is unity.

18.7.2.12 affine int linprm::affine

(Returned) True if there are no distortions.

18.7.2.13 simple int linprm::simple

(Returned) True if unity and no distortions.

18.7.2.14 err struct wcserr ∗ linprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.7.2.15 tmpcrd double ∗ linprm::tmpcrd

(For internal use only.)

18.7.2.16 m_flag int linprm::m_flag

(For internal use only.)

18.7.2.17 m_naxis int linprm::m_naxis

(For internal use only.)

18.7.2.18 m_crpix double ∗ linprm::m_crpix

(For internal use only.)

18.7.2.19 m_pc double ∗ linprm::m_pc

(For internal use only.)

18.7.2.20 m_cdelt double ∗ linprm::m_cdelt

(For internal use only.)

18.7.2.21 m_dispre struct disprm ∗ linprm::m_dispre

(For internal use only.)

Generated by Doxygen

40

18.7.2.22 m_disseq struct disprm ∗ linprm::m_disseq

(For internal use only.)

18.8 prjprm Struct Reference

Projection parameters.

#include <prj.h>

Data Fields

• int flag
• char code [4]
• double r0
• double pv [PVN]
• double phi0
• double theta0
• int bounds
• char name [40]
• int category
• int pvrange
• int simplezen
• int equiareal
• int conformal
• int global
• int divergent
• double x0
• double y0
• struct wcserr ∗ err
• void ∗ padding
• double w [10]
• int m
• int n
• int(∗ prjx2s)(PRJX2S_ARGS)
• int(∗ prjs2x)(PRJS2X_ARGS)

18.8.1 Detailed Description

The prjprm struct contains all information needed to project or deproject native spherical coordinates. It consists
of certain members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).
Some of the latter are supplied for informational purposes while others are for internal use only.

18.8.2 Field Documentation

Generated by Doxygen

18.8 prjprm Struct Reference 41

18.8.2.1 flag int prjprm::flag

(Given and returned) This flag must be set to zero whenever any of the following prjprm struct members are set or
changed:

• prjprm::code,

• prjprm::r0,

• prjprm::pv[],

• prjprm::phi0,

• prjprm::theta0.

This signals the initialization routine (prjset() or ???set()) to recompute the returned members of the prjprm struct.
flag will then be reset to indicate that this has been done.

Note that flag need not be reset when prjprm::bounds is changed.

18.8.2.2 code char prjprm::code

(Given) Three-letter projection code defined by the FITS standard.

18.8.2.3 r0 double prjprm::r0

(Given) The radius of the generating sphere for the projection, a linear scaling parameter. If this is zero, it will be
reset to its default value of 180◦/π (the value for FITS WCS).

18.8.2.4 pv double prjprm::pv

(Given) Projection parameters. These correspond to the PVi_ma keywords in FITS, so pv[0] is PVi_0a, pv[1] is
PVi_1a, etc., where i denotes the latitude-like axis. Many projections use pv[1] (PVi_1a), some also use pv[2]
(PVi_2a) and SZP uses pv[3] (PVi_3a). ZPN is currently the only projection that uses any of the others.

Usage of the pv[] array as it applies to each projection is described in the prologue to each trio of projection routines
in prj.c.

18.8.2.5 phi0 double prjprm::phi0

(Given) The native longitude, φ0 [deg], and ...

18.8.2.6 theta0 double prjprm::theta0

(Given) ... the native latitude, θ0 [deg], of the reference point, i.e. the point (x, y) = (0,0). If undefined (set to a
magic value by prjini()) the initialization routine will set this to a projection-specific default.

Generated by Doxygen

42

18.8.2.7 bounds int prjprm::bounds

(Given) Controls bounds checking. If bounds&1 then enable strict bounds checking for the spherical-to-Cartesian
(s2x) transformation for the AZP, SZP, TAN, SIN, ZPN, and COP projections. If bounds&2 then enable strict bounds
checking for the Cartesian-to-spherical transformation (x2s) for the HPX and XPH projections. If bounds&4 then the
Cartesian- to-spherical transformations (x2s) will invoke prjbchk() to perform bounds checking on the computed
native coordinates, with a tolerance set to suit each projection. bounds is set to 7 by prjini() by default which
enables all checks. Zero it to disable all checking.

It is not necessary to reset the prjprm struct (via prjset() or ???set()) when prjprm::bounds is changed.

The remaining members of the prjprm struct are maintained by the setup routines and must not be modified
elsewhere:

18.8.2.8 name char prjprm::name

(Returned) Long name of the projection.

Provided for information only, not used by the projection routines.

18.8.2.9 category int prjprm::category

(Returned) Projection category matching the value of the relevant global variable:

• ZENITHAL,

• CYLINDRICAL,

• PSEUDOCYLINDRICAL,

• CONVENTIONAL,

• CONIC,

• POLYCONIC,

• QUADCUBE, and

• HEALPIX.

The category name may be identified via the prj_categories character array, e.g.
struct prjprm prj;

...
printf("%s\n", prj_categories[prj.category]);

Provided for information only, not used by the projection routines.

18.8.2.10 pvrange int prjprm::pvrange

(Returned) Range of projection parameter indices: 100 times the first allowed index plus the number of parameters,
e.g. TAN is 0 (no parameters), SZP is 103 (1 to 3), and ZPN is 30 (0 to 29).

Provided for information only, not used by the projection routines.

Generated by Doxygen

18.8 prjprm Struct Reference 43

18.8.2.11 simplezen int prjprm::simplezen

(Returned) True if the projection is a radially-symmetric zenithal projection.

Provided for information only, not used by the projection routines.

18.8.2.12 equiareal int prjprm::equiareal

(Returned) True if the projection is equal area.

Provided for information only, not used by the projection routines.

18.8.2.13 conformal int prjprm::conformal

(Returned) True if the projection is conformal.

Provided for information only, not used by the projection routines.

18.8.2.14 global int prjprm::global

(Returned) True if the projection can represent the whole sphere in a finite, non-overlapped mapping.

Provided for information only, not used by the projection routines.

18.8.2.15 divergent int prjprm::divergent

(Returned) True if the projection diverges in latitude.

Provided for information only, not used by the projection routines.

18.8.2.16 x0 double prjprm::x0

(Returned) The offset in x,and ...

18.8.2.17 y0 double prjprm::y0

(Returned) ... the offset in y used to force (x, y) = (0,0) at (φ0, θ0).

18.8.2.18 err struct wcserr ∗ prjprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.8.2.19 padding void ∗ prjprm::padding

(An unused variable inserted for alignment purposes only.)

Generated by Doxygen

44

18.8.2.20 w double prjprm::w

(Returned) Intermediate floating-point values derived from the projection parameters, cached here to save recom-
putation.

Usage of the w[] array as it applies to each projection is described in the prologue to each trio of projection routines
in prj.c.

18.8.2.21 m int prjprm::m

18.8.2.22 n int prjprm::n

(Returned) Intermediate integer value (used only for the ZPN and HPX projections).

18.8.2.23 prjx2s prjprm::prjx2s

(Returned) Pointer to the spherical projection ...

18.8.2.24 prjs2x prjprm::prjs2x

(Returned) ... and deprojection routines.

18.9 pscard Struct Reference

Store for PSi_ma keyrecords.

#include <wcs.h>

Data Fields

• int i
• int m
• char value [72]

18.9.1 Detailed Description

The pscard struct is used to pass the parsed contents of PSi_ma keyrecords to wcsset() via the wcsprm struct.

All members of this struct are to be set by the user.

18.9.2 Field Documentation

Generated by Doxygen

18.10 pvcard Struct Reference 45

18.9.2.1 i int pscard::i

(Given) Axis number (1-relative), as in the FITS PSi_ma keyword.

18.9.2.2 m int pscard::m

(Given) Parameter number (non-negative), as in the FITS PSi_ma keyword.

18.9.2.3 value char pscard::value

(Given) Parameter value.

18.10 pvcard Struct Reference

Store for PVi_ma keyrecords.

#include <wcs.h>

Data Fields

• int i
• int m
• double value

18.10.1 Detailed Description

The pvcard struct is used to pass the parsed contents of PVi_ma keyrecords to wcsset() via the wcsprm struct.

All members of this struct are to be set by the user.

18.10.2 Field Documentation

18.10.2.1 i int pvcard::i

(Given) Axis number (1-relative), as in the FITS PVi_ma keyword. If i == 0, wcsset() will replace it with the latitude
axis number.

18.10.2.2 m int pvcard::m

(Given) Parameter number (non-negative), as in the FITS PVi_ma keyword.

18.10.2.3 value double pvcard::value

(Given) Parameter value.

Generated by Doxygen

46

18.11 spcprm Struct Reference

Spectral transformation parameters.

#include <spc.h>

Data Fields

• int flag
• char type [8]
• char code [4]
• double crval
• double restfrq
• double restwav
• double pv [7]
• double w [6]
• int isGrism
• int padding1
• struct wcserr ∗ err
• void ∗ padding2
• int(∗ spxX2P)(SPX_ARGS)
• int(∗ spxP2S)(SPX_ARGS)
• int(∗ spxS2P)(SPX_ARGS)
• int(∗ spxP2X)(SPX_ARGS)

18.11.1 Detailed Description

The spcprm struct contains information required to transform spectral coordinates. It consists of certain members
that must be set by the user (given) and others that are set by the WCSLIB routines (returned). Some of the latter
are supplied for informational purposes while others are for internal use only.

18.11.2 Field Documentation

18.11.2.1 flag int spcprm::flag

(Given and returned) This flag must be set to zero whenever any of the following spcprm structure members are
set or changed:

• spcprm::type,

• spcprm::code,

• spcprm::crval,

• spcprm::restfrq,

• spcprm::restwav,

• spcprm::pv[].

This signals the initialization routine, spcset(), to recompute the returned members of the spcprm struct. spcset()
will reset flag to indicate that this has been done.

Generated by Doxygen

18.11 spcprm Struct Reference 47

18.11.2.2 type char spcprm::type

(Given) Four-letter spectral variable type, e.g "ZOPT" for CTYPEia = 'ZOPT-F2W'. (Declared as char[8] for
alignment reasons.)

18.11.2.3 code char spcprm::code

(Given) Three-letter spectral algorithm code, e.g "F2W" for CTYPEia = 'ZOPT-F2W'.

18.11.2.4 crval double spcprm::crval

(Given) Reference value (CRVALia), SI units.

18.11.2.5 restfrq double spcprm::restfrq

(Given) The rest frequency [Hz], and ...

18.11.2.6 restwav double spcprm::restwav

(Given) ... the rest wavelength in vacuo [m], only one of which need be given, the other should be set to zero.
Neither are required if the X and S spectral variables are both wave-characteristic, or both velocity-characteristic,
types.

18.11.2.7 pv double spcprm::pv

(Given) Grism parameters for 'GRI' and 'GRA' algorithm codes:

• 0: G, grating ruling density.

• 1: m, interference order.

• 2: α, angle of incidence [deg].

• 3: nr, refractive index at the reference wavelength, λr.

• 4: n'r, dn/dλ at the reference wavelength, λr (/m).

• 5: ε, grating tilt angle [deg].

• 6: θ, detector tilt angle [deg].

The remaining members of the spcprm struct are maintained by spcset() and must not be modified elsewhere:

18.11.2.8 w double spcprm::w

(Returned) Intermediate values:

• 0: Rest frequency or wavelength (SI).

• 1: The value of the X-type spectral variable at the reference point (SI units).

• 2: dX/dS at the reference point (SI units).

The remainder are grism intermediates.

Generated by Doxygen

48

18.11.2.9 isGrism int spcprm::isGrism

(Returned) Grism coordinates?

• 0: no,

• 1: in vacuum,

• 2: in air.

18.11.2.10 padding1 int spcprm::padding1

(An unused variable inserted for alignment purposes only.)

18.11.2.11 err struct wcserr ∗ spcprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.11.2.12 padding2 void ∗ spcprm::padding2

(An unused variable inserted for alignment purposes only.)

18.11.2.13 spxX2P spcprm::spxX2P

(Returned) The first and ...

18.11.2.14 spxP2S spcprm::spxP2S

(Returned) ... the second of the pointers to the transformation functions in the two-step algorithm chain X ;

P → S in the pixel-to-spectral direction where the non-linear transformation is from X to P . The argument list,
SPX_ARGS, is defined in spx.h.

18.11.2.15 spxS2P spcprm::spxS2P

(Returned) The first and ...

18.11.2.16 spxP2X spcprm::spxP2X

(Returned) ... the second of the pointers to the transformation functions in the two-step algorithm chain S →
P ; X in the spectral-to-pixel direction where the non-linear transformation is from P to X . The argument list,
SPX_ARGS, is defined in spx.h.

Generated by Doxygen

18.12 spxprm Struct Reference 49

18.12 spxprm Struct Reference

Spectral variables and their derivatives.

#include <spx.h>

Data Fields

• double restfrq
• double restwav
• int wavetype
• int velotype
• double freq
• double afrq
• double ener
• double wavn
• double vrad
• double wave
• double vopt
• double zopt
• double awav
• double velo
• double beta
• double dfreqafrq
• double dafrqfreq
• double dfreqener
• double denerfreq
• double dfreqwavn
• double dwavnfreq
• double dfreqvrad
• double dvradfreq
• double dfreqwave
• double dwavefreq
• double dfreqawav
• double dawavfreq
• double dfreqvelo
• double dvelofreq
• double dwavevopt
• double dvoptwave
• double dwavezopt
• double dzoptwave
• double dwaveawav
• double dawavwave
• double dwavevelo
• double dvelowave
• double dawavvelo
• double dveloawav
• double dvelobeta
• double dbetavelo
• struct wcserr ∗ err
• void ∗ padding

Generated by Doxygen

50

18.12.1 Detailed Description

The spxprm struct contains the value of all spectral variables and their derivatives. It is used solely by specx()
which constructs it from information provided via its function arguments.

This struct should be considered read-only, no members need ever be set nor should ever be modified by the user.

18.12.2 Field Documentation

18.12.2.1 restfrq double spxprm::restfrq

(Returned) Rest frequency [Hz].

18.12.2.2 restwav double spxprm::restwav

(Returned) Rest wavelength [m].

18.12.2.3 wavetype int spxprm::wavetype

(Returned) True if wave types have been computed, and ...

18.12.2.4 velotype int spxprm::velotype

(Returned) ... true if velocity types have been computed; types are defined below.

If one or other of spxprm::restfrq and spxprm::restwav is given (non-zero) then all spectral variables may be com-
puted. If both are given, restfrq is used. If restfrq and restwav are both zero, only wave characteristic xor velocity
type spectral variables may be computed depending on the variable given. These flags indicate what is available.

18.12.2.5 freq double spxprm::freq

(Returned) Frequency [Hz] (wavetype).

18.12.2.6 afrq double spxprm::afrq

(Returned) Angular frequency [rad/s] (wavetype).

18.12.2.7 ener double spxprm::ener

(Returned) Photon energy [J] (wavetype).

18.12.2.8 wavn double spxprm::wavn

(Returned) Wave number [/m] (wavetype).

Generated by Doxygen

18.12 spxprm Struct Reference 51

18.12.2.9 vrad double spxprm::vrad

(Returned) Radio velocity [m/s] (velotype).

18.12.2.10 wave double spxprm::wave

(Returned) Vacuum wavelength [m] (wavetype).

18.12.2.11 vopt double spxprm::vopt

(Returned) Optical velocity [m/s] (velotype).

18.12.2.12 zopt double spxprm::zopt

(Returned) Redshift [dimensionless] (velotype).

18.12.2.13 awav double spxprm::awav

(Returned) Air wavelength [m] (wavetype).

18.12.2.14 velo double spxprm::velo

(Returned) Relativistic velocity [m/s] (velotype).

18.12.2.15 beta double spxprm::beta

(Returned) Relativistic beta [dimensionless] (velotype).

18.12.2.16 dfreqafrq double spxprm::dfreqafrq

(Returned) Derivative of frequency with respect to angular frequency [/rad] (constant, = 1/2π), and ...

18.12.2.17 dafrqfreq double spxprm::dafrqfreq

(Returned) ... vice versa [rad] (constant, = 2π, always available).

18.12.2.18 dfreqener double spxprm::dfreqener

(Returned) Derivative of frequency with respect to photon energy [/J/s] (constant, = 1/h), and ...

18.12.2.19 denerfreq double spxprm::denerfreq

(Returned) ... vice versa [Js] (constant, = h, Planck's constant, always available).

Generated by Doxygen

52

18.12.2.20 dfreqwavn double spxprm::dfreqwavn

(Returned) Derivative of frequency with respect to wave number [m/s] (constant, = c, the speed of light in vacuo),
and ...

18.12.2.21 dwavnfreq double spxprm::dwavnfreq

(Returned) ... vice versa [s/m] (constant, = 1/c, always available).

18.12.2.22 dfreqvrad double spxprm::dfreqvrad

(Returned) Derivative of frequency with respect to radio velocity [/m], and ...

18.12.2.23 dvradfreq double spxprm::dvradfreq

(Returned) ... vice versa [m] (wavetype && velotype).

18.12.2.24 dfreqwave double spxprm::dfreqwave

(Returned) Derivative of frequency with respect to vacuum wavelength [/m/s], and ...

18.12.2.25 dwavefreq double spxprm::dwavefreq

(Returned) ... vice versa [m s] (wavetype).

18.12.2.26 dfreqawav double spxprm::dfreqawav

(Returned) Derivative of frequency with respect to air wavelength, [/m/s], and ...

18.12.2.27 dawavfreq double spxprm::dawavfreq

(Returned) ... vice versa [m s] (wavetype).

18.12.2.28 dfreqvelo double spxprm::dfreqvelo

(Returned) Derivative of frequency with respect to relativistic velocity [/m], and ...

18.12.2.29 dvelofreq double spxprm::dvelofreq

(Returned) ... vice versa [m] (wavetype && velotype).

18.12.2.30 dwavevopt double spxprm::dwavevopt

(Returned) Derivative of vacuum wavelength with respect to optical velocity [s], and ...

Generated by Doxygen

18.12 spxprm Struct Reference 53

18.12.2.31 dvoptwave double spxprm::dvoptwave

(Returned) ... vice versa [/s] (wavetype && velotype).

18.12.2.32 dwavezopt double spxprm::dwavezopt

(Returned) Derivative of vacuum wavelength with respect to redshift [m], and ...

18.12.2.33 dzoptwave double spxprm::dzoptwave

(Returned) ... vice versa [/m] (wavetype && velotype).

18.12.2.34 dwaveawav double spxprm::dwaveawav

(Returned) Derivative of vacuum wavelength with respect to air wavelength [dimensionless], and ...

18.12.2.35 dawavwave double spxprm::dawavwave

(Returned) ... vice versa [dimensionless] (wavetype).

18.12.2.36 dwavevelo double spxprm::dwavevelo

(Returned) Derivative of vacuum wavelength with respect to relativistic velocity [s], and ...

18.12.2.37 dvelowave double spxprm::dvelowave

(Returned) ... vice versa [/s] (wavetype && velotype).

18.12.2.38 dawavvelo double spxprm::dawavvelo

(Returned) Derivative of air wavelength with respect to relativistic velocity [s], and ...

18.12.2.39 dveloawav double spxprm::dveloawav

(Returned) ... vice versa [/s] (wavetype && velotype).

18.12.2.40 dvelobeta double spxprm::dvelobeta

(Returned) Derivative of relativistic velocity with respect to relativistic beta [m/s] (constant, = c, the speed of light in
vacuo), and ...

18.12.2.41 dbetavelo double spxprm::dbetavelo

(Returned) ... vice versa [s/m] (constant, = 1/c, always available).

Generated by Doxygen

54

18.12.2.42 err struct wcserr ∗ spxprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.12.2.43 padding void ∗ spxprm::padding

(An unused variable inserted for alignment purposes only.)

Global variable: const char ∗spx_errmsg[] - Status return messages Error messages to match the status value
returned from each function.

18.13 tabprm Struct Reference

Tabular transformation parameters.

#include <tab.h>

Data Fields

• int flag
• int M
• int ∗ K
• int ∗ map
• double ∗ crval
• double ∗∗ index
• double ∗ coord
• int nc
• int padding
• int ∗ sense
• int ∗ p0
• double ∗ delta
• double ∗ extrema
• struct wcserr ∗ err
• int m_flag
• int m_M
• int m_N
• int set_M
• int ∗ m_K
• int ∗ m_map
• double ∗ m_crval
• double ∗∗ m_index
• double ∗∗ m_indxs
• double ∗ m_coord

18.13.1 Detailed Description

The tabprm struct contains information required to transform tabular coordinates. It consists of certain members
that must be set by the user (given) and others that are set by the WCSLIB routines (returned). Some of the latter
are supplied for informational purposes while others are for internal use only.

Generated by Doxygen

18.13 tabprm Struct Reference 55

18.13.2 Field Documentation

18.13.2.1 flag int tabprm::flag

(Given and returned) This flag must be set to zero whenever any of the following tabprm structure members are set
or changed:

• tabprm::M (q.v., not normally set by the user),

• tabprm::K (q.v., not normally set by the user),

• tabprm::map,

• tabprm::crval,

• tabprm::index,

• tabprm::coord.

This signals the initialization routine, tabset(), to recompute the returned members of the tabprm struct. tabset()
will reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when tabini() is called for the first time for a particular tabprm struct in
order to initialize memory management. It must ONLY be used on the first initialization otherwise memory leaks
may result.

18.13.2.2 M int tabprm::M

(Given or returned) Number of tabular coordinate axes.

If tabini() is used to initialize the tabprm struct (as would normally be the case) then it will set M from the value
passed to it as a function argument. The user should not subsequently modify it.

18.13.2.3 K int ∗ tabprm::K

(Given or returned) Pointer to the first element of a vector of length tabprm::M whose elements (K1,K2, ...KM)
record the lengths of the axes of the coordinate array and of each indexing vector.

If tabini() is used to initialize the tabprm struct (as would normally be the case) then it will set K from the array
passed to it as a function argument. The user should not subsequently modify it.

18.13.2.4 map int ∗ tabprm::map

(Given) Pointer to the first element of a vector of length tabprm::M that defines the association between axis m in
the M-dimensional coordinate array (1 ≤ m ≤ M) and the indices of the intermediate world coordinate and world
coordinate arrays, x[] and world[], in the argument lists for tabx2s() and tabs2x().

When x[] and world[] contain the full complement of coordinate elements in image-order, as will usually be the case,
then map[m-1] == i-1 for axis i in the N-dimensional image (1 ≤ i ≤ N). In terms of the FITS keywords

map[PVi_3a - 1] == i - 1.

However, a different association may result if x[], for example, only contains a (relevant) subset of intermediate
world coordinate elements. For example, if M == 1 for an image with N > 1, it is possible to fill x[] with the relevant
coordinate element with nelem set to 1. In this case map[0] = 0 regardless of the value of i.

Generated by Doxygen

56

18.13.2.5 crval double ∗ tabprm::crval

(Given) Pointer to the first element of a vector of length tabprm::M whose elements contain the index value for the
reference pixel for each of the tabular coordinate axes.

18.13.2.6 index double ∗∗ tabprm::index

(Given) Pointer to the first element of a vector of length tabprm::M of pointers to vectors of lengths (K1,K2, ...KM)
of 0-relative indexes (see tabprm::K).

The address of any or all of these index vectors may be set to zero, i.e.
index[m] == 0;

this is interpreted as default indexing, i.e.
index[m][k] = k;

18.13.2.7 coord double ∗ tabprm::coord

(Given) Pointer to the first element of the tabular coordinate array, treated as though it were defined as
double coord[K_M]...[K_2][K_1][M];

(see tabprm::K) i.e. with the M dimension varying fastest so that the M elements of a coordinate vector are stored
contiguously in memory.

18.13.2.8 nc int tabprm::nc

(Returned) Total number of coordinate vectors in the coordinate array being the product K1K2 . . .KM (see
tabprm::K).

18.13.2.9 padding int tabprm::padding

(An unused variable inserted for alignment purposes only.)

18.13.2.10 sense int ∗ tabprm::sense

(Returned) Pointer to the first element of a vector of length tabprm::M whose elements indicate whether the corre-
sponding indexing vector is monotonic increasing (+1), or decreasing (-1).

18.13.2.11 p0 int ∗ tabprm::p0

(Returned) Pointer to the first element of a vector of length tabprm::M of interpolated indices into the coordinate
array such that Υm, as defined in Paper III, is equal to (p0[m] + 1) + tabprm::delta[m].

18.13.2.12 delta double ∗ tabprm::delta

(Returned) Pointer to the first element of a vector of length tabprm::M of interpolated indices into the coordinate
array such that Υm, as defined in Paper III, is equal to (tabprm::p0[m] + 1) + delta[m].

Generated by Doxygen

18.13 tabprm Struct Reference 57

18.13.2.13 extrema double ∗ tabprm::extrema

(Returned) Pointer to the first element of an array that records the minimum and maximum value of each element
of the coordinate vector in each row of the coordinate array, treated as though it were defined as
double extrema[K_M]...[K_2][2][M]

(see tabprm::K). The minimum is recorded in the first element of the compressedK1 dimension, then the maximum.
This array is used by the inverse table lookup function, tabs2x(), to speed up table searches.

18.13.2.14 err struct wcserr ∗ tabprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.13.2.15 m_flag int tabprm::m_flag

(For internal use only.)

18.13.2.16 m_M int tabprm::m_M

(For internal use only.)

18.13.2.17 m_N int tabprm::m_N

(For internal use only.)

18.13.2.18 set_M int tabprm::set_M

(For internal use only.)

18.13.2.19 m_K int tabprm::m_K

(For internal use only.)

18.13.2.20 m_map int tabprm::m_map

(For internal use only.)

18.13.2.21 m_crval int tabprm::m_crval

(For internal use only.)

18.13.2.22 m_index int tabprm::m_index

(For internal use only.)

Generated by Doxygen

58

18.13.2.23 m_indxs int tabprm::m_indxs

(For internal use only.)

18.13.2.24 m_coord int tabprm::m_coord

(For internal use only.)

18.14 wcserr Struct Reference

Error message handling.

#include <wcserr.h>

Data Fields

• int status
• int line_no
• const char ∗ function
• const char ∗ file
• char ∗ msg

18.14.1 Detailed Description

The wcserr struct contains the numeric error code, a textual description of the error, and information about the
function, source file, and line number where the error was generated.

18.14.2 Field Documentation

18.14.2.1 status int wcserr::status

Numeric status code associated with the error, the meaning of which depends on the function that generated it. See
the documentation for the particular function.

18.14.2.2 line_no int wcserr::line_no

Line number where the error occurred as given by the __LINE__ preprocessor macro.

const char ∗function Name of the function where the error occurred.

const char ∗file Name of the source file where the error occurred as given by the __FILE__ preprocessor macro.

18.14.2.3 function const char∗ wcserr::function

Generated by Doxygen

18.15 wcsprm Struct Reference 59

18.14.2.4 file const char∗ wcserr::file

18.14.2.5 msg char ∗ wcserr::msg

Informative error message.

18.15 wcsprm Struct Reference

Coordinate transformation parameters.

#include <wcs.h>

Data Fields

• int flag
• int naxis
• double ∗ crpix
• double ∗ pc
• double ∗ cdelt
• double ∗ crval
• char(∗ cunit)[72]
• char(∗ ctype)[72]
• double lonpole
• double latpole
• double restfrq
• double restwav
• int npv
• int npvmax
• struct pvcard ∗ pv
• int nps
• int npsmax
• struct pscard ∗ ps
• double ∗ cd
• double ∗ crota
• int altlin
• int velref
• char alt [4]
• int colnum
• int ∗ colax
• char(∗ cname)[72]
• double ∗ crder
• double ∗ csyer
• double ∗ czphs
• double ∗ cperi
• char wcsname [72]
• char timesys [72]
• char trefpos [72]
• char trefdir [72]
• char plephem [72]
• char timeunit [72]

Generated by Doxygen

60

• char dateref [72]
• double mjdref [2]
• double timeoffs
• char dateobs [72]
• char datebeg [72]
• char dateavg [72]
• char dateend [72]
• double mjdobs
• double mjdbeg
• double mjdavg
• double mjdend
• double jepoch
• double bepoch
• double tstart
• double tstop
• double xposure
• double telapse
• double timsyer
• double timrder
• double timedel
• double timepixr
• double obsgeo [6]
• char obsorbit [72]
• char radesys [72]
• double equinox
• char specsys [72]
• char ssysobs [72]
• double velosys
• double zsource
• char ssyssrc [72]
• double velangl
• struct auxprm ∗ aux
• int ntab
• int nwtb
• struct tabprm ∗ tab
• struct wtbarr ∗ wtb
• char lngtyp [8]
• char lattyp [8]
• int lng
• int lat
• int spec
• int cubeface
• int ∗ types
• struct linprm lin
• struct celprm cel
• struct spcprm spc
• struct wcserr ∗ err
• int m_flag
• int m_naxis
• double ∗ m_crpix
• double ∗ m_pc
• double ∗ m_cdelt
• double ∗ m_crval
• char(∗ m_cunit)[72]
• char((∗ m_ctype)[72]

Generated by Doxygen

18.15 wcsprm Struct Reference 61

• struct pvcard ∗ m_pv
• struct pscard ∗ m_ps
• double ∗ m_cd
• double ∗ m_crota
• int ∗ m_colax
• char(∗ m_cname)[72]
• double ∗ m_crder
• double ∗ m_csyer
• double ∗ m_czphs
• double ∗ m_cperi
• struct auxprm ∗ m_aux
• struct tabprm ∗ m_tab
• struct wtbarr ∗ m_wtb

18.15.1 Detailed Description

The wcsprm struct contains information required to transform world coordinates. It consists of certain members
that must be set by the user (given) and others that are set by the WCSLIB routines (returned). While the addresses
of the arrays themselves may be set by wcsinit() if it (optionally) allocates memory, their contents must be set by the
user.

Some parameters that are given are not actually required for transforming coordinates. These are described as
"auxiliary"; the struct simply provides a place to store them, though they may be used by wcshdo() in constructing
a FITS header from a wcsprm struct. Some of the returned values are supplied for informational purposes and
others are for internal use only as indicated.

In practice, it is expected that a WCS parser would scan the FITS header to determine the number of coordinate
axes. It would then use wcsinit() to allocate memory for arrays in the wcsprm struct and set default values. Then
as it reread the header and identified each WCS keyrecord it would load the value into the relevant wcsprm array
element. This is essentially what wcspih() does - refer to the prologue of wcshdr.h. As the final step, wcsset() is
invoked, either directly or indirectly, to set the derived members of the wcsprm struct. wcsset() strips off trailing
blanks in all string members and null-fills the character array.

18.15.2 Field Documentation

18.15.2.1 flag int wcsprm::flag

(Given and returned) This flag must be set to zero whenever any of the following wcsprm struct members are set
or changed:

• wcsprm::naxis (q.v., not normally set by the user),

• wcsprm::crpix,

• wcsprm::pc,

• wcsprm::cdelt,

• wcsprm::crval,

• wcsprm::cunit,

Generated by Doxygen

62

• wcsprm::ctype,

• wcsprm::lonpole,

• wcsprm::latpole,

• wcsprm::restfrq,

• wcsprm::restwav,

• wcsprm::npv,

• wcsprm::pv,

• wcsprm::nps,

• wcsprm::ps,

• wcsprm::cd,

• wcsprm::crota,

• wcsprm::altlin,

• wcsprm::ntab,

• wcsprm::nwtb,

• wcsprm::tab,

• wcsprm::wtb.

This signals the initialization routine, wcsset(), to recompute the returned members of the linprm, celprm, spcprm,
and tabprm structs. wcsset() will reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when wcsinit() is called for the first time for a particular wcsprm struct in
order to initialize memory management. It must ONLY be used on the first initialization otherwise memory leaks
may result.

18.15.2.2 naxis int wcsprm::naxis

(Given or returned) Number of pixel and world coordinate elements.

If wcsinit() is used to initialize the linprm struct (as would normally be the case) then it will set naxis from the value
passed to it as a function argument. The user should not subsequently modify it.

18.15.2.3 crpix double ∗ wcsprm::crpix

(Given) Address of the first element of an array of double containing the coordinate reference pixel, CRPIXja.

18.15.2.4 pc double ∗ wcsprm::pc

(Given) Address of the first element of the PCi_ja (pixel coordinate) transformation matrix. The expected order is
struct wcsprm wcs;
wcs.pc = {PC1_1, PC1_2, PC2_1, PC2_2};

This may be constructed conveniently from a 2-D array via
double m[2][2] = {{PC1_1, PC1_2},

{PC2_1, PC2_2}};

which is equivalent to
double m[2][2];
m[0][0] = PC1_1;
m[0][1] = PC1_2;
m[1][0] = PC2_1;
m[1][1] = PC2_2;

The storage order for this 2-D array is the same as for the 1-D array, whence
wcs.pc = *m;

would be legitimate.

Generated by Doxygen

18.15 wcsprm Struct Reference 63

18.15.2.5 cdelt double ∗ wcsprm::cdelt

(Given) Address of the first element of an array of double containing the coordinate increments, CDELTia.

18.15.2.6 crval double ∗ wcsprm::crval

(Given) Address of the first element of an array of double containing the coordinate reference values, CRVALia.

18.15.2.7 cunit wcsprm::cunit

(Given) Address of the first element of an array of char[72] containing the CUNITia keyvalues which define the
units of measurement of the CRVALia, CDELTia, and CDi_ja keywords.

As CUNITia is an optional header keyword, cunit[][72] may be left blank but otherwise is expected to contain
a standard units specification as defined by WCS Paper I. Utility function wcsutrn(), described in wcsunits.h, is
available to translate commonly used non-standard units specifications but this must be done as a separate step
before invoking wcsset().

For celestial axes, if cunit[][72] is not blank, wcsset() uses wcsunits() to parse it and scale cdelt[], crval[], and cd[][∗]
to degrees. It then resets cunit[][72] to "deg".

For spectral axes, if cunit[][72] is not blank, wcsset() uses wcsunits() to parse it and scale cdelt[], crval[], and cd[][∗]
to SI units. It then resets cunit[][72] accordingly.

wcsset() ignores cunit[][72] for other coordinate types; cunit[][72] may be used to label coordinate values.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 characters, plus
the null-terminating character.

18.15.2.8 ctype wcsprm::ctype

(Given) Address of the first element of an array of char[72] containing the coordinate axis types, CTYPEia.

The ctype[][72] keyword values must be in upper case and there must be zero or one pair of matched celestial
axis types, and zero or one spectral axis. The ctype[][72] strings should be padded with blanks on the right and
null-terminated so that they are at least eight characters in length.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 characters, plus
the null-terminating character.

18.15.2.9 lonpole double wcsprm::lonpole

(Given and returned) The native longitude of the celestial pole, φp, given by LONPOLEa [deg] or by PVi_2a [deg]
attached to the longitude axis which takes precedence if defined, and ...

18.15.2.10 latpole double wcsprm::latpole

(Given and returned) ... the native latitude of the celestial pole, θp, given by LATPOLEa [deg] or by PVi_3a [deg]
attached to the longitude axis which takes precedence if defined.

lonpole and latpole may be left to default to values set by wcsinit() (see celprm::ref), but in any case they will be
reset by wcsset() to the values actually used. Note therefore that if the wcsprm struct is reused without resetting
them, whether directly or via wcsinit(), they will no longer have their default values.

Generated by Doxygen

64

18.15.2.11 restfrq double wcsprm::restfrq

(Given) The rest frequency [Hz], and/or ...

18.15.2.12 restwav double wcsprm::restwav

(Given) ... the rest wavelength in vacuo [m], only one of which need be given, the other should be set to zero.

18.15.2.13 npv int wcsprm::npv

(Given) The number of entries in the wcsprm::pv[] array.

18.15.2.14 npvmax int wcsprm::npvmax

(Given or returned) The length of the wcsprm::pv[] array.

npvmax will be set by wcsinit() if it allocates memory for wcsprm::pv[], otherwise it must be set by the user. See
also wcsnpv().

18.15.2.15 pv struct pvcard ∗ wcsprm::pv

(Given) Address of the first element of an array of length npvmax of pvcard structs.

As a FITS header parser encounters each PVi_ma keyword it should load it into a pvcard struct in the array and
increment npv. wcsset() interprets these as required.

Note that, if they were not given, wcsset() resets the entries for PVi_1a, PVi_2a, PVi_3a, and PVi_4a for longi-
tude axis i to match phi_0 and theta_0 (the native longitude and latitude of the reference point), LONPOLEa and
LATPOLEa respectively.

18.15.2.16 nps int wcsprm::nps

(Given) The number of entries in the wcsprm::ps[] array.

18.15.2.17 npsmax int wcsprm::npsmax

(Given or returned) The length of the wcsprm::ps[] array.

npsmax will be set by wcsinit() if it allocates memory for wcsprm::ps[], otherwise it must be set by the user. See
also wcsnps().

18.15.2.18 ps struct pscard ∗ wcsprm::ps

(Given) Address of the first element of an array of length npsmax of pscard structs.

As a FITS header parser encounters each PSi_ma keyword it should load it into a pscard struct in the array and
increment nps. wcsset() interprets these as required (currently no PSi_ma keyvalues are recognized).

Generated by Doxygen

18.15 wcsprm Struct Reference 65

18.15.2.19 cd double ∗ wcsprm::cd

(Given) For historical compatibility, the wcsprm struct supports two alternate specifications of the linear transfor-
mation matrix, those associated with the CDi_ja keywords, and ...

18.15.2.20 crota double ∗ wcsprm::crota

(Given) ... those associated with the CROTAi keywords. Although these may not formally co-exist with PCi_ja,
the approach taken here is simply to ignore them if given in conjunction with PCi_ja.

18.15.2.21 altlin int wcsprm::altlin

(Given) altlin is a bit flag that denotes which of the PCi_ja, CDi_ja and CROTAi keywords are present in the
header:

• Bit 0: PCi_ja is present.

• Bit 1: CDi_ja is present.

Matrix elements in the IRAF convention are equivalent to the product CDi_ja = CDELTia ∗ PCi_ja, but
the defaults differ from that of the PCi_ja matrix. If one or more CDi_ja keywords are present then all
unspecified CDi_ja default to zero. If no CDi_ja (or CROTAi) keywords are present, then the header is
assumed to be in PCi_ja form whether or not any PCi_ja keywords are present since this results in an
interpretation of CDELTia consistent with the original FITS specification.

While CDi_ja may not formally co-exist with PCi_ja, it may co-exist with CDELTia and CROTAi which
are to be ignored.

• Bit 2: CROTAi is present.

In the AIPS convention, CROTAi may only be associated with the latitude axis of a celestial axis pair. It
specifies a rotation in the image plane that is applied AFTER the CDELTia; any other CROTAi keywords
are ignored.

CROTAi may not formally co-exist with PCi_ja.

CROTAi and CDELTia may formally co-exist with CDi_ja but if so are to be ignored.

CDi_ja and CROTAi keywords, if found, are to be stored in the wcsprm::cd and wcsprm::crota arrays which are
dimensioned similarly to wcsprm::pc and wcsprm::cdelt. FITS header parsers should use the following procedure:

• Whenever a PCi_ja keyword is encountered:
altlin |= 1;

• Whenever a CDi_ja keyword is encountered:
altlin |= 2;

• Whenever a CROTAi keyword is encountered:
altlin |= 4;

If none of these bits are set the PCi_ja representation results, i.e. wcsprm::pc and wcsprm::cdelt will be used as
given.

These alternate specifications of the linear transformation matrix are translated immediately to PCi_ja by wcsset()
and are invisible to the lower-level WCSLIB routines. In particular, wcsset() resets wcsprm::cdelt to unity if CDi_ja
is present (and no PCi_ja).

If CROTAi are present but none is associated with the latitude axis (and no PCi_ja or CDi_ja), then wcsset()
reverts to a unity PCi_ja matrix.

Generated by Doxygen

66

18.15.2.22 velref int wcsprm::velref

(Given) AIPS velocity code VELREF, refer to spcaips().

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::velref is changed.

18.15.2.23 alt char wcsprm::alt

(Given, auxiliary) Character code for alternate coordinate descriptions (i.e. the 'a' in keyword names such as
CTYPEia). This is blank for the primary coordinate description, or one of the 26 upper-case letters, A-Z.

An array of four characters is provided for alignment purposes, only the first is used.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::alt is changed.

18.15.2.24 colnum int wcsprm::colnum

(Given, auxiliary) Where the coordinate representation is associated with an image-array column in a FITS binary
table, this variable may be used to record the relevant column number.

It should be set to zero for an image header or pixel list.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::colnum is changed.

18.15.2.25 colax int ∗ wcsprm::colax

(Given, auxiliary) Address of the first element of an array of int recording the column numbers for each axis in a
pixel list.

The array elements should be set to zero for an image header or image array in a binary table.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::colax is changed.

18.15.2.26 cname wcsprm::cname

(Given, auxiliary) The address of the first element of an array of char[72] containing the coordinate axis names,
CNAMEia.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 characters, plus
the null-terminating character.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::cname is changed.

18.15.2.27 crder double ∗ wcsprm::crder

(Given, auxiliary) Address of the first element of an array of double recording the random error in the coordinate
value, CRDERia.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::crder is changed.

Generated by Doxygen

18.15 wcsprm Struct Reference 67

18.15.2.28 csyer double ∗ wcsprm::csyer

(Given, auxiliary) Address of the first element of an array of double recording the systematic error in the coordinate
value, CSYERia.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::csyer is changed.

18.15.2.29 czphs double ∗ wcsprm::czphs

(Given, auxiliary) Address of the first element of an array of double recording the time at the zero point of a phase
axis, CZPHSia.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::czphs is changed.

18.15.2.30 cperi double ∗ wcsprm::cperi

(Given, auxiliary) Address of the first element of an array of double recording the period of a phase axis, CPERIia.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::cperi is changed.

18.15.2.31 wcsname char wcsprm::wcsname

(Given, auxiliary) The name given to the coordinate representation, WCSNAMEa. This variable accomodates the
longest allowed string-valued FITS keyword, being limited to 68 characters, plus the null-terminating character.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::wcsname is changed.

18.15.2.32 timesys char wcsprm::timesys

(Given, auxiliary) TIMESYS keyvalue, being the time scale (UTC, TAI, etc.) in which all other time-related auxiliary
header values are recorded. Also defines the time scale for an image axis with CTYPEia set to 'TIME'.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timesys is changed.

18.15.2.33 trefpos char wcsprm::trefpos

(Given, auxiliary) TREFPOS keyvalue, being the location in space where the recorded time is valid.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::trefpos is changed.

18.15.2.34 trefdir char wcsprm::trefdir

(Given, auxiliary) TREFDIR keyvalue, being the reference direction used in calculating a pathlength delay.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::trefdir is changed.

18.15.2.35 plephem char wcsprm::plephem

(Given, auxiliary) PLEPHEM keyvalue, being the Solar System ephemeris used for calculating a pathlength delay.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::plephem is changed.

Generated by Doxygen

68

18.15.2.36 timeunit char wcsprm::timeunit

(Given, auxiliary) TIMEUNIT keyvalue, being the time units in which the following header values are expressed:
TSTART, TSTOP, TIMEOFFS, TIMSYER, TIMRDER, TIMEDEL. It also provides the default value for CUNITia
for time axes.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timeunit is changed.

18.15.2.37 dateref char wcsprm::dateref

(Given, auxiliary) DATEREF keyvalue, being the date of a reference epoch relative to which other time measure-
ments refer.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::dateref is changed.

18.15.2.38 mjdref double wcsprm::mjdref

(Given, auxiliary) MJDREF keyvalue, equivalent to DATEREF expressed as a Modified Julian Date (MJD = JD -
2400000.5). The value is given as the sum of the two-element vector, allowing increased precision.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::mjdref is changed.

18.15.2.39 timeoffs double wcsprm::timeoffs

(Given, auxiliary) TIMEOFFS keyvalue, being a time offset, which may be used, for example, to provide a uniform
clock correction for times referenced to DATEREF.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timeoffs is changed.

18.15.2.40 dateobs char wcsprm::dateobs

(Given, auxiliary) DATE-OBS keyvalue, being the date at the start of the observation unless otherwise explained in
the DATE-OBS keycomment, in ISO format, yyyy-mm-ddThh:mm:ss.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::dateobs is changed.

18.15.2.41 datebeg char wcsprm::datebeg

(Given, auxiliary) DATE-BEG keyvalue, being the date at the start of the observation in ISO format, yyyy-mm-
ddThh:mm:ss.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::datebeg is changed.

18.15.2.42 dateavg char wcsprm::dateavg

(Given, auxiliary) DATE-AVG keyvalue, being the date at a representative mid-point of the observation in ISO
format, yyyy-mm-ddThh:mm:ss.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::dateavg is changed.

Generated by Doxygen

18.15 wcsprm Struct Reference 69

18.15.2.43 dateend char wcsprm::dateend

(Given, auxiliary) DATE-END keyvalue, baing the date at the end of the observation in ISO format, yyyy-mm-
ddThh:mm:ss.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::dateend is changed.

18.15.2.44 mjdobs double wcsprm::mjdobs

(Given, auxiliary) MJD-OBS keyvalue, equivalent to DATE-OBS expressed as a Modified Julian Date (MJD = JD -
2400000.5).

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::mjdobs is changed.

18.15.2.45 mjdbeg double wcsprm::mjdbeg

(Given, auxiliary) MJD-BEG keyvalue, equivalent to DATE-BEG expressed as a Modified Julian Date (MJD = JD -
2400000.5).

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::mjdbeg is changed.

18.15.2.46 mjdavg double wcsprm::mjdavg

(Given, auxiliary) MJD-AVG keyvalue, equivalent to DATE-AVG expressed as a Modified Julian Date (MJD = JD -
2400000.5).

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::mjdavg is changed.

18.15.2.47 mjdend double wcsprm::mjdend

(Given, auxiliary) MJD-END keyvalue, equivalent to DATE-END expressed as a Modified Julian Date (MJD = JD -
2400000.5).

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::mjdend is changed.

18.15.2.48 jepoch double wcsprm::jepoch

(Given, auxiliary) JEPOCH keyvalue, equivalent to DATE-OBS expressed as a Julian epoch.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::jepoch is changed.

18.15.2.49 bepoch double wcsprm::bepoch

(Given, auxiliary) BEPOCH keyvalue, equivalent to DATE-OBS expressed as a Besselian epoch

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::bepoch is changed.

Generated by Doxygen

70

18.15.2.50 tstart double wcsprm::tstart

(Given, auxiliary) TSTART keyvalue, equivalent to DATE-BEG expressed as a time in units of TIMEUNIT relative
to DATEREF+TIMEOFFS.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::tstart is changed.

18.15.2.51 tstop double wcsprm::tstop

(Given, auxiliary) TSTOP keyvalue, equivalent to DATE-END expressed as a time in units of TIMEUNIT relative
to DATEREF+TIMEOFFS.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::tstop is changed.

18.15.2.52 xposure double wcsprm::xposure

(Given, auxiliary) XPOSURE keyvalue, being the effective exposure time in units of TIMEUNIT.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::xposure is changed.

18.15.2.53 telapse double wcsprm::telapse

(Given, auxiliary) TELAPSE keyvalue, equivalent to the elapsed time between DATE-BEG and DATE-END, in
units of TIMEUNIT.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::telapse is changed.

18.15.2.54 timsyer double wcsprm::timsyer

(Given, auxiliary) TIMSYER keyvalue, being the absolute error of the time values, in units of TIMEUNIT.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timsyer is changed.

18.15.2.55 timrder double wcsprm::timrder

(Given, auxiliary) TIMRDER keyvalue, being the accuracy of time stamps relative to each other, in units of
TIMEUNIT.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timrder is changed.

18.15.2.56 timedel double wcsprm::timedel

(Given, auxiliary) TIMEDEL keyvalue, being the resolution of the time stamps.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timedel is changed.

18.15.2.57 timepixr double wcsprm::timepixr

(Given, auxiliary) TIMEPIXR keyvalue, being the relative position of the time stamps in binned time intervals, a
value between 0.0 and 1.0.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timepixr is changed.

Generated by Doxygen

18.15 wcsprm Struct Reference 71

18.15.2.58 obsgeo double wcsprm::obsgeo

(Given, auxiliary) Location of the observer in a standard terrestrial reference frame. The first three give ITRS
Cartesian coordinates OBSGEO-X [m], OBSGEO-Y [m], OBSGEO-Z [m], and the second three give OBSGEO-L
[deg], OBSGEO-B [deg], OBSGEO-H [m], which are related through a standard transformation.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::obsgeo is changed.

18.15.2.59 obsorbit char wcsprm::obsorbit

(Given, auxiliary) OBSORBIT keyvalue, being the URI, URL, or name of an orbit ephemeris file giving spacecraft
coordinates relating to TREFPOS.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::obsorbit is changed.

18.15.2.60 radesys char wcsprm::radesys

(Given, auxiliary) The equatorial or ecliptic coordinate system type, RADESYSa.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::radesys is changed.

18.15.2.61 equinox double wcsprm::equinox

(Given, auxiliary) The equinox associated with dynamical equatorial or ecliptic coordinate systems, EQUINOXa (or
EPOCH in older headers). Not applicable to ICRS equatorial or ecliptic coordinates.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::equinox is changed.

18.15.2.62 specsys char wcsprm::specsys

(Given, auxiliary) Spectral reference frame (standard of rest), SPECSYSa.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::specsys is changed.

18.15.2.63 ssysobs char wcsprm::ssysobs

(Given, auxiliary) The spectral reference frame in which there is no differential variation in the spectral coordinate
across the field-of-view, SSYSOBSa.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::ssysobs is changed.

18.15.2.64 velosys double wcsprm::velosys

(Given, auxiliary) The relative radial velocity [m/s] between the observer and the selected standard of rest in the
direction of the celestial reference coordinate, VELOSYSa.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::velosys is changed.

Generated by Doxygen

72

18.15.2.65 zsource double wcsprm::zsource

(Given, auxiliary) The redshift, ZSOURCEa, of the source.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::zsource is changed.

18.15.2.66 ssyssrc char wcsprm::ssyssrc

(Given, auxiliary) The spectral reference frame (standard of rest), SSYSSRCa, in which wcsprm::zsource was
measured.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::ssyssrc is changed.

18.15.2.67 velangl double wcsprm::velangl

(Given, auxiliary) The angle [deg] that should be used to decompose an observed velocity into radial and transverse
components.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::velangl is changed.

18.15.2.68 aux struct auxprm ∗ wcsprm::aux

(Given, auxiliary) This struct holds auxiliary coordinate system information of a specialist nature. While these
parameters may be widely recognized within particular fields of astronomy, they differ from the above auxiliary
parameters in not being defined by any of the FITS WCS standards. Collecting them together in a separate struct
that is allocated only when required helps to control bloat in the size of the wcsprm struct.

18.15.2.69 ntab int wcsprm::ntab

(Given) See wcsprm::tab.

18.15.2.70 nwtb int wcsprm::nwtb

(Given) See wcsprm::wtb.

18.15.2.71 tab struct tabprm ∗ wcsprm::tab

(Given) Address of the first element of an array of ntab tabprm structs for which memory has been allocated. These
are used to store tabular transformation parameters.

Although technically wcsprm::ntab and tab are "given", they will normally be set by invoking wcstab(), whether
directly or indirectly.

The tabprm structs contain some members that must be supplied and others that are derived. The information to
be supplied comes primarily from arrays stored in one or more FITS binary table extensions. These arrays, referred
to here as "wcstab arrays", are themselves located by parameters stored in the FITS image header.

Generated by Doxygen

18.15 wcsprm Struct Reference 73

18.15.2.72 wtb struct wtbarr ∗ wcsprm::wtb

(Given) Address of the first element of an array of nwtb wtbarr structs for which memory has been allocated. These
are used in extracting wcstab arrays from a FITS binary table.

Although technically wcsprm::nwtb and wtb are "given", they will normally be set by invoking wcstab(), whether
directly or indirectly.

18.15.2.73 lngtyp char wcsprm::lngtyp

(Returned) Four-character WCS celestial longitude and ...

18.15.2.74 lattyp char wcsprm::lattyp

(Returned) ... latitude axis types. e.g. "RA", "DEC", "GLON", "GLAT", etc. extracted from 'RA-', 'DEC-', 'GLON',
'GLAT', etc. in the first four characters of CTYPEia but with trailing dashes removed. (Declared as char[8] for
alignment reasons.)

18.15.2.75 lng int wcsprm::lng

(Returned) Index for the longitude coordinate, and ...

18.15.2.76 lat int wcsprm::lat

(Returned) ... index for the latitude coordinate, and ...

18.15.2.77 spec int wcsprm::spec

(Returned) ... index for the spectral coordinate in the imgcrd[][] and world[][] arrays in the API of wcsp2s(), wcss2p()
and wcsmix().

These may also serve as indices into the pixcrd[][] array provided that the PCi_ja matrix does not transpose axes.

18.15.2.78 cubeface int wcsprm::cubeface

(Returned) Index into the pixcrd[][] array for the CUBEFACE axis. This is used for quadcube projections where the
cube faces are stored on a separate axis (see wcs.h).

Generated by Doxygen

74

18.15.2.79 types int ∗ wcsprm::types

(Returned) Address of the first element of an array of int containing a four-digit type code for each axis.

• First digit (i.e. 1000s):

– 0: Non-specific coordinate type.

– 1: Stokes coordinate.

– 2: Celestial coordinate (including CUBEFACE).

– 3: Spectral coordinate.

• Second digit (i.e. 100s):

– 0: Linear axis.

– 1: Quantized axis (STOKES, CUBEFACE).

– 2: Non-linear celestial axis.

– 3: Non-linear spectral axis.

– 4: Logarithmic axis.

– 5: Tabular axis.

• Third digit (i.e. 10s):

– 0: Group number, e.g. lookup table number, being an index into the tabprm array (see above).

• The fourth digit is used as a qualifier depending on the axis type.

– For celestial axes:

* 0: Longitude coordinate.

* 1: Latitude coordinate.

* 2: CUBEFACE number.

– For lookup tables: the axis number in a multidimensional table.

CTYPEia in "4-3" form with unrecognized algorithm code will have its type set to -1 and generate an error.

18.15.2.80 lin struct linprm wcsprm::lin

(Returned) Linear transformation parameters (usage is described in the prologue to lin.h).

18.15.2.81 cel struct celprm wcsprm::cel

(Returned) Celestial transformation parameters (usage is described in the prologue to cel.h).

18.15.2.82 spc struct spcprm wcsprm::spc

(Returned) Spectral transformation parameters (usage is described in the prologue to spc.h).

18.15.2.83 err struct wcserr ∗ wcsprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

Generated by Doxygen

18.15 wcsprm Struct Reference 75

18.15.2.84 m_flag int wcsprm::m_flag

(For internal use only.)

18.15.2.85 m_naxis int wcsprm::m_naxis

(For internal use only.)

18.15.2.86 m_crpix double ∗ wcsprm::m_crpix

(For internal use only.)

18.15.2.87 m_pc double ∗ wcsprm::m_pc

(For internal use only.)

18.15.2.88 m_cdelt double ∗ wcsprm::m_cdelt

(For internal use only.)

18.15.2.89 m_crval double ∗ wcsprm::m_crval

(For internal use only.)

18.15.2.90 m_cunit wcsprm::m_cunit

(For internal use only.)

18.15.2.91 m_ctype wcsprm::m_ctype

(For internal use only.)

18.15.2.92 m_pv struct pvcard ∗ wcsprm::m_pv

(For internal use only.)

18.15.2.93 m_ps struct pscard ∗ wcsprm::m_ps

(For internal use only.)

18.15.2.94 m_cd double ∗ wcsprm::m_cd

(For internal use only.)

Generated by Doxygen

76

18.15.2.95 m_crota double ∗ wcsprm::m_crota

(For internal use only.)

18.15.2.96 m_colax int ∗ wcsprm::m_colax

(For internal use only.)

18.15.2.97 m_cname wcsprm::m_cname

(For internal use only.)

18.15.2.98 m_crder double ∗ wcsprm::m_crder

(For internal use only.)

18.15.2.99 m_csyer double ∗ wcsprm::m_csyer

(For internal use only.)

18.15.2.100 m_czphs double ∗ wcsprm::m_czphs

(For internal use only.)

18.15.2.101 m_cperi double ∗ wcsprm::m_cperi

(For internal use only.)

18.15.2.102 m_aux struct auxprm∗ wcsprm::m_aux

18.15.2.103 m_tab struct tabprm ∗ wcsprm::m_tab

(For internal use only.)

18.15.2.104 m_wtb struct wtbarr ∗ wcsprm::m_wtb

(For internal use only.)

18.16 wtbarr Struct Reference

Extraction of coordinate lookup tables from BINTABLE.

#include <getwcstab.h>

Generated by Doxygen

18.16 wtbarr Struct Reference 77

Data Fields

• int i
• int m
• int kind
• char extnam [72]
• int extver
• int extlev
• char ttype [72]
• long row
• int ndim
• int ∗ dimlen
• double ∗∗ arrayp

18.16.1 Detailed Description

Function wcstab(), which is invoked automatically by wcspih(), sets up an array of wtbarr structs to assist in extract-
ing coordinate lookup tables from a binary table extension (BINTABLE) and copying them into the tabprm structs
stored in wcsprm. Refer to the usage notes for wcspih() and wcstab() in wcshdr.h, and also the prologue to tab.h.

For C++ usage, because of a name space conflict with the wtbarr typedef defined in CFITSIO header fitsio.h, the
wtbarr struct is renamed to wtbarr_s by preprocessor macro substitution with scope limited to wtbarr.h itself, and
similarly in wcs.h.

18.16.2 Field Documentation

18.16.2.1 i int wtbarr::i

(Given) Image axis number.

18.16.2.2 m int wtbarr::m

(Given) wcstab array axis number for index vectors.

18.16.2.3 kind int wtbarr::kind

(Given) Character identifying the wcstab array type:

• c: coordinate array,

• i: index vector.

18.16.2.4 extnam char wtbarr::extnam

(Given) EXTNAME identifying the binary table extension.

Generated by Doxygen

78

18.16.2.5 extver int wtbarr::extver

(Given) EXTVER identifying the binary table extension.

18.16.2.6 extlev int wtbarr::extlev

(Given) EXTLEV identifying the binary table extension.

18.16.2.7 ttype char wtbarr::ttype

(Given) TTYPEn identifying the column of the binary table that contains the wcstab array.

18.16.2.8 row long wtbarr::row

(Given) Table row number.

18.16.2.9 ndim int wtbarr::ndim

(Given) Expected dimensionality of the wcstab array.

18.16.2.10 dimlen int ∗ wtbarr::dimlen

(Given) Address of the first element of an array of int of length ndim into which the wcstab array axis lengths are to
be written.

18.16.2.11 arrayp double ∗∗ wtbarr::arrayp

(Given) Pointer to an array of double which is to be allocated by the user and into which the wcstab array is to be
written.

19 File Documentation

19.1 cel.h File Reference

#include "prj.h"

Data Structures

• struct celprm

Celestial transformation parameters.

Generated by Doxygen

19.1 cel.h File Reference 79

Macros

• #define CELLEN (sizeof(struct celprm)/sizeof(int))

Size of the celprm struct in int units.

• #define celini_errmsg cel_errmsg

Deprecated.

• #define celprt_errmsg cel_errmsg

Deprecated.

• #define celset_errmsg cel_errmsg

Deprecated.

• #define celx2s_errmsg cel_errmsg

Deprecated.

• #define cels2x_errmsg cel_errmsg

Deprecated.

Enumerations

• enum cel_errmsg_enum {
CELERR_SUCCESS = 0 , CELERR_NULL_POINTER = 1 , CELERR_BAD_PARAM = 2 , CELERR_BAD_COORD_TRANS
= 3 ,
CELERR_ILL_COORD_TRANS = 4 , CELERR_BAD_PIX = 5 , CELERR_BAD_WORLD = 6 }

Functions

• int celini (struct celprm ∗cel)

Default constructor for the celprm struct.

• int celfree (struct celprm ∗cel)

Destructor for the celprm struct.

• int celprt (const struct celprm ∗cel)

Print routine for the celprm struct.

• int celperr (const struct celprm ∗cel, const char ∗prefix)

Print error messages from a celprm struct.

• int celset (struct celprm ∗cel)

Setup routine for the celprm struct.

• int celx2s (struct celprm ∗cel, int nx, int ny, int sxy, int sll, const double x[], const double y[], double phi[],
double theta[], double lng[], double lat[], int stat[])

Pixel-to-world celestial transformation.

• int cels2x (struct celprm ∗cel, int nlng, int nlat, int sll, int sxy, const double lng[], const double lat[], double
phi[], double theta[], double x[], double y[], int stat[])

World-to-pixel celestial transformation.

Variables

• const char ∗ cel_errmsg []

Generated by Doxygen

80

19.1.1 Detailed Description

Routines in this suite implement the part of the FITS World Coordinate System (WCS) standard that deals with
celestial coordinates, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)

These routines define methods to be used for computing celestial world coordinates from intermediate world coor-
dinates (a linear transformation of image pixel coordinates), and vice versa. They are based on the celprm struct
which contains all information needed for the computations. This struct contains some elements that must be set by
the user, and others that are maintained by these routines, somewhat like a C++ class but with no encapsulation.

Routine celini() is provided to initialize the celprm struct with default values, celfree() reclaims any memory that may
have been allocated to store an error message, and celprt() prints its contents.

celperr() prints the error message(s), if any, stored in a celprm struct and the prjprm struct that it contains.

A setup routine, celset(), computes intermediate values in the celprm struct from parameters in it that were supplied
by the user. The struct always needs to be set up by celset() but it need not be called explicitly - refer to the
explanation of celprm::flag.

celx2s() and cels2x() implement the WCS celestial coordinate transformations. In fact, they are high level driver
routines for the lower level spherical coordinate rotation and projection routines described in sph.h and prj.h.

19.1.2 Macro Definition Documentation

19.1.2.1 CELLEN #define CELLEN (sizeof(struct celprm)/sizeof(int))

Size of the celprm struct in int units, used by the Fortran wrappers.

19.1.2.2 celini_errmsg #define celini_errmsg cel_errmsg

Deprecated Added for backwards compatibility, use cel_errmsg directly now instead.

19.1.2.3 celprt_errmsg #define celprt_errmsg cel_errmsg

Deprecated Added for backwards compatibility, use cel_errmsg directly now instead.

19.1.2.4 celset_errmsg #define celset_errmsg cel_errmsg

Deprecated Added for backwards compatibility, use cel_errmsg directly now instead.

Generated by Doxygen

19.1 cel.h File Reference 81

19.1.2.5 celx2s_errmsg #define celx2s_errmsg cel_errmsg

Deprecated Added for backwards compatibility, use cel_errmsg directly now instead.

19.1.2.6 cels2x_errmsg #define cels2x_errmsg cel_errmsg

Deprecated Added for backwards compatibility, use cel_errmsg directly now instead.

19.1.3 Enumeration Type Documentation

19.1.3.1 cel_errmsg_enum enum cel_errmsg_enum

Enumerator

CELERR_SUCCESS
CELERR_NULL_POINTER

CELERR_BAD_PARAM
CELERR_BAD_COORD_TRANS

CELERR_ILL_COORD_TRANS
CELERR_BAD_PIX

CELERR_BAD_WORLD

19.1.4 Function Documentation

19.1.4.1 celini() int celini (

struct celprm ∗ cel)

celini() sets all members of a celprm struct to default values. It should be used to initialize every celprm struct.

PLEASE NOTE: If the celprm struct has already been initialized, then before reinitializing, it celfree() should be
used to free any memory that may have been allocated to store an error message. A memory leak may otherwise
result.

Parameters

out cel Celestial transformation parameters.

Generated by Doxygen

82

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

19.1.4.2 celfree() int celfree (

struct celprm ∗ cel)

celfree() frees any memory that may have been allocated to store an error message in the celprm struct.

Parameters

in cel Celestial transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

19.1.4.3 celprt() int celprt (

const struct celprm ∗ cel)

celprt() prints the contents of a celprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in cel Celestial transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

19.1.4.4 celperr() int celperr (

const struct celprm ∗ cel,

const char ∗ prefix)

celperr() prints the error message(s), if any, stored in a celprm struct and the prjprm struct that it contains. If there
are no errors then nothing is printed. It uses wcserr_prt(), q.v.

Generated by Doxygen

19.1 cel.h File Reference 83

Parameters

in cel Coordinate transformation parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

19.1.4.5 celset() int celset (

struct celprm ∗ cel)

celset() sets up a celprm struct according to information supplied within it.

Note that this routine need not be called directly; it will be invoked by celx2s() and cels2x() if celprm::flag is anything
other than a predefined magic value.

Parameters

in,out cel Celestial transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

• 2: Invalid projection parameters.

• 3: Invalid coordinate transformation parameters.

• 4: Ill-conditioned coordinate transformation parameters.

For returns > 1, a detailed error message is set in celprm::err if enabled, see wcserr_enable().

19.1.4.6 celx2s() int celx2s (

struct celprm ∗ cel,

int nx,

int ny,

int sxy,

int sll,

const double x[],

const double y[],

double phi[],

double theta[],

double lng[],

double lat[],

int stat[])

celx2s() transforms (x, y) coordinates in the plane of projection to celestial coordinates (α, δ).

Generated by Doxygen

84

Parameters

in,out cel Celestial transformation parameters.

in nx,ny Vector lengths.

in sxy,sll Vector strides.

in x,y Projected coordinates in pseudo "degrees".

out phi,theta Longitude and latitude (φ, θ) in the native coordinate system of the projection [deg].

out lng,lat Celestial longitude and latitude (α, δ) of the projected point [deg].

out stat Status return value for each vector element:

• 0: Success.

• 1: Invalid value of (x, y).

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

• 2: Invalid projection parameters.

• 3: Invalid coordinate transformation parameters.

• 4: Ill-conditioned coordinate transformation parameters.

• 5: One or more of the (x, y) coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in celprm::err if enabled, see wcserr_enable().

19.1.4.7 cels2x() int cels2x (

struct celprm ∗ cel,

int nlng,

int nlat,

int sll,

int sxy,

const double lng[],

const double lat[],

double phi[],

double theta[],

double x[],

double y[],

int stat[])

cels2x() transforms celestial coordinates (α, δ) to (x, y) coordinates in the plane of projection.

Parameters

in,out cel Celestial transformation parameters.

in nlng,nlat Vector lengths.

in sll,sxy Vector strides.

in lng,lat Celestial longitude and latitude (α, δ) of the projected point [deg].

out phi,theta Longitude and latitude (φ, θ) in the native coordinate system of the projection [deg].

out x,y Projected coordinates in pseudo "degrees".

out stat Status return value for each vector element:

• 0: Success.

• 1: Invalid value of (α, δ).

Generated by Doxygen

19.2 dis.h File Reference 85

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

• 2: Invalid projection parameters.

• 3: Invalid coordinate transformation parameters.

• 4: Ill-conditioned coordinate transformation parameters.

• 6: One or more of the (α, δ) coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in celprm::err if enabled, see wcserr_enable().

19.1.5 Variable Documentation

19.1.5.1 cel_errmsg const char∗ cel_errmsg[] [extern]

19.2 dis.h File Reference

Data Structures

• struct dpkey

Store for DPja and DQia keyvalues.

• struct disprm

Distortion parameters.

Macros

• #define DISP2X_ARGS
• #define DISX2P_ARGS
• #define DPLEN (sizeof(struct dpkey)/sizeof(int))
• #define DISLEN (sizeof(struct disprm)/sizeof(int))

Enumerations

• enum dis_errmsg_enum {
DISERR_SUCCESS = 0 , DISERR_NULL_POINTER = 1 , DISERR_MEMORY = 2 , DISERR_BAD_PARAM
= 3 ,
DISERR_DISTORT = 4 , DISERR_DEDISTORT = 5 }

Generated by Doxygen

86

Functions

• int disndp (int n)

Memory allocation for DPja and DQia.

• int dpfill (struct dpkey ∗dp, const char ∗keyword, const char ∗field, int j, int type, int i, double f)

Fill the contents of a dpkey struct.

• int dpkeyi (const struct dpkey ∗dp)

Get the data value in a dpkey struct as int.

• double dpkeyd (const struct dpkey ∗dp)

Get the data value in a dpkey struct as double.

• int disini (int alloc, int naxis, struct disprm ∗dis)

Default constructor for the disprm struct.

• int disinit (int alloc, int naxis, struct disprm ∗dis, int ndpmax)

Default constructor for the disprm struct.

• int discpy (int alloc, const struct disprm ∗dissrc, struct disprm ∗disdst)

Copy routine for the disprm struct.

• int disfree (struct disprm ∗dis)

Destructor for the disprm struct.

• int disprt (const struct disprm ∗dis)

Print routine for the disprm struct.

• int disperr (const struct disprm ∗dis, const char ∗prefix)

Print error messages from a disprm struct.

• int dishdo (struct disprm ∗dis)

write FITS headers using TPD.

• int disset (struct disprm ∗dis)

Setup routine for the disprm struct.

• int disp2x (struct disprm ∗dis, const double rawcrd[], double discrd[])

Apply distortion function.

• int disx2p (struct disprm ∗dis, const double discrd[], double rawcrd[])

Apply de-distortion function.

• int diswarp (struct disprm ∗dis, const double pixblc[], const double pixtrc[], const double pixsamp[], int
∗nsamp, double maxdis[], double ∗maxtot, double avgdis[], double ∗avgtot, double rmsdis[], double ∗rmstot)

Compute measures of distortion.

Variables

• const char ∗ dis_errmsg []

Status return messages.

19.2.1 Detailed Description

Routines in this suite implement extensions to the FITS World Coordinate System (WCS) standard proposed by
"Representations of distortions in FITS world coordinate systems",
Calabretta, M.R. et al. (WCS Paper IV, draft dated 2004/04/22),
available from http://www.atnf.csiro.au/people/Mark.Calabretta

In brief, a distortion function may occupy one of two positions in the WCS algorithm chain. Prior distortions precede
the linear transformation matrix, whether it be PCi_ja or CDi_ja, and sequent distortions follow it. WCS Paper
IV defines FITS keywords used to specify parameters for predefined distortion functions. The following are used for
prior distortions:
CPDISja ...(string-valued, identifies the distortion function)
DPja ...(record-valued, parameters)
CPERRja ...(floating-valued, maximum value)

Generated by Doxygen

19.2 dis.h File Reference 87

Their counterparts for sequent distortions are CQDISia, DQia, and CQERRia. An additional floating-valued
keyword, DVERRa, records the maximum value of the combined distortions.

DPja and DQia are "record-valued". Syntactically, the keyvalues are standard FITS strings, but they are to be
interpreted in a special way. The general form is
DPja = ’<field-specifier>: <float>’

where the field-specifier consists of a sequence of fields separated by periods, and the ': ' between the field-specifier
and the floating-point value is part of the record syntax. For example:
DP1 = ’AXIS.1: 1’

Certain field-specifiers are defined for all distortion functions, while others are defined only for particular distortions.
Refer to WCS Paper IV for further details. wcspih() parses all distortion keywords and loads them into a disprm
struct for analysis by disset() which knows (or possibly does not know) how to interpret them. Of the Paper IV
distortion functions, only the general Polynomial distortion is currently implemented here.

TPV - the TPV "projection":
The distortion function component of the TPV celestial "projection" is also supported. The TPV projection, originally
proposed in a draft of WCS Paper II, consists of a TAN projection with sequent polynomial distortion, the coefficients
of which are encoded in PVi_ma keyrecords. Full details may be found at the registry of FITS conventions:
http://fits.gsfc.nasa.gov/registry/tpvwcs/tpv.html

Internally, wcsset() changes TPV to a TAN projection, translates the PVi_ma keywords to DQia and loads them
into a disprm struct. These DQia keyrecords have the form
DQia = ’TPV.m: <value>’

where i, a, m, and the value for each DQia match each PVi_ma. Consequently, WCSLIB would handle a
FITS header containing these keywords, along with CQDISia = 'TPV' and the required DQia.NAXES and
DQia.AXIS.ihat keywords.

Note that, as defined, TPV assumes that CDi_ja is used to define the linear transformation. The section on
historical idiosyncrasies (below) cautions about translating CDi_ja to PCi_ja plus CDELTia in this case.

SIP - Simple Imaging Polynomial:
These routines also support the Simple Imaging Polynomial (SIP), whose design was influenced by early drafts of
WCS Paper IV. It is described in detail in
http://fits.gsfc.nasa.gov/registry/sip.html

SIP, which is defined only as a prior distortion for 2-D celestial images, has the interesting feature that it records
an approximation to the inverse polynomial distortion function. This is used by disx2p() to provide an initial estimate
for its more precise iterative inversion. The special-purpose keywords used by SIP are parsed and translated by
wcspih() as follows:
A_p_q = <value> -> DP1 = ’SIP.FWD.p_q: <value>’
AP_p_q = <value> -> DP1 = ’SIP.REV.p_q: <value>’
B_p_q = <value> -> DP2 = ’SIP.FWD.p_q: <value>’
BP_p_q = <value> -> DP2 = ’SIP.REV.p_q: <value>’
A_DMAX = <value> -> DPERR1 = <value>
B_DMAX = <value> -> DPERR2 = <value>

SIP's A_ORDER and B_ORDER keywords are not used. WCSLIB would recognise a FITS header containing the
above keywords, along with CPDISja = 'SIP' and the required DPja.NAXES keywords.

DSS - Digitized Sky Survey:
The Digitized Sky Survey resulted from the production of the Guide Star Catalogue for the Hubble Space Telescope.
Plate solutions based on a polynomial distortion function were encoded in FITS using non-standard keywords. Sect.
5.2 of WCS Paper IV describes how DSS coordinates may be translated to a sequent Polynomial distortion using
two auxiliary variables. That translation is based on optimising the non-distortion component of the plate solution.

Following Paper IV, wcspih() translates the non-distortion component of DSS coordinates to standard WCS key-
words (CRPIXja, PCi_ja, CRVALia, etc), and fills a wcsprm struct with their values. It encodes the DSS
polynomial coefficients as
AMDXm = <value> -> DQ1 = ’AMD.m: <value>’
AMDYm = <value> -> DQ2 = ’AMD.m: <value>’

Generated by Doxygen

88

WCSLIB would recognise a FITS header containing the above keywords, along with CQDISia = 'DSS' and the
required DQia.NAXES keywords.

WAT - the TNX and ZPX "projections":
The TNX and ZPX "projections" add a polynomial distortion function to the standard TAN and ZPN projections
respectively. Unusually, the polynomial may be expressed as the sum of Chebyshev or Legendre polynomials, or
as a simple sum of monomials, as described in
http://fits.gsfc.nasa.gov/registry/tnx/tnx-doc.html
http://fits.gsfc.nasa.gov/registry/zpxwcs/zpx.html

The polynomial coefficients are encoded in special-purpose WATi_n keywords as a set of continued strings, thus
providing the name for this distortion type. WATi_n are parsed and translated by wcspih() into the following set:
DQi = ’WAT.POLY: <value>’
DQi = ’WAT.XMIN: <value>’
DQi = ’WAT.XMAX: <value>’
DQi = ’WAT.YMIN: <value>’
DQi = ’WAT.YMAX: <value>’
DQi = ’WAT.CHBY.m_n: <value>’ or
DQi = ’WAT.LEGR.m_n: <value>’ or
DQi = ’WAT.MONO.m_n: <value>’

along with CQDISia = 'WAT' and the required DPja.NAXES keywords. For ZPX, the ZPN projection parameters
are also encoded in WATi_n, and wcspih() translates these to standard PVi_ma.

Note that, as defined, TNX and ZPX assume that CDi_ja is used to define the linear transformation. The section
on historical idiosyncrasies (below) cautions about translating CDi_ja to PCi_ja plus CDELTia in this case.

TPD - Template Polynomial Distortion:
The "Template Polynomial Distortion" (TPD) is a superset of the TPV, SIP, DSS, and WAT (TNX & ZPX) polynomial
distortions that also supports 1-D usage and inversions. Like TPV, SIP, and DSS, the form of the polynomial is
fixed (the "template") and only the coefficients for the required terms are set non-zero. TPD generalizes TPV in
going to 9th degree, SIP by accomodating TPV's linear and radial terms, and DSS in both respects. While in
theory the degree of the WAT polynomial distortion in unconstrained, in practice it is limited to values that can be
handled by TPD.

Within WCSLIB, TPV, SIP, DSS, and WAT are all implemented as special cases of TPD. Indeed, TPD was devel-
oped precisely for that purpose. WAT distortions expressed as the sum of Chebyshev or Legendre polynomials are
expanded for TPD as a simple sum of monomials. Moreover, the general Polynomial distortion is translated and
implemented internally as TPD whenever possible.

However, WCSLIB also recognizes 'TPD' as a distortion function in its own right (i.e. a recognized value of
CPDISja or CQDISia), for use as both prior and sequent distortions. Its DPja and DQia keyrecords have
the form
DPja = ’TPD.FWD.m: <value>’
DPja = ’TPD.REV.m: <value>’

for the forward and reverse distortion functions. Moreover, like the general Polynomial distortion, TPD supports
auxiliary variables, though only as a linear transformation of pixel coordinates (p1,p2):
x = a0 + a1*p1 + a2*p2
y = b0 + b1*p1 + b2*p2

where the coefficients of the auxiliary variables (x,y) are recorded as
DPja = ’AUX.1.COEFF.0: a0’ ...default 0.0
DPja = ’AUX.1.COEFF.1: a1’ ...default 1.0
DPja = ’AUX.1.COEFF.2: a2’ ...default 0.0
DPja = ’AUX.2.COEFF.0: b0’ ...default 0.0
DPja = ’AUX.2.COEFF.1: b1’ ...default 0.0
DPja = ’AUX.2.COEFF.2: b2’ ...default 1.0

Though nowhere near as powerful, in typical applications TPD is considerably faster than the general Polynomial
distortion. As TPD has a finite and not too large number of possible terms (60), the coefficients for each can be
stored (by disset()) in a fixed location in the disprm::dparm[] array. A large part of the speedup then arises from
evaluating the polynomial using Horner's scheme.

Generated by Doxygen

19.2 dis.h File Reference 89

Separate implementations for polynomials of each degree, and conditionals for 1-D polynomials and 2-D polynomi-
als with and without the radial variable, ensure that unused terms mostly do not impose a significant computational
overhead.

The TPD terms are as follows
0: 1 4: xx 12: xxxx 24: xxxxxx 40: xxxxxxxx

5: xy 13: xxxy 25: xxxxxy 41: xxxxxxxy
1: x 6: yy 14: xxyy 26: xxxxyy 42: xxxxxxyy
2: y 15: xyyy 27: xxxyyy 43: xxxxxyyy
3: r 7: xxx 16: yyyy 28: xxyyyy 44: xxxxyyyy

8: xxy 29: xyyyyy 45: xxxyyyyy
9: xyy 17: xxxxx 30: yyyyyy 46: xxyyyyyy
10: yyy 18: xxxxy 47: xyyyyyyy
11: rrr 19: xxxyy 31: xxxxxxx 48: yyyyyyyy

20: xxyyy 32: xxxxxxy
21: xyyyy 33: xxxxxyy 49: xxxxxxxxx
22: yyyyy 34: xxxxyyy 50: xxxxxxxxy
23: rrrrr 35: xxxyyyy 51: xxxxxxxyy

36: xxyyyyy 52: xxxxxxyyy
37: xyyyyyy 53: xxxxxyyyy
38: yyyyyyy 54: xxxxyyyyy
39: rrrrrrr 55: xxxyyyyyy

56: xxyyyyyyy
57: xyyyyyyyy
58: yyyyyyyyy
59: rrrrrrrrr

where r =
√

(x2 + y2). Note that even powers of r are excluded since they can be accomodated by powers of
(x2 + y2).

Note here that "x" refers to the axis to which the distortion function is attached, with "y" being the complementary
axis. So, for example, with longitude on axis 1 and latitude on axis 2, for TPD attached to axis 1, "x" refers to axis 1
and "y" to axis 2. For TPD attached to axis 2, "x" refers to axis 2, and "y" to axis 1.

TPV uses all terms up to 39. The m in its PVi_ma keywords translates directly to the TPD coefficient number.

SIP uses all terms except for 0, 3, 11, 23, 39, and 59, with terms 1 and 2 only used for the inverse. Its A_p_q, etc.
keywords must be translated using a map.

DSS uses terms 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 17, 19, and 21. The presence of a non-zero constant term arises
through the use of auxiliary variables with origin offset from the reference point of the TAN projection. However, in
the translation given by WCS Paper IV, the distortion polynomial is zero, or very close to zero, at the reference pixel
itself. The mapping between DSS's AMDXm (or AMDYm) keyvalues and TPD coefficients, while still simple, is not
quite as straightforward as for TPV and SIP.

WAT uses all but the radial terms, namely 3, 11, 23, 39, and 59. While the mapping between WAT's monomial
coefficients and TPD is fairly simple, for its expression in terms of a sum of Chebyshev or Legendre polynomials it
is much less so.

Historical idiosyncrasies:
In addition to the above, some historical distortion functions have further idiosyncrasies that must be taken into
account when translating them to TPD.

WCS Paper IV specifies that a distortion function returns a correction to be added to pixel coordinates (prior distor-
tion) or intermediate pixel coordinates (sequent distortion). The correction is meant to be small so that ignoring the
distortion function, i.e. setting the correction to zero, produces a commensurately small error.

However, rather than an additive correction, some historical distortion functions (TPV, DSS) define a polynomial
that returns the corrected coordinates directly.

The difference between the two approaches is readily accounted for simply by adding or subtracting 1 from the
coefficient of the first degree term of the polynomial. However, it opens the way for considerable confusion.

Additional to the formalism of WCS Paper IV, both the Polynomial and TPD distortion functions recognise a keyword
DPja = ’DOCORR: 0’

Generated by Doxygen

90

which is meant to apply generally to indicate that the distortion function returns the corrected coordinates directly.
Any other value for DOCORR (or its absence) indicates that the distortion function returns an additive correction.

WCS Paper IV also specifies that the independent variables of a distortion function are pixel coordinates (prior
distortion) or intermediate pixel coordinates (sequent distortion).

On the contrary, the independent variables of the SIP polynomial are pixel coordinate offsets from the reference
pixel. This is readily handled via the renormalisation parameters
DPja = ’OFFSET.jhat: <value>’

where the value corresponds to CRPIXja.

Likewise, because TPV, TNX, and ZPX are defined in terms of CDi_ja, the independent variables of the poly-
nomial are intermediate world coordinates rather than intermediate pixel coordinates. Because sequent distortions
are always applied before CDELTia, if CDi_ja is translated to PCi_ja plus CDELTia, then either CDELTia
must be unity, or the distortion polynomial coefficients must be adjusted to account for the change of scale.

Summary of the dis routines:
These routines apply the distortion functions defined by the extension to the FITS WCS standard proposed in Paper
IV. They are based on the disprm struct which contains all information needed for the computations. The struct
contains some members that must be set by the user, and others that are maintained by these routines, somewhat
like a C++ class but with no encapsulation.

dpfill(), dpkeyi(), and dpkeyd() are provided to manage the dpkey struct.

disndp(), disini(), disinit(), discpy(), and disfree() are provided to manage the disprm struct, and another, disprt(),
prints its contents.

disperr() prints the error message(s) (if any) stored in a disprm struct.

wcshdo() normally writes SIP and TPV headers in their native form if at all possible. However, dishdo() may be
used to set a flag that tells it to write the header in the form of the TPD translation used internally.

A setup routine, disset(), computes intermediate values in the disprm struct from parameters in it that were supplied
by the user. The struct always needs to be set up by disset(), though disset() need not be called explicitly - refer to
the explanation of disprm::flag.

disp2x() and disx2p() implement the WCS distortion functions, disp2x() using separate functions, such as dispoly()
and tpd7(), to do the computation.

An auxiliary routine, diswarp(), computes various measures of the distortion over a specified range of coordinates.

PLEASE NOTE:

19.2.2 Macro Definition Documentation

19.2.2.1 DISP2X_ARGS #define DISP2X_ARGS

Value:
int inverse, const int iparm[], const double dparm[], \
int ncrd, const double rawcrd[], double *discrd

Generated by Doxygen

19.2 dis.h File Reference 91

19.2.2.2 DISX2P_ARGS #define DISX2P_ARGS

Value:
int inverse, const int iparm[], const double dparm[], \
int ncrd, const double discrd[], double *rawcrd

19.2.2.3 DPLEN #define DPLEN (sizeof(struct dpkey)/sizeof(int))

19.2.2.4 DISLEN #define DISLEN (sizeof(struct disprm)/sizeof(int))

19.2.3 Enumeration Type Documentation

19.2.3.1 dis_errmsg_enum enum dis_errmsg_enum

Enumerator

DISERR_SUCCESS
DISERR_NULL_POINTER

DISERR_MEMORY
DISERR_BAD_PARAM

DISERR_DISTORT
DISERR_DEDISTORT

19.2.4 Function Documentation

19.2.4.1 disndp() int disndp (

int n)

disndp() sets or gets the value of NDPMAX (default 256). This global variable controls the maximum number of
dpkey structs, for holding DPja or DQia keyvalues, that disini() should allocate space for. It is also used by disinit()
as the default value of ndpmax.

PLEASE NOTE: This function is not thread-safe.

Parameters

in n Value of NDPMAX; ignored if < 0. Use a value less than zero to get the current value.

Generated by Doxygen

92

Returns

Current value of NDPMAX.

19.2.4.2 dpfill() int dpfill (

struct dpkey ∗ dp,

const char ∗ keyword,

const char ∗ field,

int j,

int type,

int i,

double f)

dpfill() is a utility routine to aid in filling the contents of the dpkey struct. No checks are done on the validity of the
inputs.

WCS Paper IV specifies the syntax of a record-valued keyword as
keyword = ’<field-specifier>: <float>’

However, some DPja and DQia record values, such as those of DPja.NAXES and DPja.AXIS.j, are intrinsi-
cally integer-valued. While FITS header parsers are not expected to know in advance which of DPja and DQia
are integral and which are floating point, if the record's value parses as an integer (i.e. without decimal point or ex-
ponent), then preferably enter it into the dpkey struct as an integer. Either way, it doesn't matter as disset() accepts
either data type for all record values.

Parameters

in,out dp Store for DPja and DQia keyvalues.

in keyword

in field These arguments are concatenated with an intervening "." to construct the full record
field name, i.e. including the keyword name, DPja or DQia (but excluding the colon
delimiter which is NOT part of the name). Either may be given as a NULL pointer. Set
both NULL to omit setting this component of the struct.

in j Axis number (1-relative), i.e. the j in DPja or i in DQia. Can be given as 0, in which
case the axis number will be obtained from the keyword component of the field name
which must either have been given or preset.
If j is non-zero, and keyword was given, then the value of j will be used to fill in the axis
number.

in type Data type of the record's value

• 0: Integer,

• 1: Floating point.

in i For type == 0, the integer value of the record.

in f For type == 1, the floating point value of the record.

Returns

Status return value:

• 0: Success.

Generated by Doxygen

19.2 dis.h File Reference 93

19.2.4.3 dpkeyi() int dpkeyi (

const struct dpkey ∗ dp)

dpkeyi() returns the data value in a dpkey struct as an integer value.

Parameters

in,out dp Parsed contents of a DPja or DQia keyrecord.

Returns

The record's value as int.

19.2.4.4 dpkeyd() double dpkeyd (

const struct dpkey ∗ dp)

dpkeyd() returns the data value in a dpkey struct as a floating point value.

Parameters

in,out dp Parsed contents of a DPja or DQia keyrecord.

Returns

The record's value as double.

19.2.4.5 disini() int disini (

int alloc,

int naxis,

struct disprm ∗ dis)

disini() is a thin wrapper on disinit(). It invokes it with ndpmax set to -1 which causes it to use the value of the
global variable NDPMAX. It is thereby potentially thread-unsafe if NDPMAX is altered dynamically via disndp(). Use
disinit() for a thread-safe alternative in this case.

19.2.4.6 disinit() int disinit (

int alloc,

int naxis,

struct disprm ∗ dis,

int ndpmax)

disinit() allocates memory for arrays in a disprm struct and sets all members of the struct to default values.

PLEASE NOTE: every disprm struct must be initialized by disinit(), possibly repeatedly. On the first invokation,
and only the first invokation, disprm::flag must be set to -1 to initialize memory management, regardless of whether
disinit() will actually be used to allocate memory.

Generated by Doxygen

94

Parameters

in alloc If true, allocate memory unconditionally for arrays in the disprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if
they are null pointers in which case memory will be allocated for them regardless. (In
other words, setting alloc true saves having to initalize these pointers to zero.)

in naxis The number of world coordinate axes, used to determine array sizes.

in,out dis Distortion function parameters. Note that, in order to initialize memory management
disprm::flag must be set to -1 when dis is initialized for the first time (memory leaks
may result if it had already been initialized).

in ndpmax The number of DPja or DQia keywords to allocate space for. If set to -1, the value of
the global variable NDPMAX will be used. This is potentially thread-unsafe if disndp()
is being used dynamically to alter its value.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in disprm::err if enabled, see wcserr_enable().

19.2.4.7 discpy() int discpy (

int alloc,

const struct disprm ∗ dissrc,

struct disprm ∗ disdst)

discpy() does a deep copy of one disprm struct to another, using disinit() to allocate memory unconditionally for its
arrays if required. Only the "information to be provided" part of the struct is copied; a call to disset() is required to
initialize the remainder.

Parameters

in alloc If true, allocate memory unconditionally for arrays in the destination. Otherwise, it is
assumed that pointers to these arrays have been set by the user except if they are null
pointers in which case memory will be allocated for them regardless.

in dissrc Struct to copy from.

in,out disdst Struct to copy to. disprm::flag should be set to -1 if disdst was not previously initialized
(memory leaks may result if it was previously initialized).

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in disprm::err if enabled, see wcserr_enable().

Generated by Doxygen

19.2 dis.h File Reference 95

19.2.4.8 disfree() int disfree (

struct disprm ∗ dis)

disfree() frees memory allocated for the disprm arrays by disinit(). disinit() keeps a record of the memory it allocates
and disfree() will only attempt to free this.

PLEASE NOTE: disfree() must not be invoked on a disprm struct that was not initialized by disinit().

Parameters

in dis Distortion function parameters.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

19.2.4.9 disprt() int disprt (

const struct disprm ∗ dis)

disprt() prints the contents of a disprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in dis Distortion function parameters.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

19.2.4.10 disperr() int disperr (

const struct disprm ∗ dis,

const char ∗ prefix)

disperr() prints the error message(s) (if any) stored in a disprm struct. If there are no errors then nothing is printed.
It uses wcserr_prt(), q.v.

Parameters

in dis Distortion function parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Generated by Doxygen

96

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

19.2.4.11 dishdo() int dishdo (

struct disprm ∗ dis)

dishdo() sets a flag that tells wcshdo() to write FITS headers in the form of the TPD translation used internally.
Normally SIP and TPV would be written in their native form if at all possible.

Parameters

in,out dis Distortion function parameters.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 3: No TPD translation.

19.2.4.12 disset() int disset (

struct disprm ∗ dis)

disset(), sets up the disprm struct according to information supplied within it - refer to the explanation of disprm::flag.

Note that this routine need not be called directly; it will be invoked by disp2x() and disx2p() if the disprm::flag is
anything other than a predefined magic value.

Parameters

in,out dis Distortion function parameters.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid parameter.

For returns > 1, a detailed error message is set in disprm::err if enabled, see wcserr_enable().

Generated by Doxygen

19.2 dis.h File Reference 97

19.2.4.13 disp2x() int disp2x (

struct disprm ∗ dis,

const double rawcrd[],

double discrd[])

disp2x() applies the distortion functions. By definition, the distortion is in the pixel-to-world direction.

Depending on the point in the algorithm chain at which it is invoked, disp2x() may transform pixel coordinates to
corrected pixel coordinates, or intermediate pixel coordinates to corrected intermediate pixel coordinates, or image
coordinates to corrected image coordinates.

19.2.4.14 disx2p() int disx2p (

struct disprm ∗ dis,

const double discrd[],

double rawcrd[])

disx2p() applies the inverse of the distortion functions. By definition, the de-distortion is in the world-to-pixel direc-
tion.

Depending on the point in the algorithm chain at which it is invoked, disx2p() may transform corrected pixel coordi-
nates to pixel coordinates, or corrected intermediate pixel coordinates to intermediate pixel coordinates, or corrected
image coordinates to image coordinates.

disx2p() iteratively solves for the inverse using disp2x(). It assumes that the distortion is small and the functions
are well-behaved, being continuous and with continuous derivatives. Also that, to first order in the neighbourhood
of the solution, discrd[j] ∼= a + b∗rawcrd[j], i.e. independent of rawcrd[i], where i != j. This is effectively equivalent
to assuming that the distortion functions are separable to first order. Furthermore, a is assumed to be small, and b
close to unity.

If disprm::disx2p() is defined, then disx2p() uses it to provide an initial estimate for its more precise iterative
inversion.

Parameters

in,out dis Distortion function parameters.

in discrd Array of coordinates.

out rawcrd Array of coordinates to which the inverse distortion functions have been applied.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid parameter.

• 5: De-distort error.

For returns > 1, a detailed error message is set in disprm::err if enabled, see wcserr_enable().

Generated by Doxygen

98

19.2.4.15 diswarp() int diswarp (

struct disprm ∗ dis,

const double pixblc[],

const double pixtrc[],

const double pixsamp[],

int ∗ nsamp,

double maxdis[],

double ∗ maxtot,

double avgdis[],

double ∗ avgtot,

double rmsdis[],

double ∗ rmstot)

diswarp() computes various measures of the distortion over a specified range of coordinates.

For prior distortions, the measures may be interpreted simply as an offset in pixel coordinates. For sequent dis-
tortions, the interpretation depends on the nature of the linear transformation matrix (PCi_ja or CDi_ja). If
the latter introduces a scaling, then the measures will also be scaled. Note also that the image domain, which is
rectangular in pixel coordinates, may be rotated, skewed, and/or stretched in intermediate pixel coordinates, and in
general cannot be defined using pixblc[] and pixtrc[].

PLEASE NOTE: the measures of total distortion may be essentially meaningless if there are multiple sequent
distortions with different scaling.

See also linwarp().

Parameters

in,out dis Distortion function parameters.

in pixblc Start of the range of pixel coordinates (for prior distortions), or intermediate pixel
coordinates (for sequent distortions). May be specified as a NULL pointer which is
interpreted as (1,1,...).

in pixtrc End of the range of pixel coordinates (prior) or intermediate pixel coordinates
(sequent).

in pixsamp If positive or zero, the increment on the particular axis, starting at pixblc[]. Zero is
interpreted as a unit increment. pixsamp may also be specified as a NULL pointer
which is interpreted as all zeroes, i.e. unit increments on all axes.
If negative, the grid size on the particular axis (the absolute value being rounded to
the nearest integer). For example, if pixsamp is (-128.0,-128.0,...) then each axis will
be sampled at 128 points between pixblc[] and pixtrc[] inclusive. Use caution when
using this option on non-square images.

out nsamp The number of pixel coordinates sampled.
Can be specified as a NULL pointer if not required.

out maxdis For each individual distortion function, the maximum absolute value of the distortion.
Can be specified as a NULL pointer if not required.

out maxtot For the combination of all distortion functions, the maximum absolute value of the
distortion.
Can be specified as a NULL pointer if not required.

out avgdis For each individual distortion function, the mean value of the distortion.
Can be specified as a NULL pointer if not required.

out avgtot For the combination of all distortion functions, the mean value of the distortion.
Can be specified as a NULL pointer if not required.

out rmsdis For each individual distortion function, the root mean square deviation of the
distortion.
Can be specified as a NULL pointer if not required.

out rmstot For the combination of all distortion functions, the root mean square deviation of the
distortion.
Can be specified as a NULL pointer if not required.

Generated by Doxygen

19.3 fitshdr.h File Reference 99

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid parameter.

• 4: Distort error.

19.2.5 Variable Documentation

19.2.5.1 dis_errmsg const char ∗ dis_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.3 fitshdr.h File Reference

#include "wcsconfig.h"

Data Structures

• struct fitskeyid

Keyword indexing.

• struct fitskey

Keyword/value information.

Macros

• #define FITSHDR_KEYWORD 0x01

Flag bit indicating illegal keyword syntax.

• #define FITSHDR_KEYVALUE 0x02

Flag bit indicating illegal keyvalue syntax.

• #define FITSHDR_COMMENT 0x04

Flag bit indicating illegal keycomment syntax.

• #define FITSHDR_KEYREC 0x08

Flag bit indicating illegal keyrecord.

• #define FITSHDR_CARD 0x08

Deprecated.

• #define FITSHDR_TRAILER 0x10

Flag bit indicating keyrecord following a valid END keyrecord.

• #define KEYIDLEN (sizeof(struct fitskeyid)/sizeof(int))
• #define KEYLEN (sizeof(struct fitskey)/sizeof(int))

Generated by Doxygen

100

Typedefs

• typedef int int64[3]

64-bit signed integer data type.

Enumerations

• enum fitshdr_errmsg_enum { FITSHDRERR_SUCCESS = 0 , FITSHDRERR_NULL_POINTER = 1 ,
FITSHDRERR_MEMORY = 2 , FITSHDRERR_FLEX_PARSER = 3 }

Functions

• int fitshdr (const char header[], int nkeyrec, int nkeyids, struct fitskeyid keyids[], int ∗nreject, struct fitskey
∗∗keys)

FITS header parser routine.

Variables

• const char ∗ fitshdr_errmsg []

Status return messages.

19.3.1 Detailed Description

The Flexible Image Transport System (FITS), is a data format widely used in astronomy for data interchange and
archive. It is described in
"Definition of the Flexible Image Transport System (FITS), version 3.0",
Pence, W.D., Chiappetti, L., Page, C.G., Shaw, R.A., & Stobie, E. 2010,
A&A, 524, A42 - http://dx.doi.org/10.1051/0004-6361/201015362

See also http:
fitshdr() is a generic FITS header parser provided to handle keyrecords that are ignored by the WCS header parsers,
wcspih() and wcsbth(). Typically the latter may be set to remove WCS keyrecords from a header leaving fitshdr() to
handle the remainder.

19.3.2 Macro Definition Documentation

19.3.2.1 FITSHDR_KEYWORD #define FITSHDR_KEYWORD 0x01

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keyword syntax.

19.3.2.2 FITSHDR_KEYVALUE #define FITSHDR_KEYVALUE 0x02

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keyvalue syntax.

19.3.2.3 FITSHDR_COMMENT #define FITSHDR_COMMENT 0x04

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keycomment syntax.

Generated by Doxygen

19.3 fitshdr.h File Reference 101

19.3.2.4 FITSHDR_KEYREC #define FITSHDR_KEYREC 0x08

Bit mask for the status flag bit-vector returned by fitshdr() indicating an illegal keyrecord, e.g. an END keyrecord
with trailing text.

19.3.2.5 FITSHDR_CARD #define FITSHDR_CARD 0x08

Deprecated Added for backwards compatibility, use FITSHDR_KEYREC instead.

19.3.2.6 FITSHDR_TRAILER #define FITSHDR_TRAILER 0x10

Bit mask for the status flag bit-vector returned by fitshdr() indicating a keyrecord following a valid END keyrecord.

19.3.2.7 KEYIDLEN #define KEYIDLEN (sizeof(struct fitskeyid)/sizeof(int))

19.3.2.8 KEYLEN #define KEYLEN (sizeof(struct fitskey)/sizeof(int))

19.3.3 Typedef Documentation

19.3.3.1 int64 int64

64-bit signed integer data type defined via preprocessor macro WCSLIB_INT64 which may be defined in
wcsconfig.h. For example
#define WCSLIB_INT64 long long int

This is typedef'd in fitshdr.h as
#ifdef WCSLIB_INT64

typedef WCSLIB_INT64 int64;
#else

typedef int int64[3];
#endif

See fitskey::type.

19.3.4 Enumeration Type Documentation

19.3.4.1 fitshdr_errmsg_enum enum fitshdr_errmsg_enum

Generated by Doxygen

102

Enumerator

FITSHDRERR_SUCCESS
FITSHDRERR_NULL_POINTER

FITSHDRERR_MEMORY
FITSHDRERR_FLEX_PARSER

19.3.5 Function Documentation

19.3.5.1 fitshdr() int fitshdr (

const char header[],

int nkeyrec,

int nkeyids,

struct fitskeyid keyids[],

int ∗ nreject,

struct fitskey ∗∗ keys)

fitshdr() parses a character array containing a FITS header, extracting all keywords and their values into an array
of fitskey structs.

Parameters

in header Character array containing the (entire) FITS header, for example, as might be obtained
conveniently via the CFITSIO routine fits_hdr2str().
Each header "keyrecord" (formerly "card image") consists of exactly 80 7-bit ASCII
printing characters in the range 0x20 to 0x7e (which excludes NUL, BS, TAB, LF, FF
and CR) especially noting that the keyrecords are NOT null-terminated.

in nkeyrec Number of keyrecords in header[].

in nkeyids Number of entries in keyids[].

in,out keyids While all keywords are extracted from the header, keyids[] provides a convienient way
of indexing them. The fitskeyid struct contains three members; fitskeyid::name must be
set by the user while fitskeyid::count and fitskeyid::idx are returned by fitshdr(). All
matched keywords will have their fitskey::keyno member negated.

out nreject Number of header keyrecords rejected for syntax errors.

out keys Pointer to an array of nkeyrec fitskey structs containing all keywords and keyvalues
extracted from the header.
Memory for the array is allocated by fitshdr() and this must be freed by the user. See
wcsdealloc().

Returns

Status return value:

• 0: Success.

• 1: Null fitskey pointer passed.

• 2: Memory allocation failed.

• 3: Fatal error returned by Flex parser.

Generated by Doxygen

19.3 fitshdr.h File Reference 103

Notes:

1. Keyword parsing is done in accordance with the syntax defined by NOST 100-2.0, noting the following points
in particular:

(a) Sect. 5.1.2.1 specifies that keywords be left-justified in columns 1-8, blank-filled with no embedded
spaces, composed only of the ASCII characters ABCDEFGHJKLMNOPQRSTUVWXYZ0123456789-←↩

_

fitshdr() accepts any characters in columns 1-8 but flags keywords that do not conform to standard
syntax.

(b) Sect. 5.1.2.2 defines the "value indicator" as the characters ''= '' occurring in columns 9 and 10. If
these are absent then the keyword has no value and columns 9-80 may contain any ASCII text (but see
note 2 for CONTINUE keyrecords). This is copied to the comment member of the fitskey struct.

(c) Sect. 5.1.2.3 states that a keyword may have a null (undefined) value if the value/comment field,
columns 11-80, consists entirely of spaces, possibly followed by a comment.

(d) Sect. 5.1.1 states that trailing blanks in a string keyvalue are not significant and the parser always
removes them. A string containing nothing but blanks will be replaced with a single blank.

Sect. 5.2.1 also states that a quote character (') in a string value is to be represented by two successive
quote characters and the parser removes the repeated quote.

(e) The parser recognizes free-format character (NOST 100-2.0, Sect. 5.2.1), integer (Sect. 5.2.3), and
floating-point values (Sect. 5.2.4) for all keywords.

(f) Sect. 5.2.3 offers no comment on the size of an integer keyvalue except indirectly in limiting it to 70
digits. The parser will translate an integer keyvalue to a 32-bit signed integer if it lies in the range -
2147483648 to +2147483647, otherwise it interprets it as a 64-bit signed integer if possible, or else a
"very long" integer (see fitskey::type).

(g) END not followed by 77 blanks is not considered to be a legitimate end keyrecord.

2. The parser supports a generalization of the OGIP Long String Keyvalue Convention (v1.0) whereby strings
may be continued onto successive header keyrecords. A keyrecord contains a segment of a continued string
if and only if

(a) it contains the pseudo-keyword CONTINUE,

(b) columns 9 and 10 are both blank,

(c) columns 11 to 80 contain what would be considered a valid string keyvalue, including optional key-
comment, if column 9 had contained '=',

(d) the previous keyrecord contained either a valid string keyvalue or a valid CONTINUE keyrecord.

If any of these conditions is violated, the keyrecord is considered in isolation.

Syntax errors in keycomments in a continued string are treated more permissively than usual; the '/' delimiter
may be omitted provided that parsing of the string keyvalue is not compromised. However, the FITSHDR_←↩

COMMENT status bit will be set for the keyrecord (see fitskey::status).

As for normal strings, trailing blanks in a continued string are not significant.

In the OGIP convention "the '&' character is used as the last non-blank character of the string to indicate that
the string is (probably) continued on the following keyword". This additional syntax is not required by fitshdr(),
but if '&' does occur as the last non-blank character of a continued string keyvalue then it will be removed,
along with any trailing blanks. However, blanks that occur before the '&' will be preserved.

19.3.6 Variable Documentation

Generated by Doxygen

104

19.3.6.1 fitshdr_errmsg const char ∗ fitshdr_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.4 getwcstab.h File Reference

#include <fitsio.h>

Data Structures

• struct wtbarr

Extraction of coordinate lookup tables from BINTABLE.

Functions

• int fits_read_wcstab (fitsfile ∗fptr, int nwtb, wtbarr ∗wtb, int ∗status)

FITS 'TAB' table reading routine.

19.4.1 Detailed Description

fits_read_wcstab(), an implementation of a FITS table reading routine for 'TAB' coordinates, is provided for CFITSIO
programmers. It has been incorporated into CFITSIO as of v3.006 with the definitions in this file, getwcstab.h, moved
into fitsio.h.

fits_read_wcstab() is not included in the WCSLIB object library but the source code is presented here as it may be
useful for programmers using an older version of CFITSIO than 3.006, or as a programming template for non-←↩

CFITSIO programmers.

19.4.2 Function Documentation

19.4.2.1 fits_read_wcstab() int fits_read_wcstab (

fitsfile ∗ fptr,

int nwtb,

wtbarr ∗ wtb,

int ∗ status)

fits_read_wcstab() extracts arrays from a binary table required in constructing 'TAB' coordinates.

Parameters

in fptr Pointer to the file handle returned, for example, by the fits_open_file() routine in
CFITSIO.

in nwtb Number of arrays to be read from the binary table(s).

in,out wtb Address of the first element of an array of wtbarr typedefs. This wtbarr typedef is defined
to match the wtbarr struct defined in WCSLIB. An array of such structs returned by the
WCSLIB function wcstab() as discussed in the notes below.

out status CFITSIO status value. Generated by Doxygen

19.5 lin.h File Reference 105

Returns

CFITSIO status value.

Notes:

1. In order to maintain WCSLIB and CFITSIO as independent libraries it is not permissible for any CFITSIO
library code to include WCSLIB header files, or vice versa. However, the CFITSIO function fits_read_←↩

wcstab() accepts an array of wtbarr structs defined in wcs.h within WCSLIB.

The problem therefore is to define the wtbarr struct within fitsio.h without including wcs.h, especially noting
that wcs.h will often (but not always) be included together with fitsio.h in an applications program that uses
fits_read_wcstab().

The solution adopted is for WCSLIB to define "struct wtbarr" while fitsio.h defines "typedef wtbarr" as an
untagged struct with identical members. This allows both wcs.h and fitsio.h to define a wtbarr data type
without conflict by virtue of the fact that structure tags and typedef names share different name spaces in C;
Appendix A, Sect. A11.1 (p227) of the K&R ANSI edition states that:
Identifiers fall into several name spaces that do not interfere with
one another; the same identifier may be used for different purposes,
even in the same scope, if the uses are in different name spaces.
These classes are: objects, functions, typedef names, and enum
constants; labels; tags of structures, unions, and enumerations; and
members of each structure or union individually.

Therefore, declarations within WCSLIB look like
struct wtbarr *w;

while within CFITSIO they are simply
wtbarr *w;

As suggested by the commonality of the names, these are really the same aggregate data type. However, in
passing a (struct wtbarr ∗) to fits_read_wcstab() a cast to (wtbarr ∗) is formally required.

When using WCSLIB and CFITSIO together in C++ the situation is complicated by the fact that typedefs and
structs share the same namespace; C++ Annotated Reference Manual, Sect. 7.1.3 (p105). In that case the
wtbarr struct in wcs.h is renamed by preprocessor macro substitution to wtbarr_s to distinguish it from the
typedef defined in fitsio.h. However, the scope of this macro substitution is limited to wcs.h itself and CFITSIO
programmer code, whether in C++ or C, should always use the wtbarr typedef.

19.5 lin.h File Reference

Data Structures

• struct linprm

Linear transformation parameters.

Macros

• #define LINLEN (sizeof(struct linprm)/sizeof(int))

Size of the linprm struct in int units.

• #define linini_errmsg lin_errmsg

Deprecated.

• #define lincpy_errmsg lin_errmsg

Deprecated.

• #define linfree_errmsg lin_errmsg

Deprecated.

• #define linprt_errmsg lin_errmsg

Deprecated.

Generated by Doxygen

106

• #define linset_errmsg lin_errmsg

Deprecated.

• #define linp2x_errmsg lin_errmsg

Deprecated.

• #define linx2p_errmsg lin_errmsg

Deprecated.

Enumerations

• enum lin_errmsg_enum {
LINERR_SUCCESS = 0 , LINERR_NULL_POINTER = 1 , LINERR_MEMORY = 2 , LINERR_SINGULAR_MTX
= 3 ,
LINERR_DISTORT_INIT = 4 , LINERR_DISTORT = 5 , LINERR_DEDISTORT = 6 }

Functions

• int linini (int alloc, int naxis, struct linprm ∗lin)

Default constructor for the linprm struct.

• int lininit (int alloc, int naxis, struct linprm ∗lin, int ndpmax)

Default constructor for the linprm struct.

• int lindis (int sequence, struct linprm ∗lin, struct disprm ∗dis)

Assign a distortion to a linprm struct.

• int lindist (int sequence, struct linprm ∗lin, struct disprm ∗dis, int ndpmax)

Assign a distortion to a linprm struct.

• int lincpy (int alloc, const struct linprm ∗linsrc, struct linprm ∗lindst)

Copy routine for the linprm struct.

• int linfree (struct linprm ∗lin)

Destructor for the linprm struct.

• int linprt (const struct linprm ∗lin)

Print routine for the linprm struct.

• int linperr (const struct linprm ∗lin, const char ∗prefix)

Print error messages from a linprm struct.

• int linset (struct linprm ∗lin)

Setup routine for the linprm struct.

• int linp2x (struct linprm ∗lin, int ncoord, int nelem, const double pixcrd[], double imgcrd[])

Pixel-to-world linear transformation.

• int linx2p (struct linprm ∗lin, int ncoord, int nelem, const double imgcrd[], double pixcrd[])

World-to-pixel linear transformation.

• int linwarp (struct linprm ∗lin, const double pixblc[], const double pixtrc[], const double pixsamp[], int ∗nsamp,
double maxdis[], double ∗maxtot, double avgdis[], double ∗avgtot, double rmsdis[], double ∗rmstot)

Compute measures of distortion.

• int matinv (int n, const double mat[], double inv[])

Matrix inversion.

Variables

• const char ∗ lin_errmsg []

Status return messages.

Generated by Doxygen

19.5 lin.h File Reference 107

19.5.1 Detailed Description

Routines in this suite apply the linear transformation defined by the FITS World Coordinate System (WCS) standard,
as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)

These routines are based on the linprm struct which contains all information needed for the computations. The
struct contains some members that must be set by the user, and others that are maintained by these routines,
somewhat like a C++ class but with no encapsulation.

Six routines, linini(), lininit(), lindis(), lindist() lincpy(), and linfree() are provided to manage the linprm struct, and
another, linprt(), prints its contents.

linperr() prints the error message(s) (if any) stored in a linprm struct, and the disprm structs that it may contain.

A setup routine, linset(), computes intermediate values in the linprm struct from parameters in it that were supplied
by the user. The struct always needs to be set up by linset() but need not be called explicitly - refer to the explanation
of linprm::flag.

linp2x() and linx2p() implement the WCS linear transformations.

An auxiliary routine, linwarp(), computes various measures of the distortion over a specified range of pixel coordi-
nates.

An auxiliary matrix inversion routine, matinv(), is included. It uses LU-triangular factorization with scaled partial
pivoting.

19.5.2 Macro Definition Documentation

19.5.2.1 LINLEN #define LINLEN (sizeof(struct linprm)/sizeof(int))

Size of the linprm struct in int units, used by the Fortran wrappers.

19.5.2.2 linini_errmsg #define linini_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.5.2.3 lincpy_errmsg #define lincpy_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

Generated by Doxygen

108

19.5.2.4 linfree_errmsg #define linfree_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.5.2.5 linprt_errmsg #define linprt_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.5.2.6 linset_errmsg #define linset_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.5.2.7 linp2x_errmsg #define linp2x_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.5.2.8 linx2p_errmsg #define linx2p_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.5.3 Enumeration Type Documentation

19.5.3.1 lin_errmsg_enum enum lin_errmsg_enum

Enumerator

LINERR_SUCCESS
LINERR_NULL_POINTER

LINERR_MEMORY
LINERR_SINGULAR_MTX

LINERR_DISTORT_INIT
LINERR_DISTORT

LINERR_DEDISTORT
Generated by Doxygen

19.5 lin.h File Reference 109

19.5.4 Function Documentation

19.5.4.1 linini() int linini (

int alloc,

int naxis,

struct linprm ∗ lin)

linini() is a thin wrapper on lininit(). It invokes it with ndpmax set to -1 which causes it to use the value of the
global variable NDPMAX. It is thereby potentially thread-unsafe if NDPMAX is altered dynamically via disndp(). Use
lininit() for a thread-safe alternative in this case.

19.5.4.2 lininit() int lininit (

int alloc,

int naxis,

struct linprm ∗ lin,

int ndpmax)

lininit() allocates memory for arrays in a linprm struct and sets all members of the struct to default values.

PLEASE NOTE: every linprm struct must be initialized by lininit(), possibly repeatedly. On the first invokation,
and only the first invokation, linprm::flag must be set to -1 to initialize memory management, regardless of whether
lininit() will actually be used to allocate memory.

Parameters

in alloc If true, allocate memory unconditionally for arrays in the linprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if
they are null pointers in which case memory will be allocated for them regardless. (In
other words, setting alloc true saves having to initalize these pointers to zero.)

in naxis The number of world coordinate axes, used to determine array sizes.

in,out lin Linear transformation parameters. Note that, in order to initialize memory
management linprm::flag should be set to -1 when lin is initialized for the first time
(memory leaks may result if it had already been initialized).

in ndpmax The number of DPja or DQia keywords to allocate space for. If set to -1, the value of
the global variable NDPMAX will be used. This is potentially thread-unsafe if disndp()
is being used dynamically to alter its value.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in linprm::err if enabled, see wcserr_enable().

Generated by Doxygen

110

19.5.4.3 lindis() int lindis (

int sequence,

struct linprm ∗ lin,

struct disprm ∗ dis)

lindis() is a thin wrapper on lindist(). It invokes it with ndpmax set to -1 which causes the value of the global
variable NDPMAX to be used (by disinit()). It is thereby potentially thread-unsafe if NDPMAX is altered dynamically
via disndp(). Use lindist() for a thread-safe alternative in this case.

19.5.4.4 lindist() int lindist (

int sequence,

struct linprm ∗ lin,

struct disprm ∗ dis,

int ndpmax)

lindist() may be used to assign the address of a disprm struct to linprm::dispre or linprm::disseq. The linprm struct
must already have been initialized by lininit().

The disprm struct must have been allocated from the heap (e.g. using malloc(), calloc(), etc.). lindist() will immedi-
ately initialize it via a call to disini() using the value of linprm::naxis. Subsequently, it will be reinitialized by calls to
lininit(), and freed by linfree(), neither of which would happen if the disprm struct was assigned directly.

If the disprm struct had previously been assigned via lindist(), it will be freed before reassignment. It is also
permissable for a null disprm pointer to be assigned to disable the distortion correction.

Parameters

in sequence Is it a prior or sequent distortion?

• 1: Prior, the assignment is to linprm::dispre.

• 2: Sequent, the assignment is to linprm::disseq.

Anything else is an error.

Parameters

in,out lin Linear transformation parameters.

in,out dis Distortion function parameters.

in ndpmax The number of DPja or DQia keywords to allocate space for. If set to -1, the value of
the global variable NDPMAX will be used. This is potentially thread-unsafe if disndp()
is being used dynamically to alter its value.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 4: Invalid sequence.

Generated by Doxygen

19.5 lin.h File Reference 111

19.5.4.5 lincpy() int lincpy (

int alloc,

const struct linprm ∗ linsrc,

struct linprm ∗ lindst)

lincpy() does a deep copy of one linprm struct to another, using lininit() to allocate memory for its arrays if required.
Only the "information to be provided" part of the struct is copied; a call to linset() is required to initialize the remainder.

Parameters

in alloc If true, allocate memory for the crpix, pc, and cdelt arrays in the destination. Otherwise, it
is assumed that pointers to these arrays have been set by the user except if they are null
pointers in which case memory will be allocated for them regardless.

in linsrc Struct to copy from.

in,out lindst Struct to copy to. linprm::flag should be set to -1 if lindst was not previously initialized
(memory leaks may result if it was previously initialized).

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in linprm::err if enabled, see wcserr_enable().

19.5.4.6 linfree() int linfree (

struct linprm ∗ lin)

linfree() frees memory allocated for the linprm arrays by lininit() and/or linset(). lininit() keeps a record of the memory
it allocates and linfree() will only attempt to free this.

PLEASE NOTE: linfree() must not be invoked on a linprm struct that was not initialized by lininit().

Parameters

in lin Linear transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

19.5.4.7 linprt() int linprt (

const struct linprm ∗ lin)

linprt() prints the contents of a linprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Generated by Doxygen

112

Parameters

in lin Linear transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

19.5.4.8 linperr() int linperr (

const struct linprm ∗ lin,

const char ∗ prefix)

linperr() prints the error message(s) (if any) stored in a linprm struct, and the disprm structs that it may contain. If
there are no errors then nothing is printed. It uses wcserr_prt(), q.v.

Parameters

in lin Coordinate transformation parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

19.5.4.9 linset() int linset (

struct linprm ∗ lin)

linset(), if necessary, allocates memory for the linprm::piximg and linprm::imgpix arrays and sets up the linprm
struct according to information supplied within it - refer to the explanation of linprm::flag.

Note that this routine need not be called directly; it will be invoked by linp2x() and linx2p() if the linprm::flag is
anything other than a predefined magic value.

Parameters

in,out lin Linear transformation parameters.

Generated by Doxygen

19.5 lin.h File Reference 113

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

• 3: PCi_ja matrix is singular.

For returns > 1, a detailed error message is set in linprm::err if enabled, see wcserr_enable().

19.5.4.10 linp2x() int linp2x (

struct linprm ∗ lin,

int ncoord,

int nelem,

const double pixcrd[],

double imgcrd[])

linp2x() transforms pixel coordinates to intermediate world coordinates.

Parameters

in,out lin Linear transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem but containing lin.naxis
coordinate elements.

in pixcrd Array of pixel coordinates.

out imgcrd Array of intermediate world coordinates.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

• 3: PCi_ja matrix is singular.

For returns > 1, a detailed error message is set in linprm::err if enabled, see wcserr_enable().

19.5.4.11 linx2p() int linx2p (

struct linprm ∗ lin,

int ncoord,

int nelem,

const double imgcrd[],

double pixcrd[])

linx2p() transforms intermediate world coordinates to pixel coordinates.

Parameters

in,out lin Linear transformation parameters.

Generated by Doxygen

114

Parameters

in ncoord,nelem The number of coordinates, each of vector length nelem but containing lin.naxis
coordinate elements.

in imgcrd Array of intermediate world coordinates.

out pixcrd Array of pixel coordinates. Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

• 3: PCi_ja matrix is singular.

For returns > 1, a detailed error message is set in linprm::err if enabled, see wcserr_enable().

19.5.4.12 linwarp() int linwarp (

struct linprm ∗ lin,

const double pixblc[],

const double pixtrc[],

const double pixsamp[],

int ∗ nsamp,

double maxdis[],

double ∗ maxtot,

double avgdis[],

double ∗ avgtot,

double rmsdis[],

double ∗ rmstot)

linwarp() computes various measures of the distortion over a specified range of pixel coordinates.

All distortion measures are specified as an offset in pixel coordinates, as given directly by prior distortions. The offset
in intermediate pixel coordinates given by sequent distortions is translated back to pixel coordinates by applying the
inverse of the linear transformation matrix (PCi_ja or CDi_ja). The difference may be significant if the matrix
introduced a scaling.

If all distortions are prior, then linwarp() uses diswarp(), q.v.

Parameters

in,out lin Linear transformation parameters plus distortions.

in pixblc Start of the range of pixel coordinates (i.e. "bottom left-hand corner" in the
conventional FITS image display orientation). May be specified as a NULL pointer
which is interpreted as (1,1,...).

in pixtrc End of the range of pixel coordinates (i.e. "top right-hand corner" in the conventional
FITS image display orientation).

in pixsamp If positive or zero, the increment on the particular axis, starting at pixblc[]. Zero is
interpreted as a unit increment. pixsamp may also be specified as a NULL pointer
which is interpreted as all zeroes, i.e. unit increments on all axes.
If negative, the grid size on the particular axis (the absolute value being rounded to
the nearest integer). For example, if pixsamp is (-128.0,-128.0,...) then each axis will
be sampled at 128 points between pixblc[] and pixtrc[] inclusive. Use caution when
using this option on non-square images.

out nsamp The number of pixel coordinates sampled.
Can be specified as a NULL pointer if not required.

Generated by Doxygen

19.5 lin.h File Reference 115

Parameters

out maxdis For each individual distortion function, the maximum absolute value of the distortion.
Can be specified as a NULL pointer if not required.

out maxtot For the combination of all distortion functions, the maximum absolute value of the
distortion.
Can be specified as a NULL pointer if not required.

out avgdis For each individual distortion function, the mean value of the distortion.
Can be specified as a NULL pointer if not required.

out avgtot For the combination of all distortion functions, the mean value of the distortion.
Can be specified as a NULL pointer if not required.

out rmsdis For each individual distortion function, the root mean square deviation of the
distortion.
Can be specified as a NULL pointer if not required.

out rmstot For the combination of all distortion functions, the root mean square deviation of the
distortion.
Can be specified as a NULL pointer if not required.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid parameter.

• 4: Distort error.

19.5.4.13 matinv() matinv (

int n,

const double mat[],

double inv[])

matinv() performs matrix inversion using LU-triangular factorization with scaled partial pivoting.

Parameters

in n Order of the matrix (n× n).

in mat Matrix to be inverted, stored as mat[in+ j] where i and j are the row and column indices
respectively.

out inv Inverse of mat with the same storage convention.

Returns

Status return value:

• 0: Success.

• 2: Memory allocation failed.

• 3: Singular matrix.

Generated by Doxygen

116

19.5.5 Variable Documentation

19.5.5.1 lin_errmsg const char ∗ lin_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.6 log.h File Reference

Enumerations

• enum log_errmsg_enum {
LOGERR_SUCCESS = 0 , LOGERR_NULL_POINTER = 1 , LOGERR_BAD_LOG_REF_VAL = 2 ,
LOGERR_BAD_X = 3 ,
LOGERR_BAD_WORLD = 4 }

Functions

• int logx2s (double crval, int nx, int sx, int slogc, const double x[], double logc[], int stat[])

Transform to logarithmic coordinates.
• int logs2x (double crval, int nlogc, int slogc, int sx, const double logc[], double x[], int stat[])

Transform logarithmic coordinates.

Variables

• const char ∗ log_errmsg []

Status return messages.

19.6.1 Detailed Description

Routines in this suite implement the part of the FITS World Coordinate System (WCS) standard that deals with
logarithmic coordinates, as described in

"Representations of world coordinates in FITS", Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS
Paper I)

"Representations of spectral coordinates in FITS", Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L. 2006,
A&A, 446, 747 (WCS Paper III)

These routines define methods to be used for computing logarithmic world coordinates from intermediate world
coordinates (a linear transformation of image pixel coordinates), and vice versa.

logx2s() and logs2x() implement the WCS logarithmic coordinate transformations.

Argument checking:
The input log-coordinate values are only checked for values that would result in floating point exceptions and the
same is true for the log-coordinate reference value.

Accuracy:
No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users must satisfy
for themselves their adequacy for the intended purpose. However, closure effectively to within double precision
rounding error was demonstrated by test routine tlog.c which accompanies this software.

19.6.2 Enumeration Type Documentation

19.6.2.1 log_errmsg_enum enum log_errmsg_enum

Generated by Doxygen

19.6 log.h File Reference 117

Enumerator

LOGERR_SUCCESS
LOGERR_NULL_POINTER

LOGERR_BAD_LOG_REF_VAL
LOGERR_BAD_X

LOGERR_BAD_WORLD

19.6.3 Function Documentation

19.6.3.1 logx2s() int logx2s (

double crval,

int nx,

int sx,

int slogc,

const double x[],

double logc[],

int stat[])

logx2s() transforms intermediate world coordinates to logarithmic coordinates.

Parameters

in,out crval Log-coordinate reference value (CRVALia).

in nx Vector length.

in sx Vector stride.
in slogc Vector stride.

in x Intermediate world coordinates, in SI units.

out logc Logarithmic coordinates, in SI units.

out stat Status return value status for each vector
element:

• 0: Success.

Returns

Status return value:

• 0: Success.

• 2: Invalid log-coordinate reference value.

19.6.3.2 logs2x() int logs2x (

double crval,

int nlogc,

Generated by Doxygen

118

int slogc,

int sx,

const double logc[],

double x[],

int stat[])

logs2x() transforms logarithmic world coordinates to intermediate world coordinates.

Parameters

in,out crval Log-coordinate reference value (CRVALia).

in nlogc Vector length.

in slogc Vector stride.

in sx Vector stride.
in logc Logarithmic coordinates, in SI units.

out x Intermediate world coordinates, in SI units.

out stat Status return value status for each vector
element:

• 0: Success.

• 1: Invalid value of logc.

Returns

Status return value:

• 0: Success.

• 2: Invalid log-coordinate reference value.

• 4: One or more of the world-coordinate values are incorrect, as indicated by the stat vector.

19.6.4 Variable Documentation

19.6.4.1 log_errmsg const char ∗ log_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.7 prj.h File Reference

Data Structures

• struct prjprm

Projection parameters.

Generated by Doxygen

19.7 prj.h File Reference 119

Macros

• #define PVN 30

Total number of projection parameters.

• #define PRJX2S_ARGS

For use in declaring deprojection function prototypes.

• #define PRJS2X_ARGS

For use in declaring projection function prototypes.

• #define PRJLEN (sizeof(struct prjprm)/sizeof(int))

Size of the prjprm struct in int units.

• #define prjini_errmsg prj_errmsg

Deprecated.

• #define prjprt_errmsg prj_errmsg

Deprecated.

• #define prjset_errmsg prj_errmsg

Deprecated.

• #define prjx2s_errmsg prj_errmsg

Deprecated.

• #define prjs2x_errmsg prj_errmsg

Deprecated.

Enumerations

• enum prj_errmsg_enum {
PRJERR_SUCCESS = 0 , PRJERR_NULL_POINTER = 1 , PRJERR_BAD_PARAM = 2 , PRJERR_BAD_PIX
= 3 ,
PRJERR_BAD_WORLD = 4 }

Functions

• int prjini (struct prjprm ∗prj)

Default constructor for the prjprm struct.

• int prjfree (struct prjprm ∗prj)

Destructor for the prjprm struct.

• int prjprt (const struct prjprm ∗prj)

Print routine for the prjprm struct.

• int prjperr (const struct prjprm ∗prj, const char ∗prefix)

Print error messages from a prjprm struct.

• int prjbchk (double tol, int nphi, int ntheta, int spt, double phi[], double theta[], int stat[])

Bounds checking on native coordinates.

• int prjset (struct prjprm ∗prj)

Generic setup routine for the prjprm struct.

• int prjx2s (PRJX2S_ARGS)

Generic Cartesian-to-spherical deprojection.

• int prjs2x (PRJS2X_ARGS)

Generic spherical-to-Cartesian projection.

• int azpset (struct prjprm ∗prj)

Set up a prjprm struct for the zenithal/azimuthal perspective (AZP) projection.

• int azpx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the zenithal/azimuthal perspective (AZP) projection.

Generated by Doxygen

120

• int azps2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the zenithal/azimuthal perspective (AZP) projection.

• int szpset (struct prjprm ∗prj)

Set up a prjprm struct for the slant zenithal perspective (SZP) projection.

• int szpx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the slant zenithal perspective (SZP) projection.

• int szps2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the slant zenithal perspective (SZP) projection.

• int tanset (struct prjprm ∗prj)

Set up a prjprm struct for the gnomonic (TAN) projection.

• int tanx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the gnomonic (TAN) projection.

• int tans2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the gnomonic (TAN) projection.

• int stgset (struct prjprm ∗prj)

Set up a prjprm struct for the stereographic (STG) projection.

• int stgx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the stereographic (STG) projection.

• int stgs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the stereographic (STG) projection.

• int sinset (struct prjprm ∗prj)

Set up a prjprm struct for the orthographic/synthesis (SIN) projection.

• int sinx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the orthographic/synthesis (SIN) projection.

• int sins2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the orthographic/synthesis (SIN) projection.

• int arcset (struct prjprm ∗prj)

Set up a prjprm struct for the zenithal/azimuthal equidistant (ARC) projection.

• int arcx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the zenithal/azimuthal equidistant (ARC) projection.

• int arcs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the zenithal/azimuthal equidistant (ARC) projection.

• int zpnset (struct prjprm ∗prj)

Set up a prjprm struct for the zenithal/azimuthal polynomial (ZPN) projection.

• int zpnx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the zenithal/azimuthal polynomial (ZPN) projection.

• int zpns2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the zenithal/azimuthal polynomial (ZPN) projection.

• int zeaset (struct prjprm ∗prj)

Set up a prjprm struct for the zenithal/azimuthal equal area (ZEA) projection.

• int zeax2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the zenithal/azimuthal equal area (ZEA) projection.

• int zeas2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the zenithal/azimuthal equal area (ZEA) projection.

• int airset (struct prjprm ∗prj)

Set up a prjprm struct for Airy's (AIR) projection.

• int airx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for Airy's (AIR) projection.

• int airs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for Airy's (AIR) projection.

• int cypset (struct prjprm ∗prj)

Generated by Doxygen

19.7 prj.h File Reference 121

Set up a prjprm struct for the cylindrical perspective (CYP) projection.

• int cypx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the cylindrical perspective (CYP) projection.

• int cyps2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the cylindrical perspective (CYP) projection.

• int ceaset (struct prjprm ∗prj)

Set up a prjprm struct for the cylindrical equal area (CEA) projection.

• int ceax2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the cylindrical equal area (CEA) projection.

• int ceas2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the cylindrical equal area (CEA) projection.

• int carset (struct prjprm ∗prj)

Set up a prjprm struct for the plate carrée (CAR) projection.

• int carx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the plate carrée (CAR) projection.

• int cars2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the plate carrée (CAR) projection.

• int merset (struct prjprm ∗prj)

Set up a prjprm struct for Mercator's (MER) projection.

• int merx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for Mercator's (MER) projection.

• int mers2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for Mercator's (MER) projection.

• int sflset (struct prjprm ∗prj)

Set up a prjprm struct for the Sanson-Flamsteed (SFL) projection.

• int sflx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the Sanson-Flamsteed (SFL) projection.

• int sfls2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the Sanson-Flamsteed (SFL) projection.

• int parset (struct prjprm ∗prj)

Set up a prjprm struct for the parabolic (PAR) projection.

• int parx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the parabolic (PAR) projection.

• int pars2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the parabolic (PAR) projection.

• int molset (struct prjprm ∗prj)

Set up a prjprm struct for Mollweide's (MOL) projection.

• int molx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for Mollweide's (MOL) projection.

• int mols2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for Mollweide's (MOL) projection.

• int aitset (struct prjprm ∗prj)

Set up a prjprm struct for the Hammer-Aitoff (AIT) projection.

• int aitx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the Hammer-Aitoff (AIT) projection.

• int aits2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the Hammer-Aitoff (AIT) projection.

• int copset (struct prjprm ∗prj)

Set up a prjprm struct for the conic perspective (COP) projection.

• int copx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the conic perspective (COP) projection.

Generated by Doxygen

122

• int cops2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the conic perspective (COP) projection.

• int coeset (struct prjprm ∗prj)

Set up a prjprm struct for the conic equal area (COE) projection.

• int coex2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the conic equal area (COE) projection.

• int coes2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the conic equal area (COE) projection.

• int codset (struct prjprm ∗prj)

Set up a prjprm struct for the conic equidistant (COD) projection.

• int codx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the conic equidistant (COD) projection.

• int cods2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the conic equidistant (COD) projection.

• int cooset (struct prjprm ∗prj)

Set up a prjprm struct for the conic orthomorphic (COO) projection.

• int coox2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the conic orthomorphic (COO) projection.

• int coos2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the conic orthomorphic (COO) projection.

• int bonset (struct prjprm ∗prj)

Set up a prjprm struct for Bonne's (BON) projection.

• int bonx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for Bonne's (BON) projection.

• int bons2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for Bonne's (BON) projection.

• int pcoset (struct prjprm ∗prj)

Set up a prjprm struct for the polyconic (PCO) projection.

• int pcox2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the polyconic (PCO) projection.

• int pcos2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the polyconic (PCO) projection.

• int tscset (struct prjprm ∗prj)

Set up a prjprm struct for the tangential spherical cube (TSC) projection.

• int tscx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the tangential spherical cube (TSC) projection.

• int tscs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the tangential spherical cube (TSC) projection.

• int cscset (struct prjprm ∗prj)

Set up a prjprm struct for the COBE spherical cube (CSC) projection.

• int cscx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the COBE spherical cube (CSC) projection.

• int cscs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the COBE spherical cube (CSC) projection.

• int qscset (struct prjprm ∗prj)

Set up a prjprm struct for the quadrilateralized spherical cube (QSC) projection.

• int qscx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the quadrilateralized spherical cube (QSC) projection.

• int qscs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the quadrilateralized spherical cube (QSC) projection.

• int hpxset (struct prjprm ∗prj)

Generated by Doxygen

19.7 prj.h File Reference 123

Set up a prjprm struct for the HEALPix (HPX) projection.

• int hpxx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the HEALPix (HPX) projection.

• int hpxs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the HEALPix (HPX) projection.

• int xphset (struct prjprm ∗prj)
• int xphx2s (PRJX2S_ARGS)
• int xphs2x (PRJS2X_ARGS)

Variables

• const char ∗ prj_errmsg []

Status return messages.

• const int CONIC

Identifier for conic projections.

• const int CONVENTIONAL

Identifier for conventional projections.

• const int CYLINDRICAL

Identifier for cylindrical projections.

• const int POLYCONIC

Identifier for polyconic projections.

• const int PSEUDOCYLINDRICAL

Identifier for pseudocylindrical projections.

• const int QUADCUBE

Identifier for quadcube projections.

• const int ZENITHAL

Identifier for zenithal/azimuthal projections.

• const int HEALPIX

Identifier for the HEALPix projection.

• const char prj_categories [9][32]

Projection categories.

• const int prj_ncode

The number of recognized three-letter projection codes.

• const char prj_codes [28][4]

Recognized three-letter projection codes.

19.7.1 Detailed Description

Routines in this suite implement the spherical map projections defined by the FITS World Coordinate System (WCS)
standard, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
"Mapping on the HEALPix grid",
Calabretta, M.R., & Roukema, B.F. 2007, MNRAS, 381, 865 (WCS Paper V)
"Representing the ’Butterfly’ Projection in FITS -- Projection Code XPH",
Calabretta, M.R., & Lowe, S.R. 2013, PASA, 30, e050 (WCS Paper VI)

These routines are based on the prjprm struct which contains all information needed for the computations. The
struct contains some members that must be set by the user, and others that are maintained by these routines,
somewhat like a C++ class but with no encapsulation.

Generated by Doxygen

124

Routine prjini() is provided to initialize the prjprm struct with default values, prjfree() reclaims any memory that may
have been allocated to store an error message, and prjprt() prints its contents.

prjperr() prints the error message(s) (if any) stored in a prjprm struct. prjbchk() performs bounds checking on native
spherical coordinates.

Setup routines for each projection with names of the form ???set(), where "???" is the down-cased three-letter
projection code, compute intermediate values in the prjprm struct from parameters in it that were supplied by the
user. The struct always needs to be set by the projection's setup routine but that need not be called explicitly - refer
to the explanation of prjprm::flag.

Each map projection is implemented via separate functions for the spherical projection, ???s2x(), and deprojection,
???x2s().

A set of driver routines, prjset(), prjx2s(), and prjs2x(), provides a generic interface to the specific projection routines
which they invoke via pointers-to-functions stored in the prjprm struct.

In summary, the routines are:

• prjini() Initialization routine for the prjprm struct.

• prjfree() Reclaim memory allocated for error messages.

• prjprt() Print the prjprm struct.

• prjperr() Print error message (if any).

• prjbchk() Bounds checking on native coordinates.

• prjset(), prjx2s(), prjs2x(): Generic driver routines

• azpset(), azpx2s(), azps2x(): AZP (zenithal/azimuthal perspective)

• szpset(), szpx2s(), szps2x(): SZP (slant zenithal perspective)

• tanset(), tanx2s(), tans2x(): TAN (gnomonic)

• stgset(), stgx2s(), stgs2x(): STG (stereographic)

• sinset(), sinx2s(), sins2x(): SIN (orthographic/synthesis)

• arcset(), arcx2s(), arcs2x(): ARC (zenithal/azimuthal equidistant)

• zpnset(), zpnx2s(), zpns2x(): ZPN (zenithal/azimuthal polynomial)

• zeaset(), zeax2s(), zeas2x(): ZEA (zenithal/azimuthal equal area)

• airset(), airx2s(), airs2x(): AIR (Airy)

• cypset(), cypx2s(), cyps2x(): CYP (cylindrical perspective)

• ceaset(), ceax2s(), ceas2x(): CEA (cylindrical equal area)

• carset(), carx2s(), cars2x(): CAR (Plate carée)

• merset(), merx2s(), mers2x(): MER (Mercator)

• sflset(), sflx2s(), sfls2x(): SFL (Sanson-Flamsteed)

• parset(), parx2s(), pars2x(): PAR (parabolic)

• molset(), molx2s(), mols2x(): MOL (Mollweide)

• aitset(), aitx2s(), aits2x(): AIT (Hammer-Aitoff)

Generated by Doxygen

19.7 prj.h File Reference 125

• copset(), copx2s(), cops2x(): COP (conic perspective)

• coeset(), coex2s(), coes2x(): COE (conic equal area)

• codset(), codx2s(), cods2x(): COD (conic equidistant)

• cooset(), coox2s(), coos2x(): COO (conic orthomorphic)

• bonset(), bonx2s(), bons2x(): BON (Bonne)

• pcoset(), pcox2s(), pcos2x(): PCO (polyconic)

• tscset(), tscx2s(), tscs2x(): TSC (tangential spherical cube)

• cscset(), cscx2s(), cscs2x(): CSC (COBE spherical cube)

• qscset(), qscx2s(), qscs2x(): QSC (quadrilateralized spherical cube)

• hpxset(), hpxx2s(), hpxs2x(): HPX (HEALPix)

• xphset(), xphx2s(), xphs2x(): XPH (HEALPix polar, aka "butterfly")

Argument checking (projection routines):
The values of φ and θ (the native longitude and latitude) normally lie in the range [−180◦, 180◦] for φ, and
[−90◦, 90◦] for θ. However, all projection routines will accept any value of φ and will not normalize it.

The projection routines do not explicitly check that θ lies within the range [−90◦, 90◦]. They do check for any value
of θ that produces an invalid argument to the projection equations (e.g. leading to division by zero). The projection
routines for AZP, SZP, TAN, SIN, ZPN, and COP also return error 2 if (φ, θ) corresponds to the overlapped (far)
side of the projection but also return the corresponding value of (x, y). This strict bounds checking may be relaxed
at any time by setting prjprm::bounds%2 to 0 (rather than 1); the projections need not be reinitialized.

Argument checking (deprojection routines):
Error checking on the projected coordinates (x, y) is limited to that required to ascertain whether a solution exists.
Where a solution does exist, an optional check is made that the value of φ and θ obtained lie within the ranges
[−180◦, 180◦] for φ, and [−90◦, 90◦] for θ. This check, performed by prjbchk(), is enabled by default. It may be
disabled by setting prjprm::bounds%4 to 0 (rather than 1); the projections need not be reinitialized.

Accuracy:
No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users must satisfy
for themselves their adequacy for the intended purpose. However, closure to a precision of at least 0◦.0000000001
of longitude and latitude has been verified for typical projection parameters on the 1◦ degree graticule of native
longitude and latitude (to within 5◦ of any latitude where the projection may diverge). Refer to the tprj1.c and tprj2.c
test routines that accompany this software.

19.7.2 Macro Definition Documentation

19.7.2.1 PVN #define PVN 30

The total number of projection parameters numbered 0 to PVN-1.

19.7.2.2 PRJX2S_ARGS #define PRJX2S_ARGS

Value:
struct prjprm *prj, int nx, int ny, int sxy, int spt, \
const double x[], const double y[], double phi[], double theta[], int stat[]

Preprocessor macro used for declaring deprojection function prototypes.

Generated by Doxygen

126

19.7.2.3 PRJS2X_ARGS #define PRJS2X_ARGS

Value:
struct prjprm *prj, int nx, int ny, int sxy, int spt, \
const double phi[], const double theta[], double x[], double y[], int stat[]

Preprocessor macro used for declaring projection function prototypes.

19.7.2.4 PRJLEN #define PRJLEN (sizeof(struct prjprm)/sizeof(int))

Size of the prjprm struct in int units, used by the Fortran wrappers.

19.7.2.5 prjini_errmsg #define prjini_errmsg prj_errmsg

Deprecated Added for backwards compatibility, use prj_errmsg directly now instead.

19.7.2.6 prjprt_errmsg #define prjprt_errmsg prj_errmsg

Deprecated Added for backwards compatibility, use prj_errmsg directly now instead.

19.7.2.7 prjset_errmsg #define prjset_errmsg prj_errmsg

Deprecated Added for backwards compatibility, use prj_errmsg directly now instead.

19.7.2.8 prjx2s_errmsg #define prjx2s_errmsg prj_errmsg

Deprecated Added for backwards compatibility, use prj_errmsg directly now instead.

19.7.2.9 prjs2x_errmsg #define prjs2x_errmsg prj_errmsg

Deprecated Added for backwards compatibility, use prj_errmsg directly now instead.

19.7.3 Enumeration Type Documentation

19.7.3.1 prj_errmsg_enum enum prj_errmsg_enum

Generated by Doxygen

19.7 prj.h File Reference 127

Enumerator

PRJERR_SUCCESS
PRJERR_NULL_POINTER

PRJERR_BAD_PARAM
PRJERR_BAD_PIX

PRJERR_BAD_WORLD

19.7.4 Function Documentation

19.7.4.1 prjini() int prjini (

struct prjprm ∗ prj)

prjini() sets all members of a prjprm struct to default values. It should be used to initialize every prjprm struct.

PLEASE NOTE: If the prjprm struct has already been initialized, then before reinitializing, it prjfree() should be used
to free any memory that may have been allocated to store an error message. A memory leak may otherwise result.

Parameters

out prj Projection parameters.

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

19.7.4.2 prjfree() int prjfree (

struct prjprm ∗ prj)

prjfree() frees any memory that may have been allocated to store an error message in the prjprm struct.

Parameters

in prj Projection parameters.

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

Generated by Doxygen

128

19.7.4.3 prjprt() int prjprt (

const struct prjprm ∗ prj)

prjprt() prints the contents of a prjprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in prj Projection parameters.

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

19.7.4.4 prjperr() int prjperr (

const struct prjprm ∗ prj,

const char ∗ prefix)

prjperr() prints the error message(s) (if any) stored in a prjprm struct. If there are no errors then nothing is printed.
It uses wcserr_prt(), q.v.

Parameters

in prj Projection parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

19.7.4.5 prjbchk() int prjbchk (

double tol,

int nphi,

int ntheta,

int spt,

double phi[],

double theta[],

int stat[])

prjbchk() performs bounds checking on native spherical coordinates. As returned by the deprojection (x2s) routines,
native longitude is expected to lie in the closed interval [−180◦, 180◦], with latitude in [−90◦, 90◦].

Generated by Doxygen

19.7 prj.h File Reference 129

A tolerance may be specified to provide a small allowance for numerical imprecision. Values that lie outside the
allowed range by not more than the specified tolerance will be adjusted back into range.

If prjprm::bounds&4 is set, as it is by prjini(), then prjbchk() will be invoked automatically by the Cartesian-to-
spherical deprojection (x2s) routines with an appropriate tolerance set for each projection.

Generated by Doxygen

130

Parameters

in tol Tolerance for the bounds check [deg].

in nphi,ntheta Vector lengths.

in spt Vector stride.

in,out phi,theta Native longitude and latitude (φ, θ) [deg].

out stat Status value for each vector element:

• 0: Valid value of (φ, θ).

• 1: Invalid value.

Returns

Status return value:

• 0: Success.

• 1: One or more of the (φ, θ) coordinates were, invalid, as indicated by the stat vector.

19.7.4.6 prjset() int prjset (

struct prjprm ∗ prj)

prjset() sets up a prjprm struct according to information supplied within it.

Note that this routine need not be called directly; it will be invoked by prjx2s() and prjs2x() if prj.flag is anything other
than a predefined magic value.

The one important distinction between prjset() and the setup routines for the specific projections is that the projec-
tion code must be defined in the prjprm struct in order for prjset() to identify the required projection. Once prjset()
has initialized the prjprm struct, prjx2s() and prjs2x() use the pointers to the specific projection and deprojection
routines contained therein.

Parameters

in,out prj Projection parameters.

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

• 2: Invalid projection parameters.

For returns > 1, a detailed error message is set in prjprm::err if enabled, see wcserr_enable().

19.7.4.7 prjx2s() int prjx2s (

PRJX2S_ARGS)

Deproject Cartesian (x, y) coordinates in the plane of projection to native spherical coordinates (φ, θ).

The projection is that specified by prjprm::code.

Generated by Doxygen

19.7 prj.h File Reference 131

Parameters

in,out prj Projection parameters.

in nx,ny Vector lengths.

in sxy,spt Vector strides.

in x,y Projected coordinates.

out phi,theta Longitude and latitude (φ, θ) of the projected point in native spherical coordinates [deg].

out stat Status value for each vector element:

• 0: Success.

• 1: Invalid value of (x, y).

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

• 2: Invalid projection parameters.

• 3: One or more of the (x, y) coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in prjprm::err if enabled, see wcserr_enable().

19.7.4.8 prjs2x() int prjs2x (

PRJS2X_ARGS)

Project native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of projection.

The projection is that specified by prjprm::code.

Parameters

in,out prj Projection parameters.

in nphi,ntheta Vector lengths.

in spt,sxy Vector strides.

in phi,theta Longitude and latitude (φ, θ) of the projected point in native spherical coordinates
[deg].

out x,y Projected coordinates.

out stat Status value for each vector element:

• 0: Success.

• 1: Invalid value of (φ, θ).

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

Generated by Doxygen

132

• 2: Invalid projection parameters.

• 4: One or more of the (φ, θ) coordinates were, invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in prjprm::err if enabled, see wcserr_enable().

19.7.4.9 azpset() int azpset (

struct prjprm ∗ prj)

azpset() sets up a prjprm struct for a zenithal/azimuthal perspective (AZP) projection.

See prjset() for a description of the API.

19.7.4.10 azpx2s() int azpx2s (

PRJX2S_ARGS)

azpx2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal perspective (AZP) projec-
tion to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.11 azps2x() int azps2x (

PRJS2X_ARGS)

azps2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal perspective (AZP) projection.

See prjs2x() for a description of the API.

19.7.4.12 szpset() int szpset (

struct prjprm ∗ prj)

szpset() sets up a prjprm struct for a slant zenithal perspective (SZP) projection.

See prjset() for a description of the API.

19.7.4.13 szpx2s() int szpx2s (

PRJX2S_ARGS)

szpx2s() deprojects Cartesian (x, y) coordinates in the plane of a slant zenithal perspective (SZP) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.14 szps2x() int szps2x (

PRJS2X_ARGS)

szps2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a slant zenithal
perspective (SZP) projection.

See prjs2x() for a description of the API.

Generated by Doxygen

19.7 prj.h File Reference 133

19.7.4.15 tanset() int tanset (

struct prjprm ∗ prj)

tanset() sets up a prjprm struct for a gnomonic (TAN) projection.

See prjset() for a description of the API.

19.7.4.16 tanx2s() int tanx2s (

PRJX2S_ARGS)

tanx2s() deprojects Cartesian (x, y) coordinates in the plane of a gnomonic (TAN) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.17 tans2x() int tans2x (

PRJS2X_ARGS)

tans2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a gnomonic
(TAN) projection.

See prjs2x() for a description of the API.

19.7.4.18 stgset() int stgset (

struct prjprm ∗ prj)

stgset() sets up a prjprm struct for a stereographic (STG) projection.

See prjset() for a description of the API.

19.7.4.19 stgx2s() int stgx2s (

PRJX2S_ARGS)

stgx2s() deprojects Cartesian (x, y) coordinates in the plane of a stereographic (STG) projection to native spher-
ical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.20 stgs2x() int stgs2x (

PRJS2X_ARGS)

stgs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a stereographic
(STG) projection.

See prjs2x() for a description of the API.

19.7.4.21 sinset() int sinset (

struct prjprm ∗ prj)

stgset() sets up a prjprm struct for an orthographic/synthesis (SIN) projection.

See prjset() for a description of the API.

Generated by Doxygen

134

19.7.4.22 sinx2s() int sinx2s (

PRJX2S_ARGS)

sinx2s() deprojects Cartesian (x, y) coordinates in the plane of an orthographic/synthesis (SIN) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.23 sins2x() int sins2x (

PRJS2X_ARGS)

sins2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of an ortho-
graphic/synthesis (SIN) projection.

See prjs2x() for a description of the API.

19.7.4.24 arcset() int arcset (

struct prjprm ∗ prj)

arcset() sets up a prjprm struct for a zenithal/azimuthal equidistant (ARC) projection.

See prjset() for a description of the API.

19.7.4.25 arcx2s() int arcx2s (

PRJX2S_ARGS)

arcx2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal equidistant (ARC) projection
to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.26 arcs2x() int arcs2x (

PRJS2X_ARGS)

arcs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal equidistant (ARC) projection.

See prjs2x() for a description of the API.

19.7.4.27 zpnset() int zpnset (

struct prjprm ∗ prj)

zpnset() sets up a prjprm struct for a zenithal/azimuthal polynomial (ZPN) projection.

See prjset() for a description of the API.

19.7.4.28 zpnx2s() int zpnx2s (

PRJX2S_ARGS)

zpnx2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal polynomial (ZPN) projection
to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

Generated by Doxygen

19.7 prj.h File Reference 135

19.7.4.29 zpns2x() int zpns2x (

PRJS2X_ARGS)

zpns2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal polynomial (ZPN) projection.

See prjs2x() for a description of the API.

19.7.4.30 zeaset() int zeaset (

struct prjprm ∗ prj)

zeaset() sets up a prjprm struct for a zenithal/azimuthal equal area (ZEA) projection.

See prjset() for a description of the API.

19.7.4.31 zeax2s() int zeax2s (

PRJX2S_ARGS)

zeax2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal equal area (ZEA) projection
to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.32 zeas2x() int zeas2x (

PRJS2X_ARGS)

zeas2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal equal area (ZEA) projection.

See prjs2x() for a description of the API.

19.7.4.33 airset() int airset (

struct prjprm ∗ prj)

airset() sets up a prjprm struct for an Airy (AIR) projection.

See prjset() for a description of the API.

19.7.4.34 airx2s() int airx2s (

PRJX2S_ARGS)

airx2s() deprojects Cartesian (x, y) coordinates in the plane of an Airy (AIR) projection to native spherical coordi-
nates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.35 airs2x() int airs2x (

PRJS2X_ARGS)

airs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of an Airy (AIR)
projection.

See prjs2x() for a description of the API.

Generated by Doxygen

136

19.7.4.36 cypset() int cypset (

struct prjprm ∗ prj)

cypset() sets up a prjprm struct for a cylindrical perspective (CYP) projection.

See prjset() for a description of the API.

19.7.4.37 cypx2s() int cypx2s (

PRJX2S_ARGS)

cypx2s() deprojects Cartesian (x, y) coordinates in the plane of a cylindrical perspective (CYP) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.38 cyps2x() int cyps2x (

PRJS2X_ARGS)

cyps2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a cylindrical
perspective (CYP) projection.

See prjs2x() for a description of the API.

19.7.4.39 ceaset() int ceaset (

struct prjprm ∗ prj)

ceaset() sets up a prjprm struct for a cylindrical equal area (CEA) projection.

See prjset() for a description of the API.

19.7.4.40 ceax2s() int ceax2s (

PRJX2S_ARGS)

ceax2s() deprojects Cartesian (x, y) coordinates in the plane of a cylindrical equal area (CEA) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.41 ceas2x() int ceas2x (

PRJS2X_ARGS)

ceas2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a cylindrical
equal area (CEA) projection.

See prjs2x() for a description of the API.

19.7.4.42 carset() int carset (

struct prjprm ∗ prj)

carset() sets up a prjprm struct for a plate carrée (CAR) projection.

See prjset() for a description of the API.

Generated by Doxygen

19.7 prj.h File Reference 137

19.7.4.43 carx2s() int carx2s (

PRJX2S_ARGS)

carx2s() deprojects Cartesian (x, y) coordinates in the plane of a plate carrée (CAR) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.44 cars2x() int cars2x (

PRJS2X_ARGS)

cars2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a plate carrée
(CAR) projection.

See prjs2x() for a description of the API.

19.7.4.45 merset() int merset (

struct prjprm ∗ prj)

merset() sets up a prjprm struct for a Mercator (MER) projection.

See prjset() for a description of the API.

19.7.4.46 merx2s() int merx2s (

PRJX2S_ARGS)

merx2s() deprojects Cartesian (x, y) coordinates in the plane of a Mercator (MER) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.47 mers2x() int mers2x (

PRJS2X_ARGS)

mers2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Mercator
(MER) projection.

See prjs2x() for a description of the API.

19.7.4.48 sflset() int sflset (

struct prjprm ∗ prj)

sflset() sets up a prjprm struct for a Sanson-Flamsteed (SFL) projection.

See prjset() for a description of the API.

19.7.4.49 sflx2s() int sflx2s (

PRJX2S_ARGS)

sflx2s() deprojects Cartesian (x, y) coordinates in the plane of a Sanson-Flamsteed (SFL) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

Generated by Doxygen

138

19.7.4.50 sfls2x() int sfls2x (

PRJS2X_ARGS)

sfls2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Sanson-←↩

Flamsteed (SFL) projection.

See prjs2x() for a description of the API.

19.7.4.51 parset() int parset (

struct prjprm ∗ prj)

parset() sets up a prjprm struct for a parabolic (PAR) projection.

See prjset() for a description of the API.

19.7.4.52 parx2s() int parx2s (

PRJX2S_ARGS)

parx2s() deprojects Cartesian (x, y) coordinates in the plane of a parabolic (PAR) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.53 pars2x() int pars2x (

PRJS2X_ARGS)

pars2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a parabolic
(PAR) projection.

See prjs2x() for a description of the API.

19.7.4.54 molset() int molset (

struct prjprm ∗ prj)

molset() sets up a prjprm struct for a Mollweide (MOL) projection.

See prjset() for a description of the API.

19.7.4.55 molx2s() int molx2s (

PRJX2S_ARGS)

molx2s() deprojects Cartesian (x, y) coordinates in the plane of a Mollweide (MOL) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.56 mols2x() int mols2x (

PRJS2X_ARGS)

mols2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Mollweide
(MOL) projection.

See prjs2x() for a description of the API.

Generated by Doxygen

19.7 prj.h File Reference 139

19.7.4.57 aitset() int aitset (

struct prjprm ∗ prj)

aitset() sets up a prjprm struct for a Hammer-Aitoff (AIT) projection.

See prjset() for a description of the API.

19.7.4.58 aitx2s() int aitx2s (

PRJX2S_ARGS)

aitx2s() deprojects Cartesian (x, y) coordinates in the plane of a Hammer-Aitoff (AIT) projection to native spher-
ical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.59 aits2x() int aits2x (

PRJS2X_ARGS)

aits2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Hammer-Aitoff
(AIT) projection.

See prjs2x() for a description of the API.

19.7.4.60 copset() int copset (

struct prjprm ∗ prj)

copset() sets up a prjprm struct for a conic perspective (COP) projection.

See prjset() for a description of the API.

19.7.4.61 copx2s() int copx2s (

PRJX2S_ARGS)

copx2s() deprojects Cartesian (x, y) coordinates in the plane of a conic perspective (COP) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.62 cops2x() int cops2x (

PRJS2X_ARGS)

cops2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic per-
spective (COP) projection.

See prjs2x() for a description of the API.

19.7.4.63 coeset() int coeset (

struct prjprm ∗ prj)

coeset() sets up a prjprm struct for a conic equal area (COE) projection.

See prjset() for a description of the API.

Generated by Doxygen

140

19.7.4.64 coex2s() int coex2s (

PRJX2S_ARGS)

coex2s() deprojects Cartesian (x, y) coordinates in the plane of a conic equal area (COE) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.65 coes2x() int coes2x (

PRJS2X_ARGS)

coes2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic equal
area (COE) projection.

See prjs2x() for a description of the API.

19.7.4.66 codset() int codset (

struct prjprm ∗ prj)

codset() sets up a prjprm struct for a conic equidistant (COD) projection.

See prjset() for a description of the API.

19.7.4.67 codx2s() int codx2s (

PRJX2S_ARGS)

codx2s() deprojects Cartesian (x, y) coordinates in the plane of a conic equidistant (COD) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.68 cods2x() int cods2x (

PRJS2X_ARGS)

cods2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic
equidistant (COD) projection.

See prjs2x() for a description of the API.

19.7.4.69 cooset() int cooset (

struct prjprm ∗ prj)

cooset() sets up a prjprm struct for a conic orthomorphic (COO) projection.

See prjset() for a description of the API.

19.7.4.70 coox2s() int coox2s (

PRJX2S_ARGS)

coox2s() deprojects Cartesian (x, y) coordinates in the plane of a conic orthomorphic (COO) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

Generated by Doxygen

19.7 prj.h File Reference 141

19.7.4.71 coos2x() int coos2x (

PRJS2X_ARGS)

coos2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic ortho-
morphic (COO) projection.

See prjs2x() for a description of the API.

19.7.4.72 bonset() int bonset (

struct prjprm ∗ prj)

bonset() sets up a prjprm struct for a Bonne (BON) projection.

See prjset() for a description of the API.

19.7.4.73 bonx2s() int bonx2s (

PRJX2S_ARGS)

bonx2s() deprojects Cartesian (x, y) coordinates in the plane of a Bonne (BON) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.74 bons2x() int bons2x (

PRJS2X_ARGS)

bons2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Bonne (BON)
projection.

See prjs2x() for a description of the API.

19.7.4.75 pcoset() int pcoset (

struct prjprm ∗ prj)

pcoset() sets up a prjprm struct for a polyconic (PCO) projection.

See prjset() for a description of the API.

19.7.4.76 pcox2s() int pcox2s (

PRJX2S_ARGS)

pcox2s() deprojects Cartesian (x, y) coordinates in the plane of a polyconic (PCO) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.77 pcos2x() int pcos2x (

PRJS2X_ARGS)

pcos2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a polyconic
(PCO) projection.

See prjs2x() for a description of the API.

Generated by Doxygen

142

19.7.4.78 tscset() int tscset (

struct prjprm ∗ prj)

tscset() sets up a prjprm struct for a tangential spherical cube (TSC) projection.

See prjset() for a description of the API.

19.7.4.79 tscx2s() int tscx2s (

PRJX2S_ARGS)

tscx2s() deprojects Cartesian (x, y) coordinates in the plane of a tangential spherical cube (TSC) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.80 tscs2x() int tscs2x (

PRJS2X_ARGS)

tscs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a tangential
spherical cube (TSC) projection.

See prjs2x() for a description of the API.

19.7.4.81 cscset() int cscset (

struct prjprm ∗ prj)

cscset() sets up a prjprm struct for a COBE spherical cube (CSC) projection.

See prjset() for a description of the API.

19.7.4.82 cscx2s() int cscx2s (

PRJX2S_ARGS)

cscx2s() deprojects Cartesian (x, y) coordinates in the plane of a COBE spherical cube (CSC) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.83 cscs2x() int cscs2x (

PRJS2X_ARGS)

cscs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a COBE spher-
ical cube (CSC) projection.

See prjs2x() for a description of the API.

19.7.4.84 qscset() int qscset (

struct prjprm ∗ prj)

qscset() sets up a prjprm struct for a quadrilateralized spherical cube (QSC) projection.

See prjset() for a description of the API.

Generated by Doxygen

19.7 prj.h File Reference 143

19.7.4.85 qscx2s() int qscx2s (

PRJX2S_ARGS)

qscx2s() deprojects Cartesian (x, y) coordinates in the plane of a quadrilateralized spherical cube (QSC) pro-
jection to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.86 qscs2x() int qscs2x (

PRJS2X_ARGS)

qscs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a quadrilater-
alized spherical cube (QSC) projection.

See prjs2x() for a description of the API.

19.7.4.87 hpxset() int hpxset (

struct prjprm ∗ prj)

hpxset() sets up a prjprm struct for a HEALPix (HPX) projection.

See prjset() for a description of the API.

19.7.4.88 hpxx2s() int hpxx2s (

PRJX2S_ARGS)

hpxx2s() deprojects Cartesian (x, y) coordinates in the plane of a HEALPix (HPX) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.7.4.89 hpxs2x() int hpxs2x (

PRJS2X_ARGS)

hpxs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a HEALPix
(HPX) projection.

See prjs2x() for a description of the API.

19.7.4.90 xphset() int xphset (

struct prjprm ∗ prj)

19.7.4.91 xphx2s() int xphx2s (

PRJX2S_ARGS)

Generated by Doxygen

144

19.7.4.92 xphs2x() int xphs2x (

PRJS2X_ARGS)

19.7.5 Variable Documentation

19.7.5.1 prj_errmsg const char ∗ prj_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.7.5.2 CONIC const int CONIC [extern]

Identifier for conic projections, see prjprm::category.

19.7.5.3 CONVENTIONAL const int CONVENTIONAL

Identifier for conventional projections, see prjprm::category.

19.7.5.4 CYLINDRICAL const int CYLINDRICAL

Identifier for cylindrical projections, see prjprm::category.

19.7.5.5 POLYCONIC const int POLYCONIC

Identifier for polyconic projections, see prjprm::category.

19.7.5.6 PSEUDOCYLINDRICAL const int PSEUDOCYLINDRICAL

Identifier for pseudocylindrical projections, see prjprm::category.

19.7.5.7 QUADCUBE const int QUADCUBE

Identifier for quadcube projections, see prjprm::category.

19.7.5.8 ZENITHAL const int ZENITHAL

Identifier for zenithal/azimuthal projections, see prjprm::category.

19.7.5.9 HEALPIX const int HEALPIX

Identifier for the HEALPix projection, see prjprm::category.

Generated by Doxygen

19.8 spc.h File Reference 145

19.7.5.10 prj_categories const char prj_categories[9][32] [extern]

Names of the projection categories, all in lower-case except for "HEALPix".

Provided for information only, not used by the projection routines.

19.7.5.11 prj_ncode const int prj_ncode [extern]

The number of recognized three-letter projection codes (currently 27), see prj_codes.

19.7.5.12 prj_codes const char prj_codes[27][4] [extern]

List of all recognized three-letter projection codes (currently 27), e.g. SIN, TAN, etc.

19.8 spc.h File Reference

#include "spx.h"

Data Structures

• struct spcprm

Spectral transformation parameters.

Macros

• #define SPCLEN (sizeof(struct spcprm)/sizeof(int))

Size of the spcprm struct in int units.

• #define spcini_errmsg spc_errmsg

Deprecated.

• #define spcprt_errmsg spc_errmsg

Deprecated.

• #define spcset_errmsg spc_errmsg

Deprecated.

• #define spcx2s_errmsg spc_errmsg

Deprecated.

• #define spcs2x_errmsg spc_errmsg

Deprecated.

Enumerations

• enum spc_errmsg_enum {
SPCERR_NO_CHANGE = -1 , SPCERR_SUCCESS = 0 , SPCERR_NULL_POINTER = 1 , SPCERR_BAD_SPEC_PARAMS
= 2 ,
SPCERR_BAD_X = 3 , SPCERR_BAD_SPEC = 4 }

Generated by Doxygen

146

Functions

• int spcini (struct spcprm ∗spc)

Default constructor for the spcprm struct.

• int spcfree (struct spcprm ∗spc)

Destructor for the spcprm struct.

• int spcprt (const struct spcprm ∗spc)

Print routine for the spcprm struct.

• int spcperr (const struct spcprm ∗spc, const char ∗prefix)

Print error messages from a spcprm struct.

• int spcset (struct spcprm ∗spc)

Setup routine for the spcprm struct.

• int spcx2s (struct spcprm ∗spc, int nx, int sx, int sspec, const double x[], double spec[], int stat[])

Transform to spectral coordinates.

• int spcs2x (struct spcprm ∗spc, int nspec, int sspec, int sx, const double spec[], double x[], int stat[])

Transform spectral coordinates.

• int spctype (const char ctype[9], char stype[], char scode[], char sname[], char units[], char ∗ptype, char
∗xtype, int ∗restreq, struct wcserr ∗∗err)

Spectral CTYPEia keyword analysis.

• int spcspxe (const char ctypeS[9], double crvalS, double restfrq, double restwav, char ∗ptype, char ∗xtype, int
∗restreq, double ∗crvalX, double ∗dXdS, struct wcserr ∗∗err)

Spectral keyword analysis.

• int spcxpse (const char ctypeS[9], double crvalX, double restfrq, double restwav, char ∗ptype, char ∗xtype, int
∗restreq, double ∗crvalS, double ∗dSdX, struct wcserr ∗∗err)

Spectral keyword synthesis.

• int spctrne (const char ctypeS1[9], double crvalS1, double cdeltS1, double restfrq, double restwav, char
ctypeS2[9], double ∗crvalS2, double ∗cdeltS2, struct wcserr ∗∗err)

Spectral keyword translation.

• int spcaips (const char ctypeA[9], int velref, char ctype[9], char specsys[9])

Translate AIPS-convention spectral keywords.

• int spctyp (const char ctype[9], char stype[], char scode[], char sname[], char units[], char ∗ptype, char
∗xtype, int ∗restreq)

• int spcspx (const char ctypeS[9], double crvalS, double restfrq, double restwav, char ∗ptype, char ∗xtype, int
∗restreq, double ∗crvalX, double ∗dXdS)

• int spcxps (const char ctypeS[9], double crvalX, double restfrq, double restwav, char ∗ptype, char ∗xtype, int
∗restreq, double ∗crvalS, double ∗dSdX)

• int spctrn (const char ctypeS1[9], double crvalS1, double cdeltS1, double restfrq, double restwav, char ctype←↩

S2[9], double ∗crvalS2, double ∗cdeltS2)

Variables

• const char ∗ spc_errmsg []

Status return messages.

Generated by Doxygen

19.8 spc.h File Reference 147

19.8.1 Detailed Description

Routines in this suite implement the part of the FITS World Coordinate System (WCS) standard that deals with
spectral coordinates, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)

These routines define methods to be used for computing spectral world coordinates from intermediate world coor-
dinates (a linear transformation of image pixel coordinates), and vice versa. They are based on the spcprm struct
which contains all information needed for the computations. The struct contains some members that must be set by
the user, and others that are maintained by these routines, somewhat like a C++ class but with no encapsulation.

Routine spcini() is provided to initialize the spcprm struct with default values, spcfree() reclaims any memory that
may have been allocated to store an error message, and spcprt() prints its contents.

spcperr() prints the error message(s) (if any) stored in a spcprm struct.

A setup routine, spcset(), computes intermediate values in the spcprm struct from parameters in it that were supplied
by the user. The struct always needs to be set up by spcset() but it need not be called explicitly - refer to the
explanation of spcprm::flag.

spcx2s() and spcs2x() implement the WCS spectral coordinate transformations. In fact, they are high level driver
routines for the lower level spectral coordinate transformation routines described in spx.h.

A number of routines are provided to aid in analysing or synthesising sets of FITS spectral axis keywords:

• spctype() checks a spectral CTYPEia keyword for validity and returns information derived from it.

• Spectral keyword analysis routine spcspxe() computes the values of the X-type spectral variables for the
S-type variables supplied.

• Spectral keyword synthesis routine, spcxpse(), computes the S-type variables for the X-types supplied.

• Given a set of spectral keywords, a translation routine, spctrne(), produces the corresponding set for the
specified spectral CTYPEia.

• spcaips() translates AIPS-convention spectral CTYPEia and VELREF keyvalues.

Spectral variable types - S, P , and X:
A few words of explanation are necessary regarding spectral variable types in FITS.

Every FITS spectral axis has three associated spectral variables:

S-type: the spectral variable in which coordinates are to be expressed. Each S-type is encoded as four characters
and is linearly related to one of four basic types as follows:

F (Frequency):

• 'FREQ': frequency

• 'AFRQ': angular frequency

• 'ENER': photon energy

• 'WAVN': wave number

• 'VRAD': radio velocity

Generated by Doxygen

148

W (Wavelength in vacuo):

• 'WAVE': wavelength

• 'VOPT': optical velocity

• 'ZOPT': redshift

A (wavelength in Air):

• 'AWAV': wavelength in air

V (Velocity):

• 'VELO': relativistic velocity

• 'BETA': relativistic beta factor

The S-type forms the first four characters of the CTYPEia keyvalue, and CRVALia and CDELTia are expressed
as S-type quantities so that they provide a first-order approximation to the S-type variable at the reference point.

Note that 'AFRQ', angular frequency, is additional to the variables defined in WCS Paper III.

P -type: the basic spectral variable (F, W, A, or V) with which the S-type variable is associated (see list above).

For non-grism axes, the P -type is encoded as the eighth character of CTYPEia.

X-type: the basic spectral variable (F, W, A, or V) for which the spectral axis is linear, grisms excluded (see below).

For non-grism axes, the X-type is encoded as the sixth character of CTYPEia.

Grisms: Grism axes have normal S-, and P -types but the axis is linear, not in any spectral variable, but in a
special "grism parameter". The X-type spectral variable is either W or A for grisms in vacuo or air respectively,
but is encoded as 'w' or 'a' to indicate that an additional transformation is required to convert to or from the grism
parameter. The spectral algorithm code for grisms also has a special encoding in CTYPEia, either 'GRI' (in vacuo)
or 'GRA' (in air).

In the algorithm chain, the non-linear transformation occurs between the X-type and the P -type variables; the
transformation between P -type and S-type variables is always linear.

When the P -type and X-type variables are the same, the spectral axis is linear in the S-type variable and the
second four characters of CTYPEia are blank. This can never happen for grism axes.

As an example, correlating radio spectrometers always produce spectra that are regularly gridded in frequency; a
redshift scale on such a spectrum is non-linear. The required value of CTYPEia would be 'ZOPT-F2W', where
the desired S-type is 'ZOPT' (redshift), the P -type is necessarily 'W' (wavelength), and the X-type is 'F' (frequency)
by the nature of the instrument.

Air-to-vacuum wavelength conversion:
Please refer to the prologue of spx.h for important comments relating to the air-to-vacuum wavelength conversion.

Argument checking:
The input spectral values are only checked for values that would result in floating point exceptions. In particular,
negative frequencies and wavelengths are allowed, as are velocities greater than the speed of light. The same is
true for the spectral parameters - rest frequency and wavelength.

Accuracy:
No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users must satisfy
for themselves their adequacy for the intended purpose. However, closure effectively to within double precision
rounding error was demonstrated by test routine tspc.c which accompanies this software.

Generated by Doxygen

19.8 spc.h File Reference 149

19.8.2 Macro Definition Documentation

19.8.2.1 SPCLEN #define SPCLEN (sizeof(struct spcprm)/sizeof(int))

Size of the spcprm struct in int units, used by the Fortran wrappers.

19.8.2.2 spcini_errmsg #define spcini_errmsg spc_errmsg

Deprecated Added for backwards compatibility, use spc_errmsg directly now instead.

19.8.2.3 spcprt_errmsg #define spcprt_errmsg spc_errmsg

Deprecated Added for backwards compatibility, use spc_errmsg directly now instead.

19.8.2.4 spcset_errmsg #define spcset_errmsg spc_errmsg

Deprecated Added for backwards compatibility, use spc_errmsg directly now instead.

19.8.2.5 spcx2s_errmsg #define spcx2s_errmsg spc_errmsg

Deprecated Added for backwards compatibility, use spc_errmsg directly now instead.

19.8.2.6 spcs2x_errmsg #define spcs2x_errmsg spc_errmsg

Deprecated Added for backwards compatibility, use spc_errmsg directly now instead.

19.8.3 Enumeration Type Documentation

19.8.3.1 spc_errmsg_enum enum spc_errmsg_enum

Generated by Doxygen

150

Enumerator

SPCERR_NO_CHANGE
SPCERR_SUCCESS

SPCERR_NULL_POINTER
SPCERR_BAD_SPEC_PARAMS

SPCERR_BAD_X
SPCERR_BAD_SPEC

19.8.4 Function Documentation

19.8.4.1 spcini() int spcini (

struct spcprm ∗ spc)

spcini() sets all members of a spcprm struct to default values. It should be used to initialize every spcprm struct.

PLEASE NOTE: If the spcprm struct has already been initialized, then before reinitializing, it spcfree() should be
used to free any memory that may have been allocated to store an error message. A memory leak may otherwise
result.

Parameters

in,out spc Spectral transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

19.8.4.2 spcfree() int spcfree (

struct spcprm ∗ spc)

spcfree() frees any memory that may have been allocated to store an error message in the spcprm struct.

Parameters

in spc Spectral transformation parameters.

Returns

Status return value:

• 0: Success.

Generated by Doxygen

19.8 spc.h File Reference 151

• 1: Null spcprm pointer passed.

19.8.4.3 spcprt() int spcprt (

const struct spcprm ∗ spc)

spcprt() prints the contents of a spcprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in spc Spectral transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

19.8.4.4 spcperr() int spcperr (

const struct spcprm ∗ spc,

const char ∗ prefix)

spcperr() prints the error message(s) (if any) stored in a spcprm struct. If there are no errors then nothing is printed.
It uses wcserr_prt(), q.v.

Parameters

in spc Spectral transformation parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

19.8.4.5 spcset() int spcset (

struct spcprm ∗ spc)

spcset() sets up a spcprm struct according to information supplied within it.

Note that this routine need not be called directly; it will be invoked by spcx2s() and spcs2x() if spcprm::flag is
anything other than a predefined magic value.

Generated by Doxygen

152

Parameters

in,out spc Spectral transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

• 2: Invalid spectral parameters.

For returns > 1, a detailed error message is set in spcprm::err if enabled, see wcserr_enable().

19.8.4.6 spcx2s() int spcx2s (

struct spcprm ∗ spc,

int nx,

int sx,

int sspec,

const double x[],

double spec[],

int stat[])

spcx2s() transforms intermediate world coordinates to spectral coordinates.

Parameters

in,out spc Spectral transformation parameters.

in nx Vector length.

in sx Vector stride.
in sspec Vector stride.

in x Intermediate world coordinates, in SI units.

out spec Spectral coordinates, in SI units.

out stat Status return value status for each vector
element:

• 0: Success.

• 1: Invalid value of x.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

• 2: Invalid spectral parameters.

• 3: One or more of the x coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in spcprm::err if enabled, see wcserr_enable().

Generated by Doxygen

19.8 spc.h File Reference 153

19.8.4.7 spcs2x() int spcs2x (

struct spcprm ∗ spc,

int nspec,

int sspec,

int sx,

const double spec[],

double x[],

int stat[])

spcs2x() transforms spectral world coordinates to intermediate world coordinates.

Parameters

in,out spc Spectral transformation parameters.

in nspec Vector length.

in sspec Vector stride.

in sx Vector stride.
in spec Spectral coordinates, in SI units.

out x Intermediate world coordinates, in SI units.

out stat Status return value status for each vector
element:

• 0: Success.

• 1: Invalid value of spec.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

• 2: Invalid spectral parameters.

• 4: One or more of the spec coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in spcprm::err if enabled, see wcserr_enable().

19.8.4.8 spctype() int spctype (

const char ctype[9],

char stype[],

char scode[],

char sname[],

char units[],

char ∗ ptype,

char ∗ xtype,

int ∗ restreq,

struct wcserr ∗∗ err)

spctype() checks whether a CTYPEia keyvalue is a valid spectral axis type and if so returns information derived
from it relating to the associated S-, P -, and X-type spectral variables (see explanation above).

The return arguments are guaranteed not be modified if CTYPEia is not a valid spectral type; zero-pointers may
be specified for any that are not of interest.

A deprecated form of this function, spctyp(), lacks the wcserr∗∗ parameter.

Generated by Doxygen

154

Parameters

in ctype The CTYPEia keyvalue, (eight characters with null termination).

out stype The four-letter name of the S-type spectral variable copied or translated from ctype. If a
non-zero pointer is given, the array must accomodate a null- terminated string of length 5.

out scode The three-letter spectral algorithm code copied or translated from ctype. Logarithmic ('LOG')
and tabular ('TAB') codes are also recognized. If a non-zero pointer is given, the array must
accomodate a null-terminated string of length 4.

out sname Descriptive name of the S-type spectral variable. If a non-zero pointer is given, the array
must accomodate a null-terminated string of length 22.

out units SI units of the S-type spectral variable. If a non-zero pointer is given, the array must
accomodate a null-terminated string of length 8.

out ptype Character code for the P -type spectral variable derived from ctype, one of 'F', 'W', 'A', or 'V'.

out xtype Character code for the X-type spectral variable derived from ctype, one of 'F', 'W', 'A', or 'V'.
Also, 'w' and 'a' are synonymous to 'W' and 'A' for grisms in vacuo and air respectively. Set
to 'L' or 'T' for logarithmic ('LOG') and tabular ('TAB') axes.

out restreq Multivalued flag that indicates whether rest frequency or wavelength is required to compute
spectral variables for this CTYPEia:

• 0: Not required.

• 1: Required for the conversion between S- and P -types (e.g. 'ZOPT-F2W').

• 2: Required for the conversion between P - and X-types (e.g. 'BETA-W2V').

• 3: Required for the conversion between S- and P -types, and between P - and
X-types, but not between S- and X-types (this applies only for 'VRAD-V2F',
'VOPT-V2W', and 'ZOPT-V2W').

Thus the rest frequency or wavelength is required for spectral coordinate computations (i.e. between S- and X-
types) only if
restreq%3 != 0

.

Parameters

out err If enabled, for function return values > 1, this struct will contain a detailed error message, see
wcserr_enable(). May be NULL if an error message is not desired. Otherwise, the user is
responsible for deleting the memory allocated for the wcserr struct.

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters (not a spectral CTYPEia).

19.8.4.9 spcspxe() int spcspxe (

const char ctypeS[9],

double crvalS,

Generated by Doxygen

19.8 spc.h File Reference 155

double restfrq,

double restwav,

char ∗ ptype,

char ∗ xtype,

int ∗ restreq,

double ∗ crvalX,

double ∗ dXdS,

struct wcserr ∗∗ err)

spcspxe() analyses the CTYPEia and CRVALia FITS spectral axis keyword values and returns information about
the associated X-type spectral variable.

A deprecated form of this function, spcspx(), lacks the wcserr∗∗ parameter.

Parameters

in ctypeS Spectral axis type, i.e. the CTYPEia keyvalue, (eight characters with null
termination). For non-grism axes, the character code for the P -type spectral variable
in the algorithm code (i.e. the eighth character of CTYPEia) may be set to '?' (it will
not be reset).

in crvalS Value of the S-type spectral variable at the reference point, i.e. the CRVALia
keyvalue, SI units.

in restfrq,restwav Rest frequency [Hz] and rest wavelength in vacuo [m], only one of which need be
given, the other should be set to zero.

out ptype Character code for the P -type spectral variable derived from ctypeS, one of 'F', 'W',
'A', or 'V'.

out xtype Character code for the X-type spectral variable derived from ctypeS, one of 'F', 'W',
'A', or 'V'. Also, 'w' and 'a' are synonymous to 'W' and 'A' for grisms in vacuo and air
respectively; crvalX and dXdS (see below) will conform to these.

out restreq Multivalued flag that indicates whether rest frequency or wavelength is required to
compute spectral variables for this CTYPEia, as for spctype().

out crvalX Value of the X-type spectral variable at the reference point, SI units.

out dXdS The derivative, dX/dS, evaluated at the reference point, SI units. Multiply the
CDELTia keyvalue by this to get the pixel spacing in the X-type spectral
coordinate.

out err If enabled, for function return values > 1, this struct will contain a detailed error
message, see wcserr_enable(). May be NULL if an error message is not desired.
Otherwise, the user is responsible for deleting the memory allocated for the wcserr
struct.

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

19.8.4.10 spcxpse() int spcxpse (

const char ctypeS[9],

double crvalX,

double restfrq,

double restwav,

Generated by Doxygen

156

char ∗ ptype,

char ∗ xtype,

int ∗ restreq,

double ∗ crvalS,

double ∗ dSdX,

struct wcserr ∗∗ err)

spcxpse(), for the spectral axis type specified and the value provided for the X-type spectral variable at the refer-
ence point, deduces the value of the FITS spectral axis keyword CRVALia and also the derivative dS/dX which
may be used to compute CDELTia. See above for an explanation of the S-, P -, and X-type spectral variables.

A deprecated form of this function, spcxps(), lacks the wcserr∗∗ parameter.

Parameters

in ctypeS The required spectral axis type, i.e. the CTYPEia keyvalue, (eight characters with
null termination). For non-grism axes, the character code for the P -type spectral
variable in the algorithm code (i.e. the eighth character of CTYPEia) may be set to
'?' (it will not be reset).

in crvalX Value of the X-type spectral variable at the reference point (N.B. NOT the
CRVALia keyvalue), SI units.

in restfrq,restwav Rest frequency [Hz] and rest wavelength in vacuo [m], only one of which need be
given, the other should be set to zero.

out ptype Character code for the P -type spectral variable derived from ctypeS, one of 'F', 'W',
'A', or 'V'.

out xtype Character code for the X-type spectral variable derived from ctypeS, one of 'F', 'W',
'A', or 'V'. Also, 'w' and 'a' are synonymous to 'W' and 'A' for grisms; crvalX and
cdeltX must conform to these.

out restreq Multivalued flag that indicates whether rest frequency or wavelength is required to
compute spectral variables for this CTYPEia, as for spctype().

out crvalS Value of the S-type spectral variable at the reference point (i.e. the appropriate
CRVALia keyvalue), SI units.

out dSdX The derivative, dS/dX , evaluated at the reference point, SI units. Multiply this by
the pixel spacing in the X-type spectral coordinate to get the CDELTia keyvalue.

out err If enabled, for function return values > 1, this struct will contain a detailed error
message, see wcserr_enable(). May be NULL if an error message is not desired.
Otherwise, the user is responsible for deleting the memory allocated for the wcserr
struct.

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

19.8.4.11 spctrne() int spctrne (

const char ctypeS1[9],

double crvalS1,

double cdeltS1,

double restfrq,

double restwav,

Generated by Doxygen

19.8 spc.h File Reference 157

char ctypeS2[9],

double ∗ crvalS2,

double ∗ cdeltS2,

struct wcserr ∗∗ err)

spctrne() translates a set of FITS spectral axis keywords into the corresponding set for the specified spectral axis
type. For example, a 'FREQ' axis may be translated into 'ZOPT-F2W' and vice versa.

A deprecated form of this function, spctrn(), lacks the wcserr∗∗ parameter.

Parameters

in ctypeS1 Spectral axis type, i.e. the CTYPEia keyvalue, (eight characters with null
termination). For non-grism axes, the character code for the P -type spectral
variable in the algorithm code (i.e. the eighth character of CTYPEia) may be
set to '?' (it will not be reset).

in crvalS1 Value of the S-type spectral variable at the reference point, i.e. the CRVALia
keyvalue, SI units.

in cdeltS1 Increment of the S-type spectral variable at the reference point, SI units.

in restfrq,restwav Rest frequency [Hz] and rest wavelength in vacuo [m], only one of which need
be given, the other should be set to zero. Neither are required if the translation
is between wave-characteristic types, or between velocity-characteristic types.
E.g., required for 'FREQ' -> 'ZOPT-F2W', but not required for 'VELO-F2V'
-> 'ZOPT-F2W'.

in,out ctypeS2 Required spectral axis type (eight characters with null termination). The first
four characters are required to be given and are never modified. The remaining
four, the algorithm code, are completely determined by, and must be consistent
with, ctypeS1 and the first four characters of ctypeS2. A non-zero status value
will be returned if they are inconsistent (see below). However, if the final three
characters are specified as "???", or if just the eighth character is specified as
'?', the correct algorithm code will be substituted (applies for grism axes as well
as non-grism).

out crvalS2 Value of the new S-type spectral variable at the reference point, i.e. the new
CRVALia keyvalue, SI units.

out cdeltS2 Increment of the new S-type spectral variable at the reference point, i.e. the
new CDELTia keyvalue, SI units.

out err If enabled, for function return values > 1, this struct will contain a detailed error
message, see wcserr_enable(). May be NULL if an error message is not
desired. Otherwise, the user is responsible for deleting the memory allocated
for the wcserr struct.

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

A status value of 2 will be returned if restfrq or restwav are not specified when required, or if ctypeS1 or ctypeS2
are self-inconsistent, or have different spectral X-type variables.

19.8.4.12 spcaips() int spcaips (

const char ctypeA[9],

int velref,

Generated by Doxygen

158

char ctype[9],

char specsys[9])

spcaips() translates AIPS-convention spectral CTYPEia and VELREF keyvalues.

Parameters

in ctypeA CTYPEia keyvalue possibly containing an AIPS-convention spectral code (eight characters,
need not be null-terminated).

in velref AIPS-convention VELREF code. It has the following integer values:

• 1: LSR kinematic, originally described simply as "LSR" without distinction between the
kinematic and dynamic definitions.

• 2: Barycentric, originally described as "HEL" meaning heliocentric.

• 3: Topocentric, originally described as "OBS" meaning geocentric but widely interpreted
as topocentric.

AIPS++ extensions to VELREF are also recognized:

• 4: LSR dynamic.

• 5: Geocentric.

• 6: Source rest frame.

• 7: Galactocentric.

For an AIPS 'VELO' axis, a radio convention velocity (VRAD) is denoted by adding 256 to VELREF, otherwise an
optical velocity (VOPT) is indicated (this is not applicable to 'FREQ' or 'FELO' axes). Setting velref to 0 or 256
chooses between optical and radio velocity without specifying a Doppler frame, provided that a frame is encoded in
ctypeA. If not, i.e. for ctypeA = 'VELO', ctype will be returned as 'VELO'.
VELREF takes precedence over CTYPEia in defining the Doppler frame, e.g.
ctypeA = ’VELO-HEL’
velref = 1

returns ctype = 'VOPT' with specsys set to 'LSRK'.
If omitted from the header, the default value of VELREF is 0.

Parameters

out ctype Translated CTYPEia keyvalue, or a copy of ctypeA if no translation was performed (in
which case any trailing blanks in ctypeA will be replaced with nulls).

out specsys Doppler reference frame indicated by VELREF or else by CTYPEia with value
corresponding to the SPECSYS keyvalue in the FITS WCS standard. May be returned
blank if neither specifies a Doppler frame, e.g. ctypeA = 'FELO' and velref%256 == 0.

Returns

Status return value:

• -1: No translation required (not an error).

• 0: Success.

• 2: Invalid value of VELREF.

Generated by Doxygen

19.8 spc.h File Reference 159

19.8.4.13 spctyp() int spctyp (

const char ctype[9],

char stype[],

char scode[],

char sname[],

char units[],

char ∗ ptype,

char ∗ xtype,

int ∗ restreq)

19.8.4.14 spcspx() int spcspx (

const char ctypeS[9],

double crvalS,

double restfrq,

double restwav,

char ∗ ptype,

char ∗ xtype,

int ∗ restreq,

double ∗ crvalX,

double ∗ dXdS)

19.8.4.15 spcxps() int spcxps (

const char ctypeS[9],

double crvalX,

double restfrq,

double restwav,

char ∗ ptype,

char ∗ xtype,

int ∗ restreq,

double ∗ crvalS,

double ∗ dSdX)

19.8.4.16 spctrn() int spctrn (

const char ctypeS1[9],

double crvalS1,

double cdeltS1,

double restfrq,

double restwav,

char ctypeS2[9],

double ∗ crvalS2,

double ∗ cdeltS2)

19.8.5 Variable Documentation

Generated by Doxygen

160

19.8.5.1 spc_errmsg const char ∗ spc_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.9 sph.h File Reference

Functions

• int sphx2s (const double eul[5], int nphi, int ntheta, int spt, int sxy, const double phi[], const double theta[],
double lng[], double lat[])

Rotation in the pixel-to-world direction.

• int sphs2x (const double eul[5], int nlng, int nlat, int sll, int spt, const double lng[], const double lat[], double
phi[], double theta[])

Rotation in the world-to-pixel direction.

• int sphdpa (int nfield, double lng0, double lat0, const double lng[], const double lat[], double dist[], double
pa[])

Compute angular distance and position angle.

• int sphpad (int nfield, double lng0, double lat0, const double dist[], const double pa[], double lng[], double
lat[])

Compute field points offset from a given point.

19.9.1 Detailed Description

Routines in this suite implement the spherical coordinate transformations defined by the FITS World Coordinate
System (WCS) standard
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)

The transformations are implemented via separate functions, sphx2s() and sphs2x(), for the spherical rotation in
each direction.

A utility function, sphdpa(), computes the angular distances and position angles from a given point on the sky to a
number of other points. sphpad() does the complementary operation - computes the coordinates of points offset by
the given angular distances and position angles from a given point on the sky.

19.9.2 Function Documentation

19.9.2.1 sphx2s() int sphx2s (

const double eul[5],

int nphi,

int ntheta,

int spt,

int sxy,

const double phi[],

const double theta[],

double lng[],

double lat[])

sphx2s() transforms native coordinates of a projection to celestial coordinates.

Generated by Doxygen

19.9 sph.h File Reference 161

Parameters

in eul Euler angles for the transformation:

• 0: Celestial longitude of the native pole [deg].

• 1: Celestial colatitude of the native pole, or native colatitude of the celestial pole
[deg].

• 2: Native longitude of the celestial pole [deg].

• 3: cos(eul[1])

• 4: sin(eul[1])

in nphi,ntheta Vector lengths.

in spt,sxy Vector strides.

in phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

out lng,lat Celestial longitude and latitude [deg]. These may refer to the same storage as phi and
theta respectively.

Returns

Status return value:

• 0: Success.

19.9.2.2 sphs2x() int sphs2x (

const double eul[5],

int nlng,

int nlat,

int sll,

int spt,

const double lng[],

const double lat[],

double phi[],

double theta[])

sphs2x() transforms celestial coordinates to the native coordinates of a projection.

Parameters

in eul Euler angles for the transformation:

• 0: Celestial longitude of the native pole [deg].

• 1: Celestial colatitude of the native pole, or native colatitude of the celestial pole
[deg].

• 2: Native longitude of the celestial pole [deg].

• 3: cos(eul[1])

• 4: sin(eul[1])

in nlng,nlat Vector lengths.

in sll,spt Vector strides.

in lng,lat Celestial longitude and latitude [deg].

out phi,theta Longitude and latitude in the native coordinate system of the projection [deg]. These may
refer to the same storage as lng and lat respectively.

Generated by Doxygen

162

Returns

Status return value:

• 0: Success.

19.9.2.3 sphdpa() int sphdpa (

int nfield,

double lng0,

double lat0,

const double lng[],

const double lat[],

double dist[],

double pa[])

sphdpa() computes the angular distance and generalized position angle (see notes) from a "reference" point to a
number of "field" points on the sphere. The points must be specified consistently in any spherical coordinate system.

sphdpa() is complementary to sphpad().

Parameters

in nfield The number of field points.

in lng0,lat0 Spherical coordinates of the reference point [deg].

in lng,lat Spherical coordinates of the field points [deg].

out dist,pa Angular distances and position angles [deg]. These may refer to the same storage as lng
and lat respectively.

Returns

Status return value:

• 0: Success.

Notes:
1. sphdpa() uses sphs2x() to rotate coordinates so that the reference point is at the north pole of the new system
with the north pole of the old system at zero longitude in the new. The Euler angles required by sphs2x() for this
rotation are
eul[0] = lng0;
eul[1] = 90.0 - lat0;
eul[2] = 0.0;

The angular distance and generalized position angle are readily obtained from the longitude and latitude of the field
point in the new system. This applies even if the reference point is at one of the poles, in which case the "position
angle" returned is as would be computed for a reference point at (α0,+90◦ − ε) or (α0,−90◦ + ε), in the limit as ε
goes to zero.

It is evident that the coordinate system in which the two points are expressed is irrelevant to the determination of
the angular separation between the points. However, this is not true of the generalized position angle.

The generalized position angle is here defined as the angle of intersection of the great circle containing the reference
and field points with that containing the reference point and the pole. It has its normal meaning when the the
reference and field points are specified in equatorial coordinates (right ascension and declination).

Generated by Doxygen

19.10 spx.h File Reference 163

Interchanging the reference and field points changes the position angle in a non-intuitive way (because the sum of
the angles of a spherical triangle normally exceeds 180◦).

The position angle is undefined if the reference and field points are coincident or antipodal. This may be detected
by checking for a distance of 0◦ or 180◦ (within rounding tolerance). sphdpa() will return an arbitrary position angle
in such circumstances.

19.9.2.4 sphpad() int sphpad (

int nfield,

double lng0,

double lat0,

const double dist[],

const double pa[],

double lng[],

double lat[])

sphpad() computes the coordinates of a set of points that are offset by the specified angular distances and position
angles from a given "reference" point on the sky. The distances and position angles must be specified consistently
in any spherical coordinate system.

sphpad() is complementary to sphdpa().

Parameters

in nfield The number of field points.

in lng0,lat0 Spherical coordinates of the reference point [deg].

in dist,pa Angular distances and position angles [deg].

out lng,lat Spherical coordinates of the field points [deg]. These may refer to the same storage as dist
and pa respectively.

Returns

Status return value:

• 0: Success.

Notes:

1. sphpad() is implemented analogously to sphdpa() although using sphx2s() for the inverse transformation.
In particular, when the reference point is at one of the poles, "position angle" is interpreted as though the
reference point was at (α0,+90◦ − ε) or (α0,−90◦ + ε), in the limit as ε goes to zero.

Applying sphpad() with the distances and position angles computed by sphdpa() should return the original field
points.

19.10 spx.h File Reference

Data Structures

• struct spxprm

Spectral variables and their derivatives.

Generated by Doxygen

164

Macros

• #define SPXLEN (sizeof(struct spxprm)/sizeof(int))

Size of the spxprm struct in int units.

• #define SPX_ARGS

For use in declaring spectral conversion function prototypes.

Enumerations

• enum spx_errmsg {
SPXERR_SUCCESS = 0 , SPXERR_NULL_POINTER = 1 , SPXERR_BAD_SPEC_PARAMS = 2 ,
SPXERR_BAD_SPEC_VAR = 3 ,
SPXERR_BAD_INSPEC_COORD = 4 }

Functions

• int specx (const char ∗type, double spec, double restfrq, double restwav, struct spxprm ∗specs)

Spectral cross conversions (scalar).

• int spxperr (const struct spxprm ∗spx, const char ∗prefix)

Print error messages from a spxprm struct.

• int freqafrq (SPX_ARGS)

Convert frequency to angular frequency (vector).

• int afrqfreq (SPX_ARGS)

Convert angular frequency to frequency (vector).

• int freqener (SPX_ARGS)

Convert frequency to photon energy (vector).

• int enerfreq (SPX_ARGS)

Convert photon energy to frequency (vector).

• int freqwavn (SPX_ARGS)

Convert frequency to wave number (vector).

• int wavnfreq (SPX_ARGS)

Convert wave number to frequency (vector).

• int freqwave (SPX_ARGS)

Convert frequency to vacuum wavelength (vector).

• int wavefreq (SPX_ARGS)

Convert vacuum wavelength to frequency (vector).

• int freqawav (SPX_ARGS)

Convert frequency to air wavelength (vector).

• int awavfreq (SPX_ARGS)

Convert air wavelength to frequency (vector).

• int waveawav (SPX_ARGS)

Convert vacuum wavelength to air wavelength (vector).

• int awavwave (SPX_ARGS)

Convert air wavelength to vacuum wavelength (vector).

• int velobeta (SPX_ARGS)

Convert relativistic velocity to relativistic beta (vector).

• int betavelo (SPX_ARGS)

Convert relativistic beta to relativistic velocity (vector).

• int freqvelo (SPX_ARGS)

Convert frequency to relativistic velocity (vector).

Generated by Doxygen

19.10 spx.h File Reference 165

• int velofreq (SPX_ARGS)

Convert relativistic velocity to frequency (vector).

• int freqvrad (SPX_ARGS)

Convert frequency to radio velocity (vector).

• int vradfreq (SPX_ARGS)

Convert radio velocity to frequency (vector).

• int wavevelo (SPX_ARGS)

Conversions between wavelength and velocity types (vector).

• int velowave (SPX_ARGS)

Convert relativistic velocity to vacuum wavelength (vector).

• int awavvelo (SPX_ARGS)

Convert air wavelength to relativistic velocity (vector).

• int veloawav (SPX_ARGS)

Convert relativistic velocity to air wavelength (vector).

• int wavevopt (SPX_ARGS)

Convert vacuum wavelength to optical velocity (vector).

• int voptwave (SPX_ARGS)

Convert optical velocity to vacuum wavelength (vector).

• int wavezopt (SPX_ARGS)

Convert vacuum wavelength to redshift (vector).

• int zoptwave (SPX_ARGS)

Convert redshift to vacuum wavelength (vector).

Variables

• const char ∗ spx_errmsg []

19.10.1 Detailed Description

Routines in this suite implement the spectral coordinate systems recognized by the FITS World Coordinate System
(WCS) standard, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)

specx() is a scalar routine that, given one spectral variable (e.g. frequency), computes all the others (e.g. wave-
length, velocity, etc.) plus the required derivatives of each with respect to the others. The results are returned in the
spxprm struct.

spxperr() prints the error message(s) (if any) stored in a spxprm struct.

The remaining routines are all vector conversions from one spectral variable to another. The API of these functions
only differ in whether the rest frequency or wavelength need be supplied.

Non-linear:

• freqwave() frequency -> vacuum wavelength

• wavefreq() vacuum wavelength -> frequency

• freqawav() frequency -> air wavelength

Generated by Doxygen

166

• awavfreq() air wavelength -> frequency

• freqvelo() frequency -> relativistic velocity

• velofreq() relativistic velocity -> frequency

• waveawav() vacuum wavelength -> air wavelength

• awavwave() air wavelength -> vacuum wavelength

• wavevelo() vacuum wavelength -> relativistic velocity

• velowave() relativistic velocity -> vacuum wavelength

• awavvelo() air wavelength -> relativistic velocity

• veloawav() relativistic velocity -> air wavelength

Linear:

• freqafrq() frequency -> angular frequency

• afrqfreq() angular frequency -> frequency

• freqener() frequency -> energy

• enerfreq() energy -> frequency

• freqwavn() frequency -> wave number

• wavnfreq() wave number -> frequency

• freqvrad() frequency -> radio velocity

• vradfreq() radio velocity -> frequency

• wavevopt() vacuum wavelength -> optical velocity

• voptwave() optical velocity -> vacuum wavelength

• wavezopt() vacuum wavelength -> redshift

• zoptwave() redshift -> vacuum wavelength

• velobeta() relativistic velocity -> beta (β = v/c)

• betavelo() beta (β = v/c) -> relativistic velocity

These are the workhorse routines, to be used for fast transformations. Conversions may be done "in place" by
calling the routine with the output vector set to the input.

Air-to-vacuum wavelength conversion:
The air-to-vacuum wavelength conversion in early drafts of WCS Paper III cites Cox (ed., 2000, Allen’s Astrophysical
Quantities, AIP Press, Springer-Verlag, New York), which itself derives from Edlén (1953, Journal of the Optical
Society of America, 43, 339). This is the IAU standard, adopted in 1957 and again in 1991. No more recent IAU
resolution replaces this relation, and it is the one used by WCSLIB.

However, the Cox relation was replaced in later drafts of Paper III, and as eventually published, by the IUGG
relation (1999, International Union of Geodesy and Geophysics, comptes rendus of the 22nd General Assembly,
Birmingham UK, p111). There is a nearly constant ratio between the two, with IUGG/Cox = 1.000015 over most of
the range between 200nm and 10,000nm.

Generated by Doxygen

19.10 spx.h File Reference 167

The IUGG relation itself is derived from the work of Ciddor (1996, Applied Optics, 35, 1566), which is used directly
by the Sloan Digital Sky Survey. It agrees closely with Cox; longwards of 2500nm, the ratio Ciddor/Cox is fixed at
1.000000021, decreasing only slightly, to 1.000000018, at 1000nm.

The Cox, IUGG, and Ciddor relations all accurately provide the wavelength dependence of the air-to-vacuum wave-
length conversion. However, for full accuracy, the atmospheric temperature, pressure, and partial pressure of water
vapour must be taken into account. These will determine a small, wavelength-independent scale factor and offset,
which is not considered by WCS Paper III.

WCS Paper III is also silent on the question of the range of validity of the air-to-vacuum wavelength conversion.
Cox's relation would appear to be valid in the range 200nm to 10,000nm. Both the Cox and the Ciddor relations
have singularities below 200nm, with Cox's at 156nm and 83nm. WCSLIB checks neither the range of validity, nor
for these singularities.

Argument checking:
The input spectral values are only checked for values that would result in floating point exceptions. In particular,
negative frequencies and wavelengths are allowed, as are velocities greater than the speed of light. The same is
true for the spectral parameters - rest frequency and wavelength.

Accuracy:
No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users must satisfy
for themselves their adequacy for the intended purpose. However, closure effectively to within double precision
rounding error was demonstrated by test routine tspec.c which accompanies this software.

19.10.2 Macro Definition Documentation

19.10.2.1 SPXLEN #define SPXLEN (sizeof(struct spxprm)/sizeof(int))

Size of the spxprm struct in int units, used by the Fortran wrappers.

19.10.2.2 SPX_ARGS #define SPX_ARGS

Value:
double param, int nspec, int instep, int outstep, \
const double inspec[], double outspec[], int stat[]

Preprocessor macro used for declaring spectral conversion function prototypes.

19.10.3 Enumeration Type Documentation

19.10.3.1 spx_errmsg enum spx_errmsg

Enumerator

SPXERR_SUCCESS
SPXERR_NULL_POINTER

SPXERR_BAD_SPEC_PARAMS
SPXERR_BAD_SPEC_VAR

SPXERR_BAD_INSPEC_COORDGenerated by Doxygen

168

19.10.4 Function Documentation

19.10.4.1 specx() int specx (

const char ∗ type,

double spec,

double restfrq,

double restwav,

struct spxprm ∗ specs)

Given one spectral variable specx() computes all the others, plus the required derivatives of each with respect to
the others.

Parameters

in type The type of spectral variable given by spec, FREQ, AFRQ, ENER, WAVN, VRAD,
WAVE, VOPT, ZOPT, AWAV, VELO, or BETA (case sensitive).

in spec The spectral variable given, in SI units.

in restfrq,restwav Rest frequency [Hz] or rest wavelength in vacuo [m], only one of which need be
given. The other should be set to zero. If both are zero, only a subset of the
spectral variables can be computed, the remainder are set to zero. Specifically,
given one of FREQ, AFRQ, ENER, WAVN, WAVE, or AWAV the others can be
computed without knowledge of the rest frequency. Likewise, VRAD, VOPT,
ZOPT, VELO, and BETA.

in,out specs Data structure containing all spectral variables and their derivatives, in SI units.

Returns

Status return value:

• 0: Success.

• 1: Null spxprm pointer passed.

• 2: Invalid spectral parameters.

• 3: Invalid spectral variable.

For returns > 1, a detailed error message is set in spxprm::err if enabled, see wcserr_enable().

freqafrq(), afrqfreq(), freqener(), enerfreq(), freqwavn(), wavnfreq(), freqwave(), wavefreq(), freqawav(), awavfreq(),
waveawav(), awavwave(), velobeta(), and betavelo() implement vector conversions between wave-like or velocity-
like spectral types (i.e. conversions that do not need the rest frequency or wavelength). They all have the same API.

19.10.4.2 spxperr() int spxperr (

const struct spxprm ∗ spx,

const char ∗ prefix)

spxperr() prints the error message(s) (if any) stored in a spxprm struct. If there are no errors then nothing is printed.
It uses wcserr_prt(), q.v.

Generated by Doxygen

19.10 spx.h File Reference 169

Parameters

in spx Spectral variables and their derivatives.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null spxprm pointer passed.

19.10.4.3 freqafrq() int freqafrq (

SPX_ARGS)

freqafrq() converts frequency to angular frequency.

Parameters

in param Ignored.

in nspec Vector length.

in instep,outstep Vector strides.

in inspec Input spectral variables, in SI units.

out outspec Output spectral variables, in SI units.

out stat Status return value for each vector
element:

• 0: Success.

• 1: Invalid value of inspec.

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

• 4: One or more of the inspec coordinates were invalid, as indicated by the stat vector.

19.10.4.4 afrqfreq() int afrqfreq (

SPX_ARGS)

afrqfreq() converts angular frequency to frequency.

See freqafrq() for a description of the API.

Generated by Doxygen

170

19.10.4.5 freqener() int freqener (

SPX_ARGS)

freqener() converts frequency to photon energy.

See freqafrq() for a description of the API.

19.10.4.6 enerfreq() int enerfreq (

SPX_ARGS)

enerfreq() converts photon energy to frequency.

See freqafrq() for a description of the API.

19.10.4.7 freqwavn() int freqwavn (

SPX_ARGS)

freqwavn() converts frequency to wave number.

See freqafrq() for a description of the API.

19.10.4.8 wavnfreq() int wavnfreq (

SPX_ARGS)

wavnfreq() converts wave number to frequency.

See freqafrq() for a description of the API.

19.10.4.9 freqwave() int freqwave (

SPX_ARGS)

freqwave() converts frequency to vacuum wavelength.

See freqafrq() for a description of the API.

19.10.4.10 wavefreq() int wavefreq (

SPX_ARGS)

wavefreq() converts vacuum wavelength to frequency.

See freqafrq() for a description of the API.

19.10.4.11 freqawav() int freqawav (

SPX_ARGS)

freqawav() converts frequency to air wavelength.

See freqafrq() for a description of the API.

Generated by Doxygen

19.10 spx.h File Reference 171

19.10.4.12 awavfreq() int awavfreq (

SPX_ARGS)

awavfreq() converts air wavelength to frequency.

See freqafrq() for a description of the API.

19.10.4.13 waveawav() int waveawav (

SPX_ARGS)

waveawav() converts vacuum wavelength to air wavelength.

See freqafrq() for a description of the API.

19.10.4.14 awavwave() int awavwave (

SPX_ARGS)

awavwave() converts air wavelength to vacuum wavelength.

See freqafrq() for a description of the API.

19.10.4.15 velobeta() int velobeta (

SPX_ARGS)

velobeta() converts relativistic velocity to relativistic beta.

See freqafrq() for a description of the API.

19.10.4.16 betavelo() int betavelo (

SPX_ARGS)

betavelo() converts relativistic beta to relativistic velocity.

See freqafrq() for a description of the API.

19.10.4.17 freqvelo() int freqvelo (

SPX_ARGS)

freqvelo() converts frequency to relativistic velocity.

Parameters

in param Rest frequency [Hz].

in nspec Vector length.

in instep,outstep Vector strides.

in inspec Input spectral variables, in SI units.

out outspec Output spectral variables, in SI units.

out stat Status return value for each vector
element:

• 0: Success.

• 1: Invalid value of inspec.
Generated by Doxygen

172

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

• 4: One or more of the inspec coordinates were invalid, as indicated by the stat vector.

19.10.4.18 velofreq() int velofreq (

SPX_ARGS)

velofreq() converts relativistic velocity to frequency.

See freqvelo() for a description of the API.

19.10.4.19 freqvrad() int freqvrad (

SPX_ARGS)

freqvrad() converts frequency to radio velocity.

See freqvelo() for a description of the API.

19.10.4.20 vradfreq() int vradfreq (

SPX_ARGS)

vradfreq() converts radio velocity to frequency.

See freqvelo() for a description of the API.

19.10.4.21 wavevelo() int wavevelo (

SPX_ARGS)

wavevelo() converts vacuum wavelength to relativistic velocity.

Parameters

in param Rest wavelength in vacuo [m].

in nspec Vector length.

in instep,outstep Vector strides.

in inspec Input spectral variables, in SI units.

out outspec Output spectral variables, in SI units.

out stat Status return value for each vector
element:

• 0: Success.

• 1: Invalid value of inspec.

Generated by Doxygen

19.10 spx.h File Reference 173

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

• 4: One or more of the inspec coordinates were invalid, as indicated by the stat vector.

19.10.4.22 velowave() int velowave (

SPX_ARGS)

velowave() converts relativistic velocity to vacuum wavelength.

See freqvelo() for a description of the API.

19.10.4.23 awavvelo() int awavvelo (

SPX_ARGS)

awavvelo() converts air wavelength to relativistic velocity.

See freqvelo() for a description of the API.

19.10.4.24 veloawav() int veloawav (

SPX_ARGS)

veloawav() converts relativistic velocity to air wavelength.

See freqvelo() for a description of the API.

19.10.4.25 wavevopt() int wavevopt (

SPX_ARGS)

wavevopt() converts vacuum wavelength to optical velocity.

See freqvelo() for a description of the API.

19.10.4.26 voptwave() int voptwave (

SPX_ARGS)

voptwave() converts optical velocity to vacuum wavelength.

See freqvelo() for a description of the API.

19.10.4.27 wavezopt() int wavezopt (

SPX_ARGS)

wavevopt() converts vacuum wavelength to redshift.

See freqvelo() for a description of the API.

Generated by Doxygen

174

19.10.4.28 zoptwave() int zoptwave (

SPX_ARGS)

zoptwave() converts redshift to vacuum wavelength.

See freqvelo() for a description of the API.

19.10.5 Variable Documentation

19.10.5.1 spx_errmsg const char∗ spx_errmsg[] [extern]

19.11 tab.h File Reference

Data Structures

• struct tabprm

Tabular transformation parameters.

Macros

• #define TABLEN (sizeof(struct tabprm)/sizeof(int))

Size of the tabprm struct in int units.

• #define tabini_errmsg tab_errmsg

Deprecated.

• #define tabcpy_errmsg tab_errmsg

Deprecated.

• #define tabfree_errmsg tab_errmsg

Deprecated.

• #define tabprt_errmsg tab_errmsg

Deprecated.

• #define tabset_errmsg tab_errmsg

Deprecated.

• #define tabx2s_errmsg tab_errmsg

Deprecated.

• #define tabs2x_errmsg tab_errmsg

Deprecated.

Enumerations

• enum tab_errmsg_enum {
TABERR_SUCCESS = 0 , TABERR_NULL_POINTER = 1 , TABERR_MEMORY = 2 , TABERR_BAD_PARAMS
= 3 ,
TABERR_BAD_X = 4 , TABERR_BAD_WORLD = 5 }

Generated by Doxygen

19.11 tab.h File Reference 175

Functions

• int tabini (int alloc, int M, const int K[], struct tabprm ∗tab)

Default constructor for the tabprm struct.
• int tabmem (struct tabprm ∗tab)

Acquire tabular memory.
• int tabcpy (int alloc, const struct tabprm ∗tabsrc, struct tabprm ∗tabdst)

Copy routine for the tabprm struct.
• int tabcmp (int cmp, double tol, const struct tabprm ∗tab1, const struct tabprm ∗tab2, int ∗equal)

Compare two tabprm structs for equality.
• int tabfree (struct tabprm ∗tab)

Destructor for the tabprm struct.
• int tabprt (const struct tabprm ∗tab)

Print routine for the tabprm struct.
• int tabperr (const struct tabprm ∗tab, const char ∗prefix)

Print error messages from a tabprm struct.
• int tabset (struct tabprm ∗tab)

Setup routine for the tabprm struct.
• int tabx2s (struct tabprm ∗tab, int ncoord, int nelem, const double x[], double world[], int stat[])

Pixel-to-world transformation.
• int tabs2x (struct tabprm ∗tab, int ncoord, int nelem, const double world[], double x[], int stat[])

World-to-pixel transformation.

Variables

• const char ∗ tab_errmsg []

Status return messages.

19.11.1 Detailed Description

Routines in this suite implement the part of the FITS World Coordinate System (WCS) standard that deals with
tabular coordinates, i.e. coordinates that are defined via a lookup table, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)

These routines define methods to be used for computing tabular world coordinates from intermediate world coor-
dinates (a linear transformation of image pixel coordinates), and vice versa. They are based on the tabprm struct
which contains all information needed for the computations. The struct contains some members that must be set by
the user, and others that are maintained by these routines, somewhat like a C++ class but with no encapsulation.

tabini(), tabmem(), tabcpy(), and tabfree() are provided to manage the tabprm struct, and another, tabprt(), to print
its contents.

tabperr() prints the error message(s) (if any) stored in a tabprm struct.

A setup routine, tabset(), computes intermediate values in the tabprm struct from parameters in it that were supplied
by the user. The struct always needs to be set up by tabset() but it need not be called explicitly - refer to the
explanation of tabprm::flag.

tabx2s() and tabs2x() implement the WCS tabular coordinate transformations.

Accuracy:
No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users must satisfy
for themselves their adequacy for the intended purpose. However, closure effectively to within double precision
rounding error was demonstrated by test routine ttab.c which accompanies this software.

Generated by Doxygen

176

19.11.2 Macro Definition Documentation

19.11.2.1 TABLEN #define TABLEN (sizeof(struct tabprm)/sizeof(int))

Size of the tabprm struct in int units, used by the Fortran wrappers.

19.11.2.2 tabini_errmsg #define tabini_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.11.2.3 tabcpy_errmsg #define tabcpy_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.11.2.4 tabfree_errmsg #define tabfree_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.11.2.5 tabprt_errmsg #define tabprt_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.11.2.6 tabset_errmsg #define tabset_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.11.2.7 tabx2s_errmsg #define tabx2s_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.11.2.8 tabs2x_errmsg #define tabs2x_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.11.3 Enumeration Type Documentation

19.11.3.1 tab_errmsg_enum enum tab_errmsg_enum

Generated by Doxygen

19.11 tab.h File Reference 177

Enumerator

TABERR_SUCCESS
TABERR_NULL_POINTER

TABERR_MEMORY
TABERR_BAD_PARAMS

TABERR_BAD_X
TABERR_BAD_WORLD

19.11.4 Function Documentation

19.11.4.1 tabini() int tabini (

int alloc,

int M,

const int K[],

struct tabprm ∗ tab)

tabini() allocates memory for arrays in a tabprm struct and sets all members of the struct to default values.

PLEASE NOTE: every tabprm struct should be initialized by tabini(), possibly repeatedly. On the first invokation,
and only the first invokation, the flag member of the tabprm struct must be set to -1 to initialize memory management,
regardless of whether tabini() will actually be used to allocate memory.

Parameters

in alloc If true, allocate memory unconditionally for arrays in the tabprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if they
are null pointers in which case memory will be allocated for them regardless. (In other
words, setting alloc true saves having to initalize these pointers to zero.)

in M The number of tabular coordinate axes.

in K Vector of length M whose elements (K1,K2, ...KM) record the lengths of the axes of the
coordinate array and of each indexing vector. M and K[] are used to determine the length
of the various tabprm arrays and therefore the amount of memory to allocate for them.
Their values are copied into the tabprm struct.
It is permissible to set K (i.e. the address of the array) to zero which has the same effect
as setting each element of K[] to zero. In this case no memory will be allocated for the
index vectors or coordinate array in the tabprm struct. These together with the K vector
must be set separately before calling tabset().

in,out tab Tabular transformation parameters. Note that, in order to initialize memory management
tabprm::flag should be set to -1 when tab is initialized for the first time (memory leaks may
result if it had already been initialized).

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 2: Memory allocation failed.

Generated by Doxygen

178

• 3: Invalid tabular parameters.

For returns > 1, a detailed error message is set in tabprm::err if enabled, see wcserr_enable().

19.11.4.2 tabmem() int tabmem (

struct tabprm ∗ tab)

tabmem() takes control of memory allocated by the user for arrays in the tabprm struct.

Parameters

in,out tab Tabular transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in tabprm::err if enabled, see wcserr_enable().

19.11.4.3 tabcpy() int tabcpy (

int alloc,

const struct tabprm ∗ tabsrc,

struct tabprm ∗ tabdst)

tabcpy() does a deep copy of one tabprm struct to another, using tabini() to allocate memory for its arrays if required.
Only the "information to be provided" part of the struct is copied; a call to tabset() is required to set up the remainder.

Parameters

in alloc If true, allocate memory unconditionally for arrays in the tabprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if
they are null pointers in which case memory will be allocated for them regardless. (In
other words, setting alloc true saves having to initalize these pointers to zero.)

in tabsrc Struct to copy from.

in,out tabdst Struct to copy to. tabprm::flag should be set to -1 if tabdst was not previously initialized
(memory leaks may result if it was previously initialized).

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in tabprm::err (associated with tabdst) if enabled, see
wcserr_enable().

Generated by Doxygen

19.11 tab.h File Reference 179

19.11.4.4 tabcmp() int tabcmp (

int cmp,

double tol,

const struct tabprm ∗ tab1,

const struct tabprm ∗ tab2,

int ∗ equal)

tabcmp() compares two tabprm structs for equality.

Parameters

in cmp A bit field controlling the strictness of the comparison. At present, this value must always be
0, indicating a strict comparison. In the future, other options may be added.

in tol Tolerance for comparison of floating-point values. For example, for tol == 1e-6, all
floating-point values in the structs must be equal to the first 6 decimal places. A value of 0
implies exact equality.

in tab1 The first tabprm struct to compare.

in tab2 The second tabprm struct to compare.

out equal Non-zero when the given structs are equal.

Returns

Status return value:

• 0: Success.

• 1: Null pointer passed.

19.11.4.5 tabfree() int tabfree (

struct tabprm ∗ tab)

tabfree() frees memory allocated for the tabprm arrays by tabini(). tabini() records the memory it allocates and
tabfree() will only attempt to free this.

PLEASE NOTE: tabfree() must not be invoked on a tabprm struct that was not initialized by tabini().

Parameters

out tab Coordinate transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

Generated by Doxygen

180

19.11.4.6 tabprt() int tabprt (

const struct tabprm ∗ tab)

tabprt() prints the contents of a tabprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Generated by Doxygen

19.11 tab.h File Reference 181

Parameters

in tab Tabular transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

19.11.4.7 tabperr() int tabperr (

const struct tabprm ∗ tab,

const char ∗ prefix)

tabperr() prints the error message(s) (if any) stored in a tabprm struct. If there are no errors then nothing is printed.
It uses wcserr_prt(), q.v.

Parameters

in tab Tabular transformation parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

19.11.4.8 tabset() int tabset (

struct tabprm ∗ tab)

tabset() allocates memory for work arrays in the tabprm struct and sets up the struct according to information
supplied within it.

Note that this routine need not be called directly; it will be invoked by tabx2s() and tabs2x() if tabprm::flag is anything
other than a predefined magic value.

Parameters

in,out tab Tabular transformation parameters.

Generated by Doxygen

182

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 3: Invalid tabular parameters.

For returns > 1, a detailed error message is set in tabprm::err if enabled, see wcserr_enable().

19.11.4.9 tabx2s() int tabx2s (

struct tabprm ∗ tab,

int ncoord,

int nelem,

const double x[],

double world[],

int stat[])

tabx2s() transforms intermediate world coordinates to world coordinates using coordinate lookup.

Parameters

in,out tab Tabular transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem.

in x Array of intermediate world coordinates, SI units.

out world Array of world coordinates, in SI units.

out stat Status return value status for each coordinate:

• 0: Success.

• 1: Invalid intermediate world coordinate.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 3: Invalid tabular parameters.

• 4: One or more of the x coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in tabprm::err if enabled, see wcserr_enable().

19.11.4.10 tabs2x() int tabs2x (

struct tabprm ∗ tab,

int ncoord,

int nelem,

const double world[],

double x[],

int stat[])

tabs2x() transforms world coordinates to intermediate world coordinates.

Generated by Doxygen

19.12 wcs.h File Reference 183

Parameters

in,out tab Tabular transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem.

in world Array of world coordinates, in SI units.

out x Array of intermediate world coordinates, SI units.

out stat Status return value status for each vector element:

• 0: Success.

• 1: Invalid world coordinate.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 3: Invalid tabular parameters.

• 5: One or more of the world coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in tabprm::err if enabled, see wcserr_enable().

19.11.5 Variable Documentation

19.11.5.1 tab_errmsg const char ∗ tab_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.12 wcs.h File Reference

#include "lin.h"
#include "cel.h"
#include "spc.h"

Data Structures

• struct pvcard

Store for PVi_ma keyrecords.

• struct pscard

Store for PSi_ma keyrecords.

• struct auxprm

Additional auxiliary parameters.

• struct wcsprm

Coordinate transformation parameters.

Generated by Doxygen

184

Macros

• #define WCSSUB_LONGITUDE 0x1001

Mask for extraction of longitude axis by wcssub().

• #define WCSSUB_LATITUDE 0x1002

Mask for extraction of latitude axis by wcssub().

• #define WCSSUB_CUBEFACE 0x1004

Mask for extraction of CUBEFACE axis by wcssub().

• #define WCSSUB_CELESTIAL 0x1007

Mask for extraction of celestial axes by wcssub().

• #define WCSSUB_SPECTRAL 0x1008

Mask for extraction of spectral axis by wcssub().

• #define WCSSUB_STOKES 0x1010

Mask for extraction of STOKES axis by wcssub().

• #define WCSCOMPARE_ANCILLARY 0x0001
• #define WCSCOMPARE_TILING 0x0002
• #define WCSCOMPARE_CRPIX 0x0004
• #define PVLEN (sizeof(struct pvcard)/sizeof(int))
• #define PSLEN (sizeof(struct pscard)/sizeof(int))
• #define AUXLEN (sizeof(struct auxprm)/sizeof(int))
• #define WCSLEN (sizeof(struct wcsprm)/sizeof(int))

Size of the wcsprm struct in int units.

• #define wcscopy(alloc, wcssrc, wcsdst) wcssub(alloc, wcssrc, 0x0, 0x0, wcsdst)

Copy routine for the wcsprm struct.

• #define wcsini_errmsg wcs_errmsg

Deprecated.

• #define wcssub_errmsg wcs_errmsg

Deprecated.

• #define wcscopy_errmsg wcs_errmsg

Deprecated.

• #define wcsfree_errmsg wcs_errmsg

Deprecated.

• #define wcsprt_errmsg wcs_errmsg

Deprecated.

• #define wcsset_errmsg wcs_errmsg

Deprecated.

• #define wcsp2s_errmsg wcs_errmsg

Deprecated.

• #define wcss2p_errmsg wcs_errmsg

Deprecated.

• #define wcsmix_errmsg wcs_errmsg

Deprecated.

Enumerations

• enum wcs_errmsg_enum {
WCSERR_SUCCESS = 0 , WCSERR_NULL_POINTER = 1 , WCSERR_MEMORY = 2 , WCSERR_SINGULAR_MTX
= 3 ,
WCSERR_BAD_CTYPE = 4 , WCSERR_BAD_PARAM = 5 , WCSERR_BAD_COORD_TRANS = 6 ,
WCSERR_ILL_COORD_TRANS = 7 ,
WCSERR_BAD_PIX = 8 , WCSERR_BAD_WORLD = 9 , WCSERR_BAD_WORLD_COORD = 10 ,
WCSERR_NO_SOLUTION = 11 ,
WCSERR_BAD_SUBIMAGE = 12 , WCSERR_NON_SEPARABLE = 13 }

Generated by Doxygen

19.12 wcs.h File Reference 185

Functions

• int wcsnpv (int n)

Memory allocation for PVi_ma.

• int wcsnps (int n)

Memory allocation for PSi_ma.

• int wcsini (int alloc, int naxis, struct wcsprm ∗wcs)

Default constructor for the wcsprm struct.

• int wcsinit (int alloc, int naxis, struct wcsprm ∗wcs, int npvmax, int npsmax, int ndpmax)

Default constructor for the wcsprm struct.

• int wcsauxi (int alloc, struct wcsprm ∗wcs)

Default constructor for the auxprm struct.

• int wcssub (int alloc, const struct wcsprm ∗wcssrc, int ∗nsub, int axes[], struct wcsprm ∗wcsdst)

Subimage extraction routine for the wcsprm struct.

• int wcscompare (int cmp, double tol, const struct wcsprm ∗wcs1, const struct wcsprm ∗wcs2, int ∗equal)

Compare two wcsprm structs for equality.

• int wcsfree (struct wcsprm ∗wcs)

Destructor for the wcsprm struct.

• int wcsprt (const struct wcsprm ∗wcs)

Print routine for the wcsprm struct.

• int wcsperr (const struct wcsprm ∗wcs, const char ∗prefix)

Print error messages from a wcsprm struct.

• int wcsbchk (struct wcsprm ∗wcs, int bounds)

Enable/disable bounds checking.

• int wcsset (struct wcsprm ∗wcs)

Setup routine for the wcsprm struct.

• int wcsp2s (struct wcsprm ∗wcs, int ncoord, int nelem, const double pixcrd[], double imgcrd[], double phi[],
double theta[], double world[], int stat[])

Pixel-to-world transformation.

• int wcss2p (struct wcsprm ∗wcs, int ncoord, int nelem, const double world[], double phi[], double theta[],
double imgcrd[], double pixcrd[], int stat[])

World-to-pixel transformation.

• int wcsmix (struct wcsprm ∗wcs, int mixpix, int mixcel, const double vspan[], double vstep, int viter, double
world[], double phi[], double theta[], double imgcrd[], double pixcrd[])

Hybrid coordinate transformation.

• int wcssptr (struct wcsprm ∗wcs, int ∗i, char ctype[9])

Spectral axis translation.

• const char ∗ wcslib_version (int vers[3])

Variables

• const char ∗ wcs_errmsg []

Status return messages.

Generated by Doxygen

186

19.12.1 Detailed Description

Routines in this suite implement the FITS World Coordinate System (WCS) standard which defines methods to be
used for computing world coordinates from image pixel coordinates, and vice versa. The standard, and proposed
extensions for handling distortions, are described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)
"Representations of distortions in FITS world coordinate systems",
Calabretta, M.R. et al. (WCS Paper IV, draft dated 2004/04/22),
available from http://www.atnf.csiro.au/people/Mark.Calabretta
"Mapping on the HEALPix grid",
Calabretta, M.R., & Roukema, B.F. 2007, MNRAS, 381, 865 (WCS Paper V)
"Representing the ’Butterfly’ Projection in FITS -- Projection Code XPH",
Calabretta, M.R., & Lowe, S.R. 2013, PASA, 30, e050 (WCS Paper VI)
"Representations of time coordinates in FITS -
Time and relative dimension in space",
Rots, A.H., Bunclark, P.S., Calabretta, M.R., Allen, S.L.,
Manchester, R.N., & Thompson, W.T. 2015, A&A, 574, A36 (WCS Paper VII)

These routines are based on the wcsprm struct which contains all information needed for the computations. The
struct contains some members that must be set by the user, and others that are maintained by these routines,
somewhat like a C++ class but with no encapsulation.

wcsnpv(), wcsnps(), wcsini(), wcsinit(), wcssub(), and wcsfree() are provided to manage the wcsprm struct and
another, wcsprt(), prints its contents. Refer to the description of the wcsprm struct for an explanation of the antici-
pated usage of these routines. wcscopy(), which does a deep copy of one wcsprm struct to another, is defined as a
preprocessor macro function that invokes wcssub().

wcsperr() prints the error message(s) (if any) stored in a wcsprm struct, and the linprm, celprm, prjprm, spcprm,
and tabprm structs that it contains.

A setup routine, wcsset(), computes intermediate values in the wcsprm struct from parameters in it that were
supplied by the user. The struct always needs to be set up by wcsset() but this need not be called explicitly - refer
to the explanation of wcsprm::flag.

wcsp2s() and wcss2p() implement the WCS world coordinate transformations. In fact, they are high level driver
routines for the WCS linear, logarithmic, celestial, spectral and tabular transformation routines described in lin.h,
log.h, cel.h, spc.h and tab.h.

Given either the celestial longitude or latitude plus an element of the pixel coordinate a hybrid routine, wcsmix(),
iteratively solves for the unknown elements.

wcssptr() translates the spectral axis in a wcsprm struct. For example, a 'FREQ' axis may be translated into
'ZOPT-F2W' and vice versa.

wcslib_version() returns the WCSLIB version number.

Quadcube projections:
The quadcube projections (TSC, CSC, QSC) may be represented in FITS in either of two ways:

a: The six faces may be laid out in one plane and numbered as follows:
0

4 3 2 1 4 3 2
5

Faces 2, 3 and 4 may appear on one side or the other (or both). The world-to-pixel routines map faces 2, 3 and 4 to
the left but the pixel-to-world routines accept them on either side.

b: The "COBE" convention in which the six faces are stored in a three-dimensional structure using a CUBEFACE
axis indexed from 0 to 5 as above.

These routines support both methods; wcsset() determines which is being used by the presence or absence of a
CUBEFACE axis in ctype[]. wcsp2s() and wcss2p() translate the CUBEFACE axis representation to the single plane
representation understood by the lower-level WCSLIB projection routines.

Generated by Doxygen

19.12 wcs.h File Reference 187

19.12.2 Macro Definition Documentation

19.12.2.1 WCSSUB_LONGITUDE #define WCSSUB_LONGITUDE 0x1001

Mask to use for extracting the longitude axis when sub-imaging, refer to the axes argument of wcssub().

19.12.2.2 WCSSUB_LATITUDE #define WCSSUB_LATITUDE 0x1002

Mask to use for extracting the latitude axis when sub-imaging, refer to the axes argument of wcssub().

19.12.2.3 WCSSUB_CUBEFACE #define WCSSUB_CUBEFACE 0x1004

Mask to use for extracting the CUBEFACE axis when sub-imaging, refer to the axes argument of wcssub().

19.12.2.4 WCSSUB_CELESTIAL #define WCSSUB_CELESTIAL 0x1007

Mask to use for extracting the celestial axes (longitude, latitude and cubeface) when sub-imaging, refer to the axes
argument of wcssub().

19.12.2.5 WCSSUB_SPECTRAL #define WCSSUB_SPECTRAL 0x1008

Mask to use for extracting the spectral axis when sub-imaging, refer to the axes argument of wcssub().

19.12.2.6 WCSSUB_STOKES #define WCSSUB_STOKES 0x1010

Mask to use for extracting the STOKES axis when sub-imaging, refer to the axes argument of wcssub().

19.12.2.7 WCSCOMPARE_ANCILLARY #define WCSCOMPARE_ANCILLARY 0x0001

19.12.2.8 WCSCOMPARE_TILING #define WCSCOMPARE_TILING 0x0002

19.12.2.9 WCSCOMPARE_CRPIX #define WCSCOMPARE_CRPIX 0x0004

19.12.2.10 PVLEN #define PVLEN (sizeof(struct pvcard)/sizeof(int))

Generated by Doxygen

188

19.12.2.11 PSLEN #define PSLEN (sizeof(struct pscard)/sizeof(int))

19.12.2.12 AUXLEN #define AUXLEN (sizeof(struct auxprm)/sizeof(int))

19.12.2.13 WCSLEN #define WCSLEN (sizeof(struct wcsprm)/sizeof(int))

Size of the wcsprm struct in int units, used by the Fortran wrappers.

19.12.2.14 wcscopy #define wcscopy(

alloc,

wcssrc,

wcsdst) wcssub(alloc, wcssrc, 0x0, 0x0, wcsdst)

wcscopy() does a deep copy of one wcsprm struct to another. As of WCSLIB 3.6, it is implemented as a prepro-
cessor macro that invokes wcssub() with the nsub and axes pointers both set to zero.

19.12.2.15 wcsini_errmsg #define wcsini_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.12.2.16 wcssub_errmsg #define wcssub_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.12.2.17 wcscopy_errmsg #define wcscopy_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.12.2.18 wcsfree_errmsg #define wcsfree_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

Generated by Doxygen

19.12 wcs.h File Reference 189

19.12.2.19 wcsprt_errmsg #define wcsprt_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.12.2.20 wcsset_errmsg #define wcsset_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.12.2.21 wcsp2s_errmsg #define wcsp2s_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.12.2.22 wcss2p_errmsg #define wcss2p_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.12.2.23 wcsmix_errmsg #define wcsmix_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.12.3 Enumeration Type Documentation

19.12.3.1 wcs_errmsg_enum enum wcs_errmsg_enum

Enumerator

WCSERR_SUCCESS
WCSERR_NULL_POINTER

WCSERR_MEMORY
WCSERR_SINGULAR_MTX

WCSERR_BAD_CTYPE
WCSERR_BAD_PARAM

WCSERR_BAD_COORD_TRANS
WCSERR_ILL_COORD_TRANS

WCSERR_BAD_PIX
WCSERR_BAD_WORLD

WCSERR_BAD_WORLD_COORD
WCSERR_NO_SOLUTION

WCSERR_BAD_SUBIMAGE
WCSERR_NON_SEPARABLE

Generated by Doxygen

190

19.12.4 Function Documentation

19.12.4.1 wcsnpv() int wcsnpv (

int n)

wcsnpv() sets or gets the value of NPVMAX (default 64). This global variable controls the number of pvcard structs,
for holding PVi_ma keyvalues, that wcsini() should allocate space for. It is also used by wcsinit() as the default
value of npvmax.

PLEASE NOTE: This function is not thread-safe.

Parameters

in n Value of NPVMAX; ignored if < 0. Use a value less than zero to get the current value.

Returns

Current value of NPVMAX.

19.12.4.2 wcsnps() int wcsnps (

int n)

wcsnps() sets or gets the value of NPSMAX (default 8). This global variable controls the number of pscard structs,
for holding PSi_ma keyvalues, that wcsini() should allocate space for. It is also used by wcsinit() as the default
value of npsmax.

PLEASE NOTE: This function is not thread-safe.

Parameters

in n Value of NPSMAX; ignored if < 0. Use a value less than zero to get the current value.

Returns

Current value of NPSMAX.

19.12.4.3 wcsini() int wcsini (

int alloc,

int naxis,

struct wcsprm ∗ wcs)

wcsini() is a thin wrapper on wcsinit(). It invokes it with npvmax, npsmax, and ndpmax set to -1 which causes it
to use the values of the global variables NDPMAX, NPSMAX, and NDPMAX. It is thereby potentially thread-unsafe
if these variables are altered dynamically via wcsnpv(), wcsnps(), and disndp(). Use wcsinit() for a thread-safe
alternative in this case.

Generated by Doxygen

19.12 wcs.h File Reference 191

19.12.4.4 wcsinit() int wcsinit (

int alloc,

int naxis,

struct wcsprm ∗ wcs,

int npvmax,

int npsmax,

int ndpmax)

wcsinit() optionally allocates memory for arrays in a wcsprm struct and sets all members of the struct to default
values.

PLEASE NOTE: every wcsprm struct should be initialized by wcsinit(), possibly repeatedly. On the first invokation,
and only the first invokation, wcsprm::flag must be set to -1 to initialize memory management, regardless of whether
wcsinit() will actually be used to allocate memory.

Parameters

in alloc If true, allocate memory unconditionally for the crpix, etc. arrays. Please note that
memory is never allocated by wcsinit() for the auxprm, tabprm, nor wtbarr structs.
If false, it is assumed that pointers to these arrays have been set by the user except if
they are null pointers in which case memory will be allocated for them regardless. (In
other words, setting alloc true saves having to initalize these pointers to zero.)

in naxis The number of world coordinate axes. This is used to determine the length of the
various wcsprm vectors and matrices and therefore the amount of memory to allocate
for them.

in,out wcs Coordinate transformation parameters.
Note that, in order to initialize memory management, wcsprm::flag should be set to -1
when wcs is initialized for the first time (memory leaks may result if it had already been
initialized).

in npvmax The number of PVi_ma keywords to allocate space for. If set to -1, the value of the
global variable NPVMAX will be used. This is potentially thread-unsafe if wcsnpv() is
being used dynamically to alter its value.

in npsmax The number of PSi_ma keywords to allocate space for. If set to -1, the value of the
global variable NPSMAX will be used. This is potentially thread-unsafe if wcsnps() is
being used dynamically to alter its value.

in ndpmax The number of DPja or DQia keywords to allocate space for. If set to -1, the value of
the global variable NDPMAX will be used. This is potentially thread-unsafe if disndp()
is being used dynamically to alter its value.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.12.4.5 wcsauxi() int wcsauxi (

int alloc,

struct wcsprm ∗ wcs)

wcsauxi() optionally allocates memory for an auxprm struct, attaches it to wcsprm, and sets all members of the
struct to default values.

Generated by Doxygen

192

Parameters

in alloc If true, allocate memory unconditionally for the auxprm struct.
If false, it is assumed that wcsprm::aux has already been set to point to an auxprm struct,
in which case the user is responsible for managing that memory. However, if wcsprm::aux
is a null pointer, memory will be allocated regardless. (In other words, setting alloc true
saves having to initalize the pointer to zero.)

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

19.12.4.6 wcssub() int wcssub (

int alloc,

const struct wcsprm ∗ wcssrc,

int ∗ nsub,

int axes[],

struct wcsprm ∗ wcsdst)

wcssub() extracts the coordinate description for a subimage from a wcsprm struct. It does a deep copy, using
wcsinit() to allocate memory for its arrays if required. Only the "information to be provided" part of the struct is
extracted. Consequently, wcsset() need not have been, and won't be invoked on the struct from which the subimage
is extracted. A call to wcsset() is required to set up the subimage struct.

The world coordinate system of the subimage must be separable in the sense that the world coordinates at any
point in the subimage must depend only on the pixel coordinates of the axes extracted. In practice, this means that
the linear transformation matrix of the original image must not contain non-zero off-diagonal terms that associate
any of the subimage axes with any of the non-subimage axes. Likewise, if any distortions are associated with the
subimage axes, they must not depend on any of the axes that are not being extracted.

Note that while the required elements of the tabprm array are extracted, the wtbarr array is not. (Thus it is not
appropriate to call wcssub() after wcstab() but before filling the tabprm structs - refer to wcshdr.h.)

wcssub() can also add axes to a wcsprm struct. The new axes will be created using the defaults set by wcsinit()
which produce a simple, unnamed, linear axis with world coordinate equal to the pixel coordinate. These default
values can be changed afterwards, before invoking wcsset().

Parameters

in alloc If true, allocate memory for the crpix, etc. arrays in the destination. Otherwise, it is
assumed that pointers to these arrays have been set by the user except if they are null
pointers in which case memory will be allocated for them regardless.

in wcssrc Struct to extract from.
in,out nsub

Generated by Doxygen

19.12 wcs.h File Reference 193

Parameters

in,out axes Vector of length ∗nsub containing the image axis numbers (1-relative) to extract. Order
is significant; axes[0] is the axis number of the input image that corresponds to the first
axis in the subimage, etc.
Use an axis number of 0 to create a new axis using the defaults set by wcsinit(). They
can be changed later.
nsub (the pointer) may be set to zero, and so also may ∗nsub, which is interpreted to
mean all axes in the input image; the number of axes will be returned if nsub != 0x0.
axes itself (the pointer) may be set to zero to indicate the first ∗nsub axes in their
original order.
Set both nsub (or ∗nsub) and axes to zero to do a deep copy of one wcsprm struct to
another.
Subimage extraction by coordinate axis type may be done by setting the elements of
axes[] to the following special preprocessor macro values:

• WCSSUB_LONGITUDE: Celestial longitude.

• WCSSUB_LATITUDE: Celestial latitude.

• WCSSUB_CUBEFACE: Quadcube CUBEFACE axis.

• WCSSUB_SPECTRAL: Spectral axis.

• WCSSUB_STOKES: Stokes axis.

Refer to the notes (below) for further usage examples.
On return, ∗nsub will be set to the number of axes in the subimage; this may be zero if there were no axes of
the required type(s) (in which case no memory will be allocated). axes[] will contain the axis numbers that were
extracted, or 0 for newly created axes. The vector length must be sufficient to contain all axis numbers. No checks
are performed to verify that the coordinate axes are consistent, this is done by wcsset().

Parameters

in,out wcsdst Struct describing the subimage. wcsprm::flag should be set to -1 if wcsdst was not
previously initialized (memory leaks may result if it was previously initialized).

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 12: Invalid subimage specification.

• 13: Non-separable subimage coordinate system.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

Notes:

Generated by Doxygen

194

1. Combinations of subimage axes of particular types may be extracted in the same order as they occur in the
input image by combining preprocessor codes, for example
*nsub = 1;
axes[0] = WCSSUB_LONGITUDE | WCSSUB_LATITUDE | WCSSUB_SPECTRAL;

would extract the longitude, latitude, and spectral axes in the same order as the input image. If one of each
were present, ∗nsub = 3 would be returned.

For convenience, WCSSUB_CELESTIAL is defined as the combination WCSSUB_LONGITUDE |
WCSSUB_LATITUDE |WCSSUB_CUBEFACE.

The codes may also be negated to extract all but the types specified, for example
*nsub = 4;
axes[0] = WCSSUB_LONGITUDE;
axes[1] = WCSSUB_LATITUDE;
axes[2] = WCSSUB_CUBEFACE;
axes[3] = -(WCSSUB_SPECTRAL | WCSSUB_STOKES);

The last of these specifies all axis types other than spectral or Stokes. Extraction is done in the order specified
by axes[] a longitude axis (if present) would be extracted first (via axes[0]) and not subsequently (via axes[3]).
Likewise for the latitude and cubeface axes in this example.

From the foregoing, it is apparent that the value of ∗nsub returned may be less than or greater than that given.
However, it will never exceed the number of axes in the input image (plus the number of newly-created axes
if any were specified on input).

19.12.4.7 wcscompare() int wcscompare (

int cmp,

double tol,

const struct wcsprm ∗ wcs1,

const struct wcsprm ∗ wcs2,

int ∗ equal)

wcscompare() compares two wcsprm structs for equality.

Parameters

in cmp A bit field controlling the strictness of the comparison. When 0, all fields must be identical.
The following constants may be or'ed together to relax the comparison:

• WCSCOMPARE_ANCILLARY: Ignore ancillary keywords that don't change the WCS
transformation, such as DATE-OBS or EQUINOX.

• WCSCOMPARE_TILING: Ignore integral differences in CRPIXja. This is the 'tiling'
condition, where two WCSes cover different regions of the same map projection and
align on the same map grid.

• WCSCOMPARE_CRPIX: Ignore any differences at all in CRPIXja. The two WCSes
cover different regions of the same map projection but may not align on the same map
grid. Overrides WCSCOMPARE_TILING.

in tol Tolerance for comparison of floating-point values. For example, for tol == 1e-6, all
floating-point values in the structs must be equal to the first 6 decimal places. A value of 0
implies exact equality.

in wcs1 The first wcsprm struct to compare.

in wcs2 The second wcsprm struct to compare.

out equal Non-zero when the given structs are equal.

Generated by Doxygen

19.12 wcs.h File Reference 195

Returns

Status return value:

• 0: Success.

• 1: Null pointer passed.

19.12.4.8 wcsfree() int wcsfree (

struct wcsprm ∗ wcs)

wcsfree() frees memory allocated for the wcsprm arrays by wcsinit() and/or wcsset(). wcsinit() records the memory
it allocates and wcsfree() will only attempt to free this.

PLEASE NOTE: wcsfree() must not be invoked on a wcsprm struct that was not initialized by wcsinit().

Parameters

out wcs Coordinate transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.12.4.9 wcsprt() int wcsprt (

const struct wcsprm ∗ wcs)

wcsprt() prints the contents of a wcsprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in wcs Coordinate transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.12.4.10 wcsperr() int wcsperr (

const struct wcsprm ∗ wcs,

const char ∗ prefix)

Generated by Doxygen

196

wcsperr() prints the error message(s), if any, stored in a wcsprm struct, and the linprm, celprm, prjprm, spcprm,
and tabprm structs that it contains. If there are no errors then nothing is printed. It uses wcserr_prt(), q.v.

Generated by Doxygen

19.12 wcs.h File Reference 197

Parameters

in wcs Coordinate transformation parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.12.4.11 wcsbchk() int wcsbchk (

struct wcsprm ∗ wcs,

int bounds)

wcsbchk() is used to control bounds checking in the projection routines. Note that wcsset() always enables bounds
checking. wcsbchk() will invoke wcsset() on the wcsprm struct beforehand if necessary.

Parameters

in,out wcs Coordinate transformation parameters.

in bounds If bounds&1 then enable strict bounds checking for the spherical-to-Cartesian (s2x)
transformation for the AZP, SZP, TAN, SIN, ZPN, and COP projections.
If bounds&2 then enable strict bounds checking for the Cartesian-to-spherical (x2s)
transformation for the HPX and XPH projections.
If bounds&4 then enable bounds checking on the native coordinates returned by the
Cartesian-to-spherical (x2s) transformations using prjchk().
Zero it to disable all checking.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.12.4.12 wcsset() int wcsset (

struct wcsprm ∗ wcs)

wcsset() sets up a wcsprm struct according to information supplied within it (refer to the description of the wcsprm
struct).

wcsset() recognizes the NCP projection and converts it to the equivalent SIN projection and likewise translates
GLS into SFL. It also translates the AIPS spectral types ('FREQ-LSR', 'FELO-HEL', etc.), possibly changing
the input header keywords wcsprm::ctype and/or wcsprm::specsys if necessary.

Note that this routine need not be called directly; it will be invoked by wcsp2s() and wcss2p() if the wcsprm::flag is
anything other than a predefined magic value.

Generated by Doxygen

198

Parameters

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

Notes:

1. wcsset() always enables strict bounds checking in the projection routines (via a call to prjini()). Use wcsbchk()
to modify bounds-checking after wcsset() is invoked.

19.12.4.13 wcsp2s() int wcsp2s (

struct wcsprm ∗ wcs,

int ncoord,

int nelem,

const double pixcrd[],

double imgcrd[],

double phi[],

double theta[],

double world[],

int stat[])

wcsp2s() transforms pixel coordinates to world coordinates.

Parameters

in,out wcs Coordinate transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem but containing
wcs.naxis coordinate elements. Thus nelem must equal or exceed the value of
the NAXIS keyword unless ncoord == 1, in which case nelem is not used.

in pixcrd Array of pixel coordinates.

out imgcrd Array of intermediate world coordinates. For celestial axes, imgcrd[][wcs.lng] and
imgcrd[][wcs.lat] are the projected x-, and y-coordinates in pseudo "degrees".
For spectral axes, imgcrd[][wcs.spec] is the intermediate spectral coordinate, in
SI units.

out phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

out world Array of world coordinates. For celestial axes, world[][wcs.lng] and
world[][wcs.lat] are the celestial longitude and latitude [deg]. For spectral axes,
imgcrd[][wcs.spec] is the intermediate spectral coordinate, in SI units.

out stat Status return value for each coordinate:

• 0: Success.

Generated by Doxygen

19.12 wcs.h File Reference 199

1+: A bit mask indicating invalid pixel coordinate element(s).

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 8: One or more of the pixel coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.12.4.14 wcss2p() int wcss2p (

struct wcsprm ∗ wcs,

int ncoord,

int nelem,

const double world[],

double phi[],

double theta[],

double imgcrd[],

double pixcrd[],

int stat[])

wcss2p() transforms world coordinates to pixel coordinates.

Parameters

in,out wcs Coordinate transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem but containing
wcs.naxis coordinate elements. Thus nelem must equal or exceed the value of
the NAXIS keyword unless ncoord == 1, in which case nelem is not used.

in world Array of world coordinates. For celestial axes, world[][wcs.lng] and
world[][wcs.lat] are the celestial longitude and latitude [deg]. For spectral axes,
world[][wcs.spec] is the spectral coordinate, in SI units.

out phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

out imgcrd Array of intermediate world coordinates. For celestial axes, imgcrd[][wcs.lng] and
imgcrd[][wcs.lat] are the projected x-, and y-coordinates in pseudo "degrees".
For quadcube projections with a CUBEFACE axis the face number is also
returned in imgcrd[][wcs.cubeface]. For spectral axes, imgcrd[][wcs.spec] is the
intermediate spectral coordinate, in SI units.

out pixcrd Array of pixel coordinates.

out stat Status return value for each coordinate:

• 0: Success.

Generated by Doxygen

200

1+: A bit mask indicating invalid world coordinate element(s).

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 9: One or more of the world coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.12.4.15 wcsmix() int wcsmix (

struct wcsprm ∗ wcs,

int mixpix,

int mixcel,

const double vspan[],

double vstep,

int viter,

double world[],

double phi[],

double theta[],

double imgcrd[],

double pixcrd[])

wcsmix(), given either the celestial longitude or latitude plus an element of the pixel coordinate, solves for the
remaining elements by iterating on the unknown celestial coordinate element using wcss2p(). Refer also to the
notes below.

Parameters

in,out wcs Indices for the celestial coordinates obtained by parsing the wcsprm::ctype[].

in mixpix Which element of the pixel coordinate is given.

in mixcel Which element of the celestial coordinate is given:

• 1: Celestial longitude is given in world[wcs.lng], latitude returned in
world[wcs.lat].

• 2: Celestial latitude is given in world[wcs.lat], longitude returned in
world[wcs.lng].

in vspan Solution interval for the celestial coordinate [deg]. The ordering of the two limits is
irrelevant. Longitude ranges may be specified with any convenient normalization, for
example [-120,+120] is the same as [240,480], except that the solution will be
returned with the same normalization, i.e. lie within the interval specified.

in vstep Step size for solution search [deg]. If zero, a sensible, although perhaps non-optimal
default will be used.

Generated by Doxygen

19.12 wcs.h File Reference 201

Parameters

in viter If a solution is not found then the step size will be halved and the search
recommenced. viter controls how many times the step size is halved. The allowed
range is 5 - 10.

in,out world World coordinate elements. world[wcs.lng] and world[wcs.lat] are the celestial
longitude and latitude [deg]. Which is given and which returned depends on the value
of mixcel. All other elements are given.

out phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

out imgcrd Image coordinate elements. imgcrd[wcs.lng] and imgcrd[wcs.lat] are the projected x-,
and y-coordinates in pseudo "degrees".

in,out pixcrd Pixel coordinate. The element indicated by mixpix is given and the remaining
elements are returned.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 10: Invalid world coordinate.

• 11: No solution found in the specified interval.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

Notes:

1. Initially the specified solution interval is checked to see if it's a "crossing" interval. If it isn't, a search is
made for a crossing solution by iterating on the unknown celestial coordinate starting at the upper limit of
the solution interval and decrementing by the specified step size. A crossing is indicated if the trial value
of the pixel coordinate steps through the value specified. If a crossing interval is found then the solution is
determined by a modified form of "regula falsi" division of the crossing interval. If no crossing interval was
found within the specified solution interval then a search is made for a "non-crossing" solution as may arise
from a point of tangency. The process is complicated by having to make allowance for the discontinuities that
occur in all map projections.

Once one solution has been determined others may be found by subsequent invokations of wcsmix() with
suitably restricted solution intervals.

Note the circumstance that arises when the solution point lies at a native pole of a projection in which the
pole is represented as a finite curve, for example the zenithals and conics. In such cases two or more valid
solutions may exist but wcsmix() only ever returns one.

Because of its generality wcsmix() is very compute-intensive. For compute-limited applications more efficient
special-case solvers could be written for simple projections, for example non-oblique cylindrical projections.

Generated by Doxygen

202

19.12.4.16 wcssptr() int wcssptr (

struct wcsprm ∗ wcs,

int ∗ i,

char ctype[9])

wcssptr() translates the spectral axis in a wcsprm struct. For example, a 'FREQ' axis may be translated into
'ZOPT-F2W' and vice versa.

Parameters

in,out wcs Coordinate transformation parameters.

in,out i Index of the spectral axis (0-relative). If given < 0 it will be set to the first spectral axis
identified from the ctype[] keyvalues in the wcsprm struct.

in,out ctype Desired spectral CTYPEia. Wildcarding may be used as for the ctypeS2 argument to
spctrn() as described in the prologue of spc.h, i.e. if the final three characters are
specified as "???", or if just the eighth character is specified as '?', the correct algorithm
code will be substituted and returned.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 12: Invalid subimage specification (no spectral axis).

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.12.4.17 wcslib_version() const char∗ wcslib_version (

int vers[3])

19.12.5 Variable Documentation

19.12.5.1 wcs_errmsg const char ∗ wcs_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.13 wcserr.h File Reference

Data Structures

• struct wcserr

Error message handling.

Generated by Doxygen

19.13 wcserr.h File Reference 203

Macros

• #define ERRLEN (sizeof(struct wcserr)/sizeof(int))
• #define WCSERR_SET(status) err, status, function, __FILE__, __LINE__

Fill in the contents of an error object.

Functions

• int wcserr_enable (int enable)

Enable/disable error messaging.

• int wcserr_prt (const struct wcserr ∗err, const char ∗prefix)

Print a wcserr struct.

• int wcserr_clear (struct wcserr ∗∗err)

Clear a wcserr struct.

• int wcserr_set (struct wcserr ∗∗err, int status, const char ∗function, const char ∗file, int line_no, const char
∗format,...)

Fill in the contents of an error object.

• int wcserr_copy (const struct wcserr ∗src, struct wcserr ∗dst)

Copy an error object.

19.13.1 Detailed Description

Most of the structs in WCSLIB contain a pointer to a wcserr struct as a member. Functions in WCSLIB that return an
error status code can also allocate and set a detailed error message in this struct which also identifies the function,
source file, and line number where the error occurred.

For example:

struct prjprm prj;
wcserr_enable(1);
if (prjini(&prj)) {

// Print the error message to stderr.
wcsprintf_set(stderr);
wcserr_prt(prj.err, 0x0);

}

A number of utility functions used in managing the wcserr struct are for internal use only. They are documented
here solely as an aid to understanding the code. They are not intended for external use - the API may change
without notice!

19.13.2 Macro Definition Documentation

19.13.2.1 ERRLEN #define ERRLEN (sizeof(struct wcserr)/sizeof(int))

Generated by Doxygen

204

19.13.2.2 WCSERR_SET #define WCSERR_SET(

status) err, status, function, __FILE__, __LINE__

INTERNAL USE ONLY.

WCSERR_SET() is a preprocessor macro that helps to fill in the argument list of wcserr_set(). It takes status as
an argument of its own and provides the name of the source file and the line number at the point where invoked. It
assumes that the err and function arguments of wcserr_set() will be provided by variables of the same names.

19.13.3 Function Documentation

19.13.3.1 wcserr_enable() int wcserr_enable (

int enable)

wcserr_enable() enables or disables wcserr error messaging. By default it is disabled.

PLEASE NOTE: This function is not thread-safe.

Parameters

in enable If true (non-zero), enable error messaging, else disable it.

Returns

Status return value:

• 0: Error messaging is disabled.

• 1: Error messaging is enabled.

19.13.3.2 wcserr_prt() int wcserr_prt (

const struct wcserr ∗ err,

const char ∗ prefix)

wcserr_prt() prints the error message (if any) contained in a wcserr struct. It uses the wcsprintf() functions.

Parameters

in err The error object. If NULL, nothing is printed.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 2: Error messaging is not enabled.

Generated by Doxygen

19.13 wcserr.h File Reference 205

19.13.3.3 wcserr_clear() int wcserr_clear (

struct wcserr ∗∗ err)

wcserr_clear() clears (deletes) a wcserr struct.

Parameters

in,out err The error object. If NULL, nothing is done. Set to NULL on return.

Returns

Status return value:

• 0: Success.

19.13.3.4 wcserr_set() int wcserr_set (

struct wcserr ∗∗ err,

int status,

const char ∗ function,

const char ∗ file,

int line_no,

const char ∗ format,

...)

INTERNAL USE ONLY.

wcserr_set() fills a wcserr struct with information about an error.

A convenience macro, WCSERR_SET, provides the source file and line number information automatically.

Parameters

in,out err Error object.
If err is NULL, returns the status code given without setting an error message.
If ∗err is NULL, allocates memory for a wcserr struct (provided that status is non-zero).

in status Numeric status code to set. If 0, then ∗err will be deleted and ∗err will be returned as
NULL.

in function Name of the function generating the error. This must point to a constant string, i.e. in
the initialized read-only data section ("data") of the executable.

in file Name of the source file generating the error. This must point to a constant string, i.e.
in the initialized read-only data section ("data") of the executable such as given by the
__FILE__ preprocessor macro.

in line_no Line number in the source file generating the error such as given by the __LINE__
preprocessor macro.

in format Format string of the error message. May contain printf-style %-formatting codes.

in ... The remaining variable arguments are applied (like printf) to the format string to
generate the error message.

Generated by Doxygen

206

Returns

The status return code passed in.

19.13.3.5 wcserr_copy() int wcserr_copy (

const struct wcserr ∗ src,

struct wcserr ∗ dst)

INTERNAL USE ONLY.

wcserr_copy() copies one error object to another. Use of this function should be avoided in general since the
function, source file, and line number information copied to the destination may lose its context.

Parameters

in src Source error object. If src is NULL, dst is cleared.

out dst Destination error object. If NULL, no copy is made.

Returns

Numeric status code of the source error object.

19.14 wcsfix.h File Reference

#include "wcs.h"
#include "wcserr.h"

Macros

• #define CDFIX 0

Index of cdfix() status value in vector returned by wcsfix().

• #define DATFIX 1

Index of datfix() status value in vector returned by wcsfix().

• #define OBSFIX 2
• #define UNITFIX 3

Index of unitfix() status value in vector returned by wcsfix().

• #define SPCFIX 4

Index of spcfix() status value in vector returned by wcsfix().

• #define CELFIX 5

Index of celfix() status value in vector returned by wcsfix().

• #define CYLFIX 6

Index of cylfix() status value in vector returned by wcsfix().

• #define NWCSFIX 7

Number of elements in the status vector returned by wcsfix().

• #define cylfix_errmsg wcsfix_errmsg

Deprecated.

Generated by Doxygen

19.14 wcsfix.h File Reference 207

Enumerations

• enum wcsfix_errmsg_enum {
FIXERR_OBSGEO_FIX = -5 , FIXERR_DATE_FIX = -4 , FIXERR_SPC_UPDATE = -3 , FIXERR_UNITS_ALIAS
= -2 ,
FIXERR_NO_CHANGE = -1 , FIXERR_SUCCESS = 0 , FIXERR_NULL_POINTER = 1 , FIXERR_MEMORY
= 2 ,
FIXERR_SINGULAR_MTX = 3 , FIXERR_BAD_CTYPE = 4 , FIXERR_BAD_PARAM = 5 , FIXERR_BAD_COORD_TRANS
= 6 ,
FIXERR_ILL_COORD_TRANS = 7 , FIXERR_BAD_CORNER_PIX = 8 , FIXERR_NO_REF_PIX_COORD =
9 , FIXERR_NO_REF_PIX_VAL = 10 }

Functions

• int wcsfix (int ctrl, const int naxis[], struct wcsprm ∗wcs, int stat[])

Translate a non-standard WCS struct.

• int wcsfixi (int ctrl, const int naxis[], struct wcsprm ∗wcs, int stat[], struct wcserr info[])

Translate a non-standard WCS struct.

• int cdfix (struct wcsprm ∗wcs)

Fix erroneously omitted CDi_ja keywords.

• int datfix (struct wcsprm ∗wcs)

Translate DATE-OBS and derive MJD-OBS or vice versa.

• int obsfix (int ctrl, struct wcsprm ∗wcs)

complete the OBSGEO-[XYZLBH] vector of observatory coordinates.

• int unitfix (int ctrl, struct wcsprm ∗wcs)

Correct aberrant CUNITia keyvalues.

• int spcfix (struct wcsprm ∗wcs)

Translate AIPS-convention spectral types.

• int celfix (struct wcsprm ∗wcs)

Translate AIPS-convention celestial projection types.

• int cylfix (const int naxis[], struct wcsprm ∗wcs)

Fix malformed cylindrical projections.

Variables

• const char ∗ wcsfix_errmsg []

Status return messages.

19.14.1 Detailed Description

Routines in this suite identify and translate various forms of construct known to occur in FITS headers that violate
the FITS World Coordinate System (WCS) standard described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)
"Representations of time coordinates in FITS -
Time and relative dimension in space",
Rots, A.H., Bunclark, P.S., Calabretta, M.R., Allen, S.L.,
Manchester, R.N., & Thompson, W.T. 2015, A&A, 574, A36 (WCS Paper VII)

Generated by Doxygen

208

Repairs effected by these routines range from the translation of non-standard values for standard WCS keywords,
to the repair of malformed coordinate representations. Some routines are also provided to check the consistency of
pairs of keyvalues that define the same measure in two different ways, for example, as a date and an MJD.

Non-standard keyvalues:
AIPS-convention celestial projection types, NCP and GLS, and spectral types, 'FREQ-LSR', 'FELO-HEL', etc.,
set in CTYPEia are translated on-the-fly by wcsset() but without modifying the relevant ctype[], pv[] or specsys
members of the wcsprm struct. That is, only the information extracted from ctype[] is translated when wcsset() fills
in wcsprm::cel (celprm struct) or wcsprm::spc (spcprm struct).

On the other hand, these routines do change the values of wcsprm::ctype[], wcsprm::pv[], wcsprm::specsys and
other wcsprm struct members as appropriate to produce the same result as if the FITS header itself had been
translated.

Auxiliary WCS header information not used directly by WCSLIB may also be translated. For example, the older
DATE-OBS date format (wcsprm::dateobs) is recast to year-2000 standard form, and MJD-OBS (wcsprm::mjdobs)
will be deduced from it if not already set.

Certain combinations of keyvalues that result in malformed coordinate systems, as described in Sect. 7.3.4 of Paper
I, may also be repaired. These are handled by cylfix().

Non-standard keywords:
The AIPS-convention CROTAn keywords are recognized as quasi-standard and as such are accomodated by
wcsprm::crota[] and translated to wcsprm::pc[][] by wcsset(). These are not dealt with here, nor are any other
non-standard keywords since these routines work only on the contents of a wcsprm struct and do not deal with
FITS headers per se. In particular, they do not identify or translate CD00i00j, PC00i00j, PROJPn, EPOCH,
VELREF or VSOURCEa keywords; this may be done by the FITS WCS header parser supplied with WCSLIB, refer
to wcshdr.h.

wcsfix() and wcsfixi() apply all of the corrections handled by the following specific functions, which may also be
invoked separately:

• cdfix(): Sets the diagonal element of the CDi_ja matrix to 1.0 if all CDi_ja keywords associated with a
particular axis are omitted.

• datfix(): recast an older DATE-OBS date format in dateobs to year-2000 standard form. Derive dateref from
mjdref if not already set. Alternatively, if dateref is set and mjdref isn't, then derive mjdref from it. If both are
set, then check consistency. Likewise for dateobs and mjdobs; datebeg and mjdbeg; dateavg and mjdavg;
and dateend and mjdend.

• obsfix(): if only one half of obsgeo[] is set, then derive the other half from it. If both halves are set, then check
consistency.

• unitfix(): translate some commonly used but non-standard unit strings in the CUNITia keyvalues, e.g. 'DEG'
-> 'deg'.

• spcfix(): translate AIPS-convention spectral types, 'FREQ-LSR', 'FELO-HEL', etc., in ctype[] as set from
CTYPEia.

• celfix(): translate AIPS-convention celestial projection types, NCP and GLS, in ctype[] as set from CTYPEia.

• cylfix(): fixes WCS keyvalues for malformed cylindrical projections that suffer from the problem described in
Sect. 7.3.4 of Paper I.

19.14.2 Macro Definition Documentation

Generated by Doxygen

19.14 wcsfix.h File Reference 209

19.14.2.1 CDFIX #define CDFIX 0

Index of the status value returned by cdfix() in the status vector returned by wcsfix().

19.14.2.2 DATFIX #define DATFIX 1

Index of the status value returned by datfix() in the status vector returned by wcsfix().

19.14.2.3 OBSFIX #define OBSFIX 2

19.14.2.4 UNITFIX #define UNITFIX 3

Index of the status value returned by unitfix() in the status vector returned by wcsfix().

19.14.2.5 SPCFIX #define SPCFIX 4

Index of the status value returned by spcfix() in the status vector returned by wcsfix().

19.14.2.6 CELFIX #define CELFIX 5

Index of the status value returned by celfix() in the status vector returned by wcsfix().

19.14.2.7 CYLFIX #define CYLFIX 6

Index of the status value returned by cylfix() in the status vector returned by wcsfix().

19.14.2.8 NWCSFIX #define NWCSFIX 7

Number of elements in the status vector returned by wcsfix().

19.14.2.9 cylfix_errmsg #define cylfix_errmsg wcsfix_errmsg

Deprecated Added for backwards compatibility, use wcsfix_errmsg directly now instead.

19.14.3 Enumeration Type Documentation

19.14.3.1 wcsfix_errmsg_enum enum wcsfix_errmsg_enum

Generated by Doxygen

210

Enumerator

FIXERR_OBSGEO_FIX
FIXERR_DATE_FIX

FIXERR_SPC_UPDATE
FIXERR_UNITS_ALIAS
FIXERR_NO_CHANGE

FIXERR_SUCCESS
FIXERR_NULL_POINTER

FIXERR_MEMORY
FIXERR_SINGULAR_MTX

FIXERR_BAD_CTYPE
FIXERR_BAD_PARAM

FIXERR_BAD_COORD_TRANS
FIXERR_ILL_COORD_TRANS
FIXERR_BAD_CORNER_PIX

FIXERR_NO_REF_PIX_COORD
FIXERR_NO_REF_PIX_VAL

19.14.4 Function Documentation

19.14.4.1 wcsfix() int wcsfix (

int ctrl,

const int naxis[],

struct wcsprm ∗ wcs,

int stat[])

wcsfix() is identical to wcsfixi(), but lacks the info argument.

19.14.4.2 wcsfixi() int wcsfixi (

int ctrl,

const int naxis[],

struct wcsprm ∗ wcs,

int stat[],

struct wcserr info[])

wcsfixi() applies all of the corrections handled separately by cdfix(), datfix(), obsfix(), unitfix(), spcfix(), celfix(), and
cylfix().

Parameters

in ctrl Do potentially unsafe translations of non-standard unit strings as described in the usage
notes to wcsutrn().

in naxis Image axis lengths. If this array pointer is set to zero then cylfix() will not be invoked.

in,out wcs Coordinate transformation parameters.

out stat Status returns from each of the functions. Use the preprocessor macros NWCSFIX to
dimension this vector and CDFIX, DATFIX, OBSFIX, UNITFIX, SPCFIX, CELFIX, and
CYLFIX to access its elements. A status value of -2 is set for functions that were not
invoked.

Generated by Doxygen

19.14 wcsfix.h File Reference 211

Parameters

out info Status messages from each of the functions. Use the preprocessor macros NWCSFIX to
dimension this vector and CDFIX, DATFIX, OBSFIX, UNITFIX, SPCFIX, CELFIX, and
CYLFIX to access its elements.
Note that the memory allocated by wcsfixi() for the message in each wcserr struct
(wcserr::msg, if non-zero) must be freed by the user. See wcsdealloc().

Returns

Status return value:

• 0: Success.

• 1: One or more of the translation functions returned an error.

19.14.4.3 cdfix() int cdfix (

struct wcsprm ∗ wcs)

cdfix() sets the diagonal element of the CDi_ja matrix to unity if all CDi_ja keywords associated with a given
axis were omitted. According to WCS Paper I, if any CDi_ja keywords at all are given in a FITS header then those
not given default to zero. This results in a singular matrix with an intersecting row and column of zeros.

Parameters

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

19.14.4.4 datfix() int datfix (

struct wcsprm ∗ wcs)

datfix() translates the old DATE-OBS date format set in wcsprm::dateobs to year-2000 standard form (yyyy-mm-
ddThh:mm:ss). It derives wcsprm::dateref from wcsprm::mjdref if not already set. Alternatively, if dateref is set
and mjdref isn't, then it derives mjdref from it. If both are set but disagree by more than 0.001 day (86.4 sec-
onds) then an error status is returned. Likewise for wcsprm::dateobs and wcsprm::mjdobs; wcsprm::datebeg and
wcsprm::mjdbeg; wcsprm::dateavg and wcsprm::mjdavg; and wcsprm::dateend and wcsprm::mjdend.

If neither dateobs nor mjdobs are set, but wcsprm::jepoch (primarily) or wcsprm::bepoch is, then both are derived
from it. If jepoch and/or bepoch are set but disagree with dateobs or mjdobs by more than 0.000002 year (63.2
seconds), an informative message is produced.

Generated by Doxygen

212

Parameters

in,out wcs Coordinate transformation parameters. wcsprm::dateref and/or wcsprm::mjdref may be
changed. wcsprm::dateobs and/or wcsprm::mjdobs may be changed. wcsprm::datebeg
and/or wcsprm::mjdbeg may be changed. wcsprm::dateavg and/or wcsprm::mjdavg may
be changed. wcsprm::dateend and/or wcsprm::mjdend may be changed.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 5: Invalid parameter value.

For returns >= 0, a detailed message, whether informative or an error message, may be set in wcsprm::err if
enabled, see wcserr_enable(), with wcsprm::err.status set to FIXERR_DATE_FIX.

Notes:

1. The MJD algorithms used by datfix() are from D.A. Hatcher, 1984, QJRAS, 25, 53-55, as modified by P.T.
Wallace for use in SLALIB subroutines CLDJ and DJCL.

19.14.4.5 obsfix() int obsfix (

int ctrl,

struct wcsprm ∗ wcs)

obsfix() completes the wcsprm::obsgeo vector of observatory coordinates. That is, if only the (x,y,z) Cartesian
coordinate triplet or the (l,b,h) geodetic coordinate triplet are set, then it derives the other triplet from it. If both
triplets are set, then it checks for consistency at the level of 1 metre.

Parameters

in ctrl Flag that controls behaviour if one triplet is defined and the other is only partially defined:

• 0: Reset only the undefined elements of an incomplete coordinate triplet.

• 1: Reset all elements of an incomplete triplet.

• 2: Don't make any changes, check for consistency only. Returns an error if either of
the two triplets is incomplete.

in,out wcs Coordinate transformation parameters. wcsprm::obsgeo may be changed.

Returns

Status return value:

• -1: No change required (not an error).

Generated by Doxygen

19.14 wcsfix.h File Reference 213

• 0: Success.

• 1: Null wcsprm pointer passed.

• 5: Invalid parameter value.

For returns >= 0, a detailed message, whether informative or an error message, may be set in wcsprm::err if
enabled, see wcserr_enable(), with wcsprm::err.status set to FIXERR_OBS_FIX.

Notes:

1. While the International Terrestrial Reference System (ITRS) is based solely on Cartesian coordinates, it
recommends the use of the GRS80 ellipsoid in converting to geodetic coordinates. However, while WCS
Paper III recommends ITRS Cartesian coordinates, Paper VII prescribes the use of the IAU(1976) ellipsoid
for geodetic coordinates, and consequently that is what is used here.

2. For reference, parameters of commonly used global reference ellipsoids:
a (m) 1/f Standard

--------- ------------- --------------------------------
6378140 298.2577 IAU(1976)
6378137 298.257222101 GRS80
6378137 298.257223563 WGS84
6378136 298.257 IERS(1989)
6378136.6 298.25642 IERS(2003,2010), IAU(2009/2012)

where f = (a - b) / a is the flattening, and a and b are the semi-major and semi-minor radii in metres.

3. The transformation from geodetic (lng,lat,hgt) to Cartesian (x,y,z) is
x = (n + hgt)*coslng*coslat,
y = (n + hgt)*sinlng*coslat,
z = (n*(1.0 - e^2) + hgt)*sinlat,

where the "prime vertical radius", n, is a function of latitude
n = a / sqrt(1 - (e*sinlat)^2),

and a, the equatorial radius, and e∧2 = (2 - f)∗f, the (first) eccentricity of the ellipsoid, are constants. obsfix()
inverts these iteratively by writing

x = rho*coslng*coslat,
y = rho*sinlng*coslat,

zeta = rho*sinlat,

where
rho = n + hgt,

= sqrt(x^2 + y^2 + zeta^2),
zeta = z / (1 - n*e^2/rho),

and iterating over the value of zeta. Since e is small, a good first approximation is given by zeta = z.

19.14.4.6 unitfix() int unitfix (

int ctrl,

struct wcsprm ∗ wcs)

unitfix() applies wcsutrn() to translate non-standard CUNITia keyvalues, e.g. 'DEG' -> 'deg', also stripping off
unnecessary whitespace.

Parameters

in ctrl Do potentially unsafe translations described in the usage notes to wcsutrn().

in,out wcs Coordinate transformation parameters.

Generated by Doxygen

214

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success (an alias was applied).

• 1: Null wcsprm pointer passed.

When units are translated (i.e. 0 is returned), an informative message is set in wcsprm::err if enabled, see
wcserr_enable(), with wcsprm::err.status set to FIXERR_UNITS_ALIAS.

19.14.4.7 spcfix() int spcfix (

struct wcsprm ∗ wcs)

spcfix() translates AIPS-convention spectral coordinate types, '{FREQ,FELO,VELO}-{LSR,HEL,OBS}' (e.g. 'FREQ-
OBS', 'FELO-HEL', 'VELO-LSR') set in wcsprm::ctype[], subject to VELREF set in wcsprm::velref.

Note that if wcs::specsys is already set then it will not be overridden.

Parameters

in,out wcs Coordinate transformation parameters. wcsprm::ctype[] and/or wcsprm::specsys may be
changed.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

For returns >= 0, a detailed message, whether informative or an error message, may be set in wcsprm::err if
enabled, see wcserr_enable(), with wcsprm::err.status set to FIXERR_SPC_UPDTE.

19.14.4.8 celfix() int celfix (

struct wcsprm ∗ wcs)

celfix() translates AIPS-convention celestial projection types, NCP and GLS, set in the ctype[] member of the wc-
sprm struct.

Two additional pv[] keyvalues are created when translating NCP, and three are created when translating GLS with
non-zero reference point. If the pv[] array was initially allocated by wcsini() then the array will be expanded if
necessary. Otherwise, error 2 will be returned if sufficient empty slots are not already available for use.

Generated by Doxygen

19.14 wcsfix.h File Reference 215

Parameters

in,out wcs Coordinate transformation parameters. wcsprm::ctype[] and/or wcsprm::pv[] may be changed.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.14.4.9 cylfix() int cylfix (

const int naxis[],

struct wcsprm ∗ wcs)

cylfix() fixes WCS keyvalues for malformed cylindrical projections that suffer from the problem described in Sect.
7.3.4 of Paper I.

Parameters

in naxis Image axis lengths.

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 8: All of the corner pixel coordinates are invalid.

• 9: Could not determine reference pixel coordinate.

• 10: Could not determine reference pixel value.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

Generated by Doxygen

216

19.14.5 Variable Documentation

19.14.5.1 wcsfix_errmsg const char ∗ wcsfix_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.15 wcshdr.h File Reference

#include "wcs.h"

Macros

• #define WCSHDR_none 0x00000000

Bit mask for wcspih() and wcsbth() - reject all extensions.

• #define WCSHDR_all 0x000FFFFF

Bit mask for wcspih() and wcsbth() - accept all extensions.

• #define WCSHDR_reject 0x10000000

Bit mask for wcspih() and wcsbth() - reject non-standard keywords.

• #define WCSHDR_strict 0x20000000
• #define WCSHDR_CROTAia 0x00000001

Bit mask for wcspih() and wcsbth() - accept CROTAia, iCROTna, TCROTna.

• #define WCSHDR_VELREFa 0x00000002

Bit mask for wcspih() and wcsbth() - accept VELREFa.

• #define WCSHDR_CD00i00j 0x00000004

Bit mask for wcspih() and wcsbth() - accept CD00i00j.

• #define WCSHDR_PC00i00j 0x00000008

Bit mask for wcspih() and wcsbth() - accept PC00i00j.

• #define WCSHDR_PROJPn 0x00000010

Bit mask for wcspih() and wcsbth() - accept PROJPn.

• #define WCSHDR_CD0i_0ja 0x00000020
• #define WCSHDR_PC0i_0ja 0x00000040
• #define WCSHDR_PV0i_0ma 0x00000080
• #define WCSHDR_PS0i_0ma 0x00000100
• #define WCSHDR_DOBSn 0x00000200

Bit mask for wcspih() and wcsbth() - accept DOBSn.

• #define WCSHDR_OBSGLBHn 0x00000400
• #define WCSHDR_RADECSYS 0x00000800

Bit mask for wcspih() and wcsbth() - accept RADECSYS.

• #define WCSHDR_EPOCHa 0x00001000

Bit mask for wcspih() and wcsbth() - accept EPOCHa.

• #define WCSHDR_VSOURCE 0x00002000

Bit mask for wcspih() and wcsbth() - accept VSOURCEa.

• #define WCSHDR_DATEREF 0x00004000
• #define WCSHDR_LONGKEY 0x00008000

Bit mask for wcspih() and wcsbth() - accept long forms of the alternate binary table and pixel list WCS keywords.

• #define WCSHDR_CNAMn 0x00010000

Generated by Doxygen

19.15 wcshdr.h File Reference 217

Bit mask for wcspih() and wcsbth() - accept iCNAMn, TCNAMn, iCRDEn, TCRDEn, iCSYEn, TCSYEn.

• #define WCSHDR_AUXIMG 0x00020000

Bit mask for wcspih() and wcsbth() - allow the image-header form of an auxiliary WCS keyword to provide a default
value for all images.

• #define WCSHDR_ALLIMG 0x00040000

Bit mask for wcspih() and wcsbth() - allow the image-header form of all image header WCS keywords to provide a
default value for all images.

• #define WCSHDR_IMGHEAD 0x00100000

Bit mask for wcsbth() - restrict to image header keywords only.

• #define WCSHDR_BIMGARR 0x00200000

Bit mask for wcsbth() - restrict to binary table image array keywords only.

• #define WCSHDR_PIXLIST 0x00400000

Bit mask for wcsbth() - restrict to pixel list keywords only.

• #define WCSHDO_none 0x00000

Bit mask for wcshdo() - don't write any extensions.

• #define WCSHDO_all 0x000FF

Bit mask for wcshdo() - write all extensions.

• #define WCSHDO_safe 0x0000F

Bit mask for wcshdo() - write safe extensions only.

• #define WCSHDO_DOBSn 0x00001

Bit mask for wcshdo() - write DOBSn.

• #define WCSHDO_TPCn_ka 0x00002

Bit mask for wcshdo() - write TPCn_ka.

• #define WCSHDO_PVn_ma 0x00004

Bit mask for wcshdo() - write iPVn_ma, TPVn_ma, iPSn_ma, TPSn_ma.

• #define WCSHDO_CRPXna 0x00008

Bit mask for wcshdo() - write jCRPXna, TCRPXna, iCDLTna, TCDLTna, iCUNIna, TCUNIna, iCTYPna,
TCTYPna, iCRVLna, TCRVLna.

• #define WCSHDO_CNAMna 0x00010

Bit mask for wcshdo() - write iCNAMna, TCNAMna, iCRDEna, TCRDEna, iCSYEna, TCSYEna.

• #define WCSHDO_WCSNna 0x00020

Bit mask for wcshdo() - write WCSNna instead of TWCSna

• #define WCSHDO_P12 0x01000
• #define WCSHDO_P13 0x02000
• #define WCSHDO_P14 0x04000
• #define WCSHDO_P15 0x08000
• #define WCSHDO_P16 0x10000
• #define WCSHDO_P17 0x20000
• #define WCSHDO_EFMT 0x40000

Enumerations

• enum wcshdr_errmsg_enum {
WCSHDRERR_SUCCESS = 0 , WCSHDRERR_NULL_POINTER = 1 , WCSHDRERR_MEMORY = 2 ,
WCSHDRERR_BAD_COLUMN = 3 ,
WCSHDRERR_PARSER = 4 , WCSHDRERR_BAD_TABULAR_PARAMS = 5 }

Generated by Doxygen

218

Functions

• int wcspih (char ∗header, int nkeyrec, int relax, int ctrl, int ∗nreject, int ∗nwcs, struct wcsprm ∗∗wcs)

FITS WCS parser routine for image headers.

• int wcsbth (char ∗header, int nkeyrec, int relax, int ctrl, int keysel, int ∗colsel, int ∗nreject, int ∗nwcs, struct
wcsprm ∗∗wcs)

FITS WCS parser routine for binary table and image headers.

• int wcstab (struct wcsprm ∗wcs)

Tabular construction routine.

• int wcsidx (int nwcs, struct wcsprm ∗∗wcs, int alts[27])

Index alternate coordinate representations.

• int wcsbdx (int nwcs, struct wcsprm ∗∗wcs, int type, short alts[1000][28])

Index alternate coordinate representions.

• int wcsvfree (int ∗nwcs, struct wcsprm ∗∗wcs)

Free the array of wcsprm structs.

• int wcshdo (int ctrl, struct wcsprm ∗wcs, int ∗nkeyrec, char ∗∗header)

Write out a wcsprm struct as a FITS header.

Variables

• const char ∗ wcshdr_errmsg []

Status return messages.

19.15.1 Detailed Description

Routines in this suite are aimed at extracting WCS information from a FITS file. The information is encoded via
keywords defined in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)
"Representations of distortions in FITS world coordinate systems",
Calabretta, M.R. et al. (WCS Paper IV, draft dated 2004/04/22),
available from http://www.atnf.csiro.au/people/Mark.Calabretta
"Representations of time coordinates in FITS -
Time and relative dimension in space",
Rots, A.H., Bunclark, P.S., Calabretta, M.R., Allen, S.L.,
Manchester, R.N., & Thompson, W.T. 2015, A&A, 574, A36 (WCS Paper VII)

These routines provide the high-level interface between the FITS file and the WCS coordinate transformation rou-
tines.

Additionally, function wcshdo() is provided to write out the contents of a wcsprm struct as a FITS header.

Briefly, the anticipated sequence of operations is as follows:

• 1: Open the FITS file and read the image or binary table header, e.g. using CFITSIO routine fits_hdr2str().

• 2: Parse the header using wcspih() or wcsbth(); they will automatically interpret 'TAB' header keywords
using wcstab().

• 3: Allocate memory for, and read 'TAB' arrays from the binary table extension, e.g. using CFITSIO routine
fits_read_wcstab() - refer to the prologue of getwcstab.h. wcsset() will automatically take control of this
allocated memory, in particular causing it to be freed by wcsfree().

Generated by Doxygen

19.15 wcshdr.h File Reference 219

• 4: Translate non-standard WCS usage using wcsfix(), see wcsfix.h.

• 5: Initialize wcsprm struct(s) using wcsset() and calculate coordinates using wcsp2s() and/or wcss2p(). Re-
fer to the prologue of wcs.h for a description of these and other high-level WCS coordinate transformation
routines.

• 6: Clean up by freeing memory with wcsvfree().

In detail:

• wcspih() is a high-level FITS WCS routine that parses an image header. It returns an array of up to 27 wcsprm
structs on each of which it invokes wcstab().

• wcsbth() is the analogue of wcspih() for use with binary tables; it handles image array and pixel list keywords.
As an extension of the FITS WCS standard, it also recognizes image header keywords which may be used to
provide default values via an inheritance mechanism.

• wcstab() assists in filling in members of the wcsprm struct associated with coordinate lookup tables ('TAB').
These are based on arrays stored in a FITS binary table extension (BINTABLE) that are located by PVi_ma
keywords in the image header.

• wcsidx() and wcsbdx() are utility routines that return the index for a specified alternate coordinate descriptor
in the array of wcsprm structs returned by wcspih() or wcsbth().

• wcsvfree() deallocates memory for an array of wcsprm structs, such as returned by wcspih() or wcsbth().

• wcshdo() writes out a wcsprm struct as a FITS header.

19.15.2 Macro Definition Documentation

19.15.2.1 WCSHDR_none #define WCSHDR_none 0x00000000

Bit mask for the relax argument of wcspih() and wcsbth() - reject all extensions.

Refer to wcsbth() note 5.

19.15.2.2 WCSHDR_all #define WCSHDR_all 0x000FFFFF

Bit mask for the relax argument of wcspih() and wcsbth() - accept all extensions.

Refer to wcsbth() note 5.

19.15.2.3 WCSHDR_reject #define WCSHDR_reject 0x10000000

Bit mask for the relax argument of wcspih() and wcsbth() - reject non-standard keywords.

Refer to wcsbth() note 5.

19.15.2.4 WCSHDR_strict #define WCSHDR_strict 0x20000000

Generated by Doxygen

220

19.15.2.5 WCSHDR_CROTAia #define WCSHDR_CROTAia 0x00000001

Bit mask for the relax argument of wcspih() and wcsbth() - accept CROTAia, iCROTna, TCROTna.

Refer to wcsbth() note 5.

19.15.2.6 WCSHDR_VELREFa #define WCSHDR_VELREFa 0x00000002

Bit mask for the relax argument of wcspih() and wcsbth() - accept VELREFa.

Refer to wcsbth() note 5.

19.15.2.7 WCSHDR_CD00i00j #define WCSHDR_CD00i00j 0x00000004

Bit mask for the relax argument of wcspih() and wcsbth() - accept CD00i00j.

Refer to wcsbth() note 5.

19.15.2.8 WCSHDR_PC00i00j #define WCSHDR_PC00i00j 0x00000008

Bit mask for the relax argument of wcspih() and wcsbth() - accept PC00i00j.

Refer to wcsbth() note 5.

19.15.2.9 WCSHDR_PROJPn #define WCSHDR_PROJPn 0x00000010

Bit mask for the relax argument of wcspih() and wcsbth() - accept PROJPn.

Refer to wcsbth() note 5.

19.15.2.10 WCSHDR_CD0i_0ja #define WCSHDR_CD0i_0ja 0x00000020

19.15.2.11 WCSHDR_PC0i_0ja #define WCSHDR_PC0i_0ja 0x00000040

19.15.2.12 WCSHDR_PV0i_0ma #define WCSHDR_PV0i_0ma 0x00000080

19.15.2.13 WCSHDR_PS0i_0ma #define WCSHDR_PS0i_0ma 0x00000100

Generated by Doxygen

19.15 wcshdr.h File Reference 221

19.15.2.14 WCSHDR_DOBSn #define WCSHDR_DOBSn 0x00000200

Bit mask for the relax argument of wcspih() and wcsbth() - accept DOBSn.

Refer to wcsbth() note 5.

19.15.2.15 WCSHDR_OBSGLBHn #define WCSHDR_OBSGLBHn 0x00000400

19.15.2.16 WCSHDR_RADECSYS #define WCSHDR_RADECSYS 0x00000800

Bit mask for the relax argument of wcspih() and wcsbth() - accept RADECSYS.

Refer to wcsbth() note 5.

19.15.2.17 WCSHDR_EPOCHa #define WCSHDR_EPOCHa 0x00001000

Bit mask for the relax argument of wcspih() and wcsbth() - accept EPOCHa.

Refer to wcsbth() note 5.

19.15.2.18 WCSHDR_VSOURCE #define WCSHDR_VSOURCE 0x00002000

Bit mask for the relax argument of wcspih() and wcsbth() - accept VSOURCEa.

Refer to wcsbth() note 5.

19.15.2.19 WCSHDR_DATEREF #define WCSHDR_DATEREF 0x00004000

19.15.2.20 WCSHDR_LONGKEY #define WCSHDR_LONGKEY 0x00008000

Bit mask for the relax argument of wcspih() and wcsbth() - accept long forms of the alternate binary table and pixel
list WCS keywords.

Refer to wcsbth() note 5.

19.15.2.21 WCSHDR_CNAMn #define WCSHDR_CNAMn 0x00010000

Bit mask for the relax argument of wcspih() and wcsbth() - accept iCNAMn, TCNAMn, iCRDEn, TCRDEn,
iCSYEn, TCSYEn.

Refer to wcsbth() note 5.

Generated by Doxygen

222

19.15.2.22 WCSHDR_AUXIMG #define WCSHDR_AUXIMG 0x00020000

Bit mask for the relax argument of wcspih() and wcsbth() - allow the image-header form of an auxiliary WCS keyword
with representation-wide scope to provide a default value for all images.

Refer to wcsbth() note 5.

19.15.2.23 WCSHDR_ALLIMG #define WCSHDR_ALLIMG 0x00040000

Bit mask for the relax argument of wcspih() and wcsbth() - allow the image-header form of all image header WCS
keywords to provide a default value for all image arrays in a binary table (n.b. not pixel list).

Refer to wcsbth() note 5.

19.15.2.24 WCSHDR_IMGHEAD #define WCSHDR_IMGHEAD 0x00100000

Bit mask for the keysel argument of wcsbth() - restrict keyword types considered to image header keywords only.

19.15.2.25 WCSHDR_BIMGARR #define WCSHDR_BIMGARR 0x00200000

Bit mask for the keysel argument of wcsbth() - restrict keyword types considered to binary table image array key-
words only.

19.15.2.26 WCSHDR_PIXLIST #define WCSHDR_PIXLIST 0x00400000

Bit mask for the keysel argument of wcsbth() - restrict keyword types considered to pixel list keywords only.

19.15.2.27 WCSHDO_none #define WCSHDO_none 0x00000

Bit mask for the relax argument of wcshdo() - don't write any extensions.

Refer to the notes for wcshdo().

19.15.2.28 WCSHDO_all #define WCSHDO_all 0x000FF

Bit mask for the relax argument of wcshdo() - write all extensions.

Refer to the notes for wcshdo().

19.15.2.29 WCSHDO_safe #define WCSHDO_safe 0x0000F

Bit mask for the relax argument of wcshdo() - write only extensions that are considered safe.

Refer to the notes for wcshdo().

19.15.2.30 WCSHDO_DOBSn #define WCSHDO_DOBSn 0x00001

Bit mask for the relax argument of wcshdo() - write DOBSn, the column-specific analogue of DATE-OBS for use in
binary tables and pixel lists.

Refer to the notes for wcshdo().

Generated by Doxygen

19.15 wcshdr.h File Reference 223

19.15.2.31 WCSHDO_TPCn_ka #define WCSHDO_TPCn_ka 0x00002

Bit mask for the relax argument of wcshdo() - write TPCn_ka if less than eight characters instead of TPn_ka.

Refer to the notes for wcshdo().

19.15.2.32 WCSHDO_PVn_ma #define WCSHDO_PVn_ma 0x00004

Bit mask for the relax argument of wcshdo() - write iPVn_ma, TPVn_ma, iPSn_ma, TPSn_ma, if less than eight
characters instead of iVn_ma, TVn_ma, iSn_ma, TSn_ma.

Refer to the notes for wcshdo().

19.15.2.33 WCSHDO_CRPXna #define WCSHDO_CRPXna 0x00008

Bit mask for the relax argument of wcshdo() - write jCRPXna, TCRPXna, iCDLTna, TCDLTna, iCUNIna,
TCUNIna, iCTYPna, TCTYPna, iCRVLna, TCRVLna, if less than eight characters instead of jCRPna,
TCRPna, iCDEna, TCDEna, iCUNna, TCUNna, iCTYna, TCTYna, iCRVna, TCRVna.

Refer to the notes for wcshdo().

19.15.2.34 WCSHDO_CNAMna #define WCSHDO_CNAMna 0x00010

Bit mask for the relax argument of wcshdo() - write iCNAMna, TCNAMna, iCRDEna, TCRDEna, iCSYEna,
TCSYEna, if less than eight characters instead of iCNAna, TCNAna, iCRDna, TCRDna, iCSYna, TCSYna.

Refer to the notes for wcshdo().

19.15.2.35 WCSHDO_WCSNna #define WCSHDO_WCSNna 0x00020

Bit mask for the relax argument of wcshdo() - write WCSNna instead of TWCSna.

Refer to the notes for wcshdo().

19.15.2.36 WCSHDO_P12 #define WCSHDO_P12 0x01000

19.15.2.37 WCSHDO_P13 #define WCSHDO_P13 0x02000

19.15.2.38 WCSHDO_P14 #define WCSHDO_P14 0x04000

19.15.2.39 WCSHDO_P15 #define WCSHDO_P15 0x08000

Generated by Doxygen

224

19.15.2.40 WCSHDO_P16 #define WCSHDO_P16 0x10000

19.15.2.41 WCSHDO_P17 #define WCSHDO_P17 0x20000

19.15.2.42 WCSHDO_EFMT #define WCSHDO_EFMT 0x40000

19.15.3 Enumeration Type Documentation

19.15.3.1 wcshdr_errmsg_enum enum wcshdr_errmsg_enum

Enumerator

WCSHDRERR_SUCCESS
WCSHDRERR_NULL_POINTER

WCSHDRERR_MEMORY
WCSHDRERR_BAD_COLUMN

WCSHDRERR_PARSER
WCSHDRERR_BAD_TABULAR_PARAMS

19.15.4 Function Documentation

19.15.4.1 wcspih() int wcspih (

char ∗ header,

int nkeyrec,

int relax,

int ctrl,

int ∗ nreject,

int ∗ nwcs,

struct wcsprm ∗∗ wcs)

wcspih() is a high-level FITS WCS routine that parses an image header, either that of a primary HDU or of an image
extension. All WCS keywords defined in Papers I, II, III, IV, and VII are recognized, and also those used by the AIPS
convention and certain other keywords that existed in early drafts of the WCS papers as explained in wcsbth() note
5. wcspih() also handles keywords associated with non-standard distortion functions described in the prologue of
dis.h.

Given a character array containing a FITS image header, wcspih() identifies and reads all WCS keywords for the
primary coordinate representation and up to 26 alternate representations. It returns this information as an array of
wcsprm structs.

Generated by Doxygen

19.15 wcshdr.h File Reference 225

wcspih() invokes wcstab() on each of the wcsprm structs that it returns.

Use wcsbth() in preference to wcspih() for FITS headers of unknown type; wcsbth() can parse image headers as
well as binary table and pixel list headers, although it cannot handle keywords relating to distortion functions, which
may only exist in a primary image header.

Parameters

in,out header Character array containing the (entire) FITS image header from which to identify and
construct the coordinate representations, for example, as might be obtained
conveniently via the CFITSIO routine fits_hdr2str().
Each header "keyrecord" (formerly "card image") consists of exactly 80 7-bit ASCII
printing characters in the range 0x20 to 0x7e (which excludes NUL, BS, TAB, LF, FF
and CR) especially noting that the keyrecords are NOT null-terminated.
For negative values of ctrl (see below), header[] is modified so that WCS keyrecords
processed by wcspih() are removed from it.

in nkeyrec Number of keyrecords in header[].

in relax Degree of permissiveness:

• 0: Recognize only FITS keywords defined by the published WCS standard.

• WCSHDR_all: Admit all recognized informal extensions of the WCS standard.

Fine-grained control of the degree of permissiveness is also possible as explained in wcsbth() note 5.

Parameters

in ctrl Error reporting and other control options for invalid WCS and other header keyrecords:

• 0: Do not report any rejected header keyrecords.

• 1: Produce a one-line message stating the number of WCS keyrecords rejected (nreject).

• 2: Report each rejected keyrecord and the reason why it was rejected.

• 3: As above, but also report all non-WCS keyrecords that were discarded, and the number
of coordinate representations (nwcs) found.

• 4: As above, but also report the accepted WCS keyrecords, with a summary of the number
accepted as well as rejected.

The report is written to stderr by default, or the stream set by wcsprintf_set().
For ctrl < 0, WCS keyrecords processed by wcspih() are removed from header[]:

• -1: Remove only valid WCS keyrecords whose values were successfully extracted, nothing is reported.

• -2: As above, but also remove WCS keyrecords that were rejected, reporting each one and the reason that it
was rejected.

• -3: As above, and also report the number of coordinate representations (nwcs) found.

• -11: Same as -1 but preserving global WCS-related keywords such as '{DATE,MJD}-{OBS,BEG,AVG,END}'
and the other basic time-related keywords, and 'OBSGEO-{X,Y,Z,L,B,H}'.

If any keyrecords are removed from header[] it will be null-terminated (NUL not being a legal FITS header character),
otherwise it will contain its original complement of nkeyrec keyrecords and possibly not be null-terminated.

Generated by Doxygen

226

Parameters

out nreject Number of WCS keywords rejected for syntax errors, illegal values, etc. Keywords not
recognized as WCS keywords are simply ignored. Refer also to wcsbth() note 5.

out nwcs Number of coordinate representations found.

out wcs Pointer to an array of wcsprm structs containing up to 27 coordinate representations.
Memory for the array is allocated by wcspih() which also invokes wcsini() for each struct to
allocate memory for internal arrays and initialize their members to default values. Refer also
to wcsbth() note 8. Note that wcsset() is not invoked on these structs.
This allocated memory must be freed by the user, first by invoking wcsfree() for each struct,
and then by freeing the array itself. A routine, wcsvfree(), is provided to do this (see below).

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 4: Fatal error returned by Flex parser.

Notes:

1. Refer to wcsbth() notes 1, 2, 3, 5, 7, and 8.

19.15.4.2 wcsbth() int wcsbth (

char ∗ header,

int nkeyrec,

int relax,

int ctrl,

int keysel,

int ∗ colsel,

int ∗ nreject,

int ∗ nwcs,

struct wcsprm ∗∗ wcs)

wcsbth() is a high-level FITS WCS routine that parses a binary table header. It handles image array and pixel list
WCS keywords which may be present together in one header.

As an extension of the FITS WCS standard, wcsbth() also recognizes image header keywords in a binary table
header. These may be used to provide default values via an inheritance mechanism discussed in note 5 (c.←↩

f. WCSHDR_AUXIMG and WCSHDR_ALLIMG), or may instead result in wcsprm structs that are not associated
with any particular column. Thus wcsbth() can handle primary image and image extension headers in addition to
binary table headers (it ignores NAXIS and does not rely on the presence of the TFIELDS keyword).

All WCS keywords defined in Papers I, II, III, and VII are recognized, and also those used by the AIPS convention
and certain other keywords that existed in early drafts of the WCS papers as explained in note 5 below.

wcsbth() sets the colnum or colax[] members of the wcsprm structs that it returns with the column number of an
image array or the column numbers associated with each pixel coordinate element in a pixel list. wcsprm structs

Generated by Doxygen

19.15 wcshdr.h File Reference 227

that are not associated with any particular column, as may be derived from image header keywords, have colnum
== 0.

Note 6 below discusses the number of wcsprm structs returned by wcsbth(), and the circumstances in which image
header keywords cause a struct to be created. See also note 9 concerning the number of separate images that may
be stored in a pixel list.

The API to wcsbth() is similar to that of wcspih() except for the addition of extra arguments that may be used to
restrict its operation. Like wcspih(), wcsbth() invokes wcstab() on each of the wcsprm structs that it returns.

Generated by Doxygen

228

Parameters

in,out header Character array containing the (entire) FITS binary table, primary image, or image
extension header from which to identify and construct the coordinate representations,
for example, as might be obtained conveniently via the CFITSIO routine fits_hdr2str().
Each header "keyrecord" (formerly "card image") consists of exactly 80 7-bit ASCII
printing characters in the range 0x20 to 0x7e (which excludes NUL, BS, TAB, LF, FF
and CR) especially noting that the keyrecords are NOT null-terminated.
For negative values of ctrl (see below), header[] is modified so that WCS keyrecords
processed by wcsbth() are removed from it.

in nkeyrec Number of keyrecords in header[].

in relax Degree of permissiveness:

• 0: Recognize only FITS keywords defined by the published WCS standard.

• WCSHDR_all: Admit all recognized informal extensions of the WCS standard.

Fine-grained control of the degree of permissiveness is also possible, as explained in note 5 below.

Parameters

in ctrl Error reporting and other control options for invalid WCS and other header keyrecords:

• 0: Do not report any rejected header keyrecords.

• 1: Produce a one-line message stating the number of WCS keyrecords rejected (nreject).

• 2: Report each rejected keyrecord and the reason why it was rejected.

• 3: As above, but also report all non-WCS keyrecords that were discarded, and the number
of coordinate representations (nwcs) found.

• 4: As above, but also report the accepted WCS keyrecords, with a summary of the number
accepted as well as rejected.

The report is written to stderr by default, or the stream set by wcsprintf_set().
For ctrl < 0, WCS keyrecords processed by wcsbth() are removed from header[]:

• -1: Remove only valid WCS keyrecords whose values were successfully extracted, nothing is reported.

• -2: Also remove WCS keyrecords that were rejected, reporting each one and the reason that it was rejected.

• -3: As above, and also report the number of coordinate representations (nwcs) found.

• -11: Same as -1 but preserving global WCS-related keywords such as '{DATE,MJD}-{OBS,BEG,AVG,END}'
and the other basic time-related keywords, and 'OBSGEO-{X,Y,Z,L,B,H}'.

If any keyrecords are removed from header[] it will be null-terminated (NUL not being a legal FITS header character),
otherwise it will contain its original complement of nkeyrec keyrecords and possibly not be null-terminated.

Generated by Doxygen

19.15 wcshdr.h File Reference 229

Parameters

in keysel Vector of flag bits that may be used to restrict the keyword types considered:

• WCSHDR_IMGHEAD: Image header keywords.

• WCSHDR_BIMGARR: Binary table image array.

• WCSHDR_PIXLIST: Pixel list keywords.

If zero, there is no restriction.
Keywords such as EQUIna or RFRQna that are common to binary table image arrays and pixel lists (in-
cluding WCSNna and TWCSna, as explained in note 4 below) are selected by both WCSHDR_BIMGARR and
WCSHDR_PIXLIST. Thus if inheritance via WCSHDR_ALLIMG is enabled as discussed in note 5 and one of these
shared keywords is present, then WCSHDR_IMGHEAD and WCSHDR_PIXLIST alone may be sufficient to cause
the construction of coordinate descriptions for binary table image arrays.

Parameters

in colsel Pointer to an array of table column numbers used to restrict the keywords considered by
wcsbth().
A null pointer may be specified to indicate that there is no restriction. Otherwise, the magnitude
of cols[0] specifies the length of the array:

• cols[0] > 0: the columns are included,

• cols[0] < 0: the columns are excluded.

For the pixel list keywords TPn_ka and TCn_ka (and TPCn_ka and TCDn_ka if WCSHDR_LONGKEY is
enabled), it is an error for one column to be selected but not the other. This is unlike the situation with invalid
keyrecords, which are simply rejected, because the error is not intrinsic to the header itself but arises in the way that
it is processed.

Parameters

out nreject Number of WCS keywords rejected for syntax errors, illegal values, etc. Keywords not
recognized as WCS keywords are simply ignored, refer also to note 5 below.

out nwcs Number of coordinate representations found.

out wcs Pointer to an array of wcsprm structs containing up to 27027 coordinate representations,
refer to note 6 below.
Memory for the array is allocated by wcsbth() which also invokes wcsini() for each struct to
allocate memory for internal arrays and initialize their members to default values. Refer also
to note 8 below. Note that wcsset() is not invoked on these structs.
This allocated memory must be freed by the user, first by invoking wcsfree() for each struct,
and then by freeing the array itself. A routine, wcsvfree(), is provided to do this (see below).

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid column selection.

Generated by Doxygen

230

• 4: Fatal error returned by Flex parser.

Notes:

1. wcspih() determines the number of coordinate axes independently for each alternate coordinate representa-
tion (denoted by the "a" value in keywords like CTYPEia) from the higher of

(a) NAXIS,

(b) WCSAXESa,

(c) The highest axis number in any parameterized WCS keyword. The keyvalue, as well as the keyword,
must be syntactically valid otherwise it will not be considered.

If none of these keyword types is present, i.e. if the header only contains auxiliary WCS keywords for a
particular coordinate representation, then no coordinate description is constructed for it.

wcsbth() is similar except that it ignores the NAXIS keyword if given an image header to process.

The number of axes, which is returned as a member of the wcsprm struct, may differ for different coordinate
representations of the same image.

2. wcspih() and wcsbth() enforce correct FITS "keyword = value" syntax with regard to "= " occurring in columns
9 and 10.

However, they do recognize free-format character (NOST 100-2.0, Sect. 5.2.1), integer (Sect. 5.2.3), and
floating-point values (Sect. 5.2.4) for all keywords.

3. Where CROTAn, CDi_ja, and PCi_ja occur together in one header wcspih() and wcsbth() treat them as
described in the prologue to wcs.h.

4. WCS Paper I mistakenly defined the pixel list form of WCSNAMEa as TWCSna instead of WCSNna; the 'T'
is meant to substitute for the axis number in the binary table form of the keyword - note that keywords defined
in WCS Papers II, III, and VII that are not parameterized by axis number have identical forms for binary tables
and pixel lists. Consequently wcsbth() always treats WCSNna and TWCSna as equivalent.

5. wcspih() and wcsbth() interpret the relax argument as a vector of flag bits to provide fine-grained control over
what non-standard WCS keywords to accept. The flag bits are subject to change in future and should be set
by using the preprocessor macros (see below) for the purpose.

• WCSHDR_none: Don't accept any extensions (not even those in the errata). Treat non-conformant
keywords in the same way as non-WCS keywords in the header, i.e. simply ignore them.

• WCSHDR_all: Accept all extensions recognized by the parser.

• WCSHDR_reject: Reject non-standard keyrecords (that are not otherwise explicitly accepted by one
of the flags below). A message will optionally be printed on stderr by default, or the stream set by
wcsprintf_set(), as determined by the ctrl argument, and nreject will be incremented.

This flag may be used to signal the presence of non-standard keywords, otherwise they are simply
passed over as though they did not exist in the header. It is mainly intended for testing conformance of
a FITS header to the WCS standard.

Keyrecords may be non-standard in several ways:

– The keyword may be syntactically valid but with keyvalue of incorrect type or invalid syntax, or the
keycomment may be malformed.

– The keyword may strongly resemble a WCS keyword but not, in fact, be one because it does not
conform to the standard. For example, "CRPIX01" looks like a CRPIXja keyword, but in fact the
leading zero on the axis number violates the basic FITS standard. Likewise, "LONPOLE2" is not
a valid LONPOLEa keyword in the WCS standard, and indeed there is nothing the parser can
sensibly do with it.

– Use of the keyword may be deprecated by the standard. Such will be rejected if not explicitly
accepted via one of the flags below.

Generated by Doxygen

19.15 wcshdr.h File Reference 231

• WCSHDR_strict: As for WCSHDR_reject, but also reject AIPS-convention keywords and all other dep-
recated usage that is not explicitly accepted.

• WCSHDR_CROTAia: Accept CROTAia (wcspih()), iCROTna (wcsbth()), TCROTna (wcsbth()).

• WCSHDR_VELREFa: Accept VELREFa. wcspih() always recognizes the AIPS-convention keywords,
CROTAn, EPOCH, and VELREF for the primary representation (a = ' ') but alternates are non-standard.

wcsbth() accepts EPOCHa and VELREFa only if WCSHDR_AUXIMG is also enabled.

• WCSHDR_CD00i00j: Accept CD00i00j (wcspih()).

• WCSHDR_PC00i00j: Accept PC00i00j (wcspih()).

• WCSHDR_PROJPn: Accept PROJPn (wcspih()). These appeared in early drafts of WCS Paper I+II
(before they were split) and are equivalent to CDi_ja, PCi_ja, and PVi_ma for the primary repre-
sentation (a = ' '). PROJPn is equivalent to PVi_ma with m = n ≤ 9, and is associated exclusively
with the latitude axis.

• WCSHDR_CD0i_0ja: Accept CD0i_0ja (wcspih()).

• WCSHDR_PC0i_0ja: Accept PC0i_0ja (wcspih()).

• WCSHDR_PV0i_0ma: Accept PV0i_0ja (wcspih()).

• WCSHDR_PS0i_0ma: Accept PS0i_0ja (wcspih()). Allow the numerical index to have a leading zero in
doubly- parameterized keywords, for example, PC01_01. WCS Paper I (Sects 2.1.2 & 2.1.4) explicitly
disallows leading zeroes. The FITS 3.0 standard document (Sect. 4.1.2.1) states that the index in
singly-parameterized keywords (e.g. CTYPEia) "shall not have leading zeroes", and later in Sect. 8.1
that "leading zeroes must not be used" on PVi_ma and PSi_ma. However, by an oversight, it is silent
on PCi_ja and CDi_ja.

• WCSHDR_DOBSn (wcsbth() only): Allow DOBSn, the column-specific analogue of DATE-OBS. By an
oversight this was never formally defined in the standard.

• WCSHDR_OBSGLBHn (wcsbth() only): Allow OBSGLn, OBSGBn, and OBSGHn, the column-specific
analogues of OBSGEO-L, OBSGEO-B, and OBSGEO-H. By an oversight these were never formally
defined in the standard.

• WCSHDR_RADECSYS: Accept RADECSYS. This appeared in early drafts of WCS Paper I+II and was
subsequently replaced by RADESYSa.

wcsbth() accepts RADECSYS only if WCSHDR_AUXIMG is also enabled.

• WCSHDR_EPOCHa: Accept EPOCHa.

• WCSHDR_VSOURCE: Accept VSOURCEa or VSOUna (wcsbth()). This appeared in early drafts of
WCS Paper III and was subsequently dropped in favour of ZSOURCEa and ZSOUna.

wcsbth() accepts VSOURCEa only if WCSHDR_AUXIMG is also enabled.

• #WCSHDR_<TT>DATEREF: Accept DATE-REF, MJD-REF, MJD-REFI, MJD-REFF, JDREF, JD-←↩

REFI, and JD-REFF as synonyms for the standard keywords, DATEREF, MJDREF, MJDREFI,
MJDREFF, JDREF, JDREFI, and JDREFF. The latter buck the pattern set by the other date key-
words ({DATE,MJD}-{OBS,BEG,AVG,END}), thereby increasing the potential
for confusion and error.

• WCSHDR_LONGKEY (wcsbth() only): Accept long forms of the alternate
binary table and pixel list WCS keywords, i.e. with "a" non- blank.
Specifically

jCRPXna TCRPXna ←↩

:
jCRPXn jCRPna TCRPXn TCRPna CRPIXja

TPCn_ka ←↩

:
ijPCna TPn_ka PCi_ja

TCDn_ka ←↩

:
ijCDna TCn_ka CDi_ja

iCDLTna TCDLTna ←↩

:
iCDLTn iCDEna TCDLTn TCDEna CDELTia

iCUNIna TCUNIna ←↩

:
iCUNIn iCUNna TCUNIn TCUNna CUNITia

Generated by Doxygen

232

iCTYPna TCTYPna ←↩

:
iCTYPn iCTYna TCTYPn TCTYna CTYPEia

iCRVLna TCRVLna ←↩

:
iCRVLn iCRVna TCRVLn TCRVna CRVALia

iPVn_ma TPVn_ma ←↩

:
iVn_ma TVn_ma PVi_ma

iPSn_ma TPSn_ma ←↩

:
iSn_ma TSn_ma PSi_ma

where the primary and standard alternate forms together with the
image-header equivalent are shown rightwards of the colon.

The long form of these keywords could be described as quasi- standard.
TPCn_ka, iPVn_ma, and TPVn_ma appeared by mistake in the examples
in WCS Paper II and subsequently these and also TCDn_ka, iPSn_ma and
TPSn_ma were legitimized by the errata to the WCS papers.

Strictly speaking, the other long forms are non-standard and in fact
have never appeared in any draft of the WCS papers nor in the errata.
However, as natural extensions of the primary form they are unlikely
to be written with any other intention. Thus it should be safe to
accept them provided, of course, that the resulting keyword does not
exceed the 8-character limit.

If WCSHDR_CNAMn is enabled then also accept

iCNAMna TCNAMna ←↩

:
-- iCNAna -- TCNAna CNAMEia

iCRDEna TCRDEna ←↩

:
-- iCRDna -- TCRDna CRDERia

iCSYEna TCSYEna ←↩

:
-- iCSYna -- TCSYna CSYERia

TCZPHna TCZPHna ←↩

:
-- TCZPna -- TCZPna CZPHSia

iCPERna TCPERna ←↩

:
-- iCPRna -- TCPRna CPERIia

Note that CNAMEia, CRDERia, CSYERia, CZPHSia, CPERIia, and their
variants are not used by WCSLIB but are stored in the wcsprm struct
as auxiliary information.

• WCSHDR_CNAMn (wcsbth() only): Accept iCNAMn, iCRDEn, iCSYEn, TCZPHn,
iCPERn, TCNAMn, TCRDEn, TCSYEn, TCZPHn, and TCPERn, i.e. with "a"
blank. While non-standard, these are the obvious analogues of iCTYPn,
TCTYPn, etc.

• WCSHDR_AUXIMG (wcsbth() only): Allow the image-header form of an
auxiliary WCS keyword with representation-wide scope to provide a
default value for all images. This default may be overridden by the
column-specific form of the keyword.

For example, a keyword like EQUINOXa would apply to all image arrays
in a binary table, or all pixel list columns with alternate representation
"a" unless overridden by EQUIna.

Specifically the keywords are:

LONPOLEa for LONPna
LATPOLEa for LATPna
VELREF ... (No column-specific form.)

VELREFa ... Only if WCSHDR_VELREFa is set.

whose keyvalues are actually used by WCSLIB, and also keywords providing
auxiliary information that is simply stored in the wcsprm struct:

Generated by Doxygen

19.15 wcshdr.h File Reference 233

WCSNAMEa for WCSNna ... Or TWCSna (see below).

DATE-OBS for DOBSn
MJD-OBS for MJDOBn

RADESYSa for RADEna
RADECSYS for RADEna ... Only if WCSHDR_RADECSYS is set.

EPOCH ... (No column-specific form.)

EPOCHa ... Only if WCSHDR_EPOCHa is set.

EQUINOXa for EQUIna

where the image-header keywords on the left provide default values
for the column specific keywords on the right.

Note that, according to Sect. 8.1 of WCS Paper III, and Sect. 5.2
of WCS Paper VII, the following are always inherited:

RESTFREQ for RFRQna
RESTFRQa for RFRQna
RESTWAVa for RWAVna

being those actually used by WCSLIB, together with the following
auxiliary keywords, many of which do not have binary table equivalents
and therefore can only be inherited:

TIMESYS
TREFPOS for MJDAn
TREFDIR for MJDAn
PLEPHEM
TIMEUNIT
DATEREF
MJDREF
MJDREFI
MJDREFF
JDREF
JDREFI
JDREFF
TIMEOFFS

DATE-BEG
DATE-AVG for DAVGn
DATE-END
MJD-BEG
MJD-AVG for MJDAn
MJD-END
JEPOCH
BEPOCH
TSTART
TSTOP
XPOSURE
TELAPSE

TIMSYER
TIMRDER
TIMEDEL
TIMEPIXR

Generated by Doxygen

234

OBSGEO-X for OBSGXn
OBSGEO-Y for OBSGYn
OBSGEO-Z for OBSGZn
OBSGEO-L for OBSGLn
OBSGEO-B for OBSGBn
OBSGEO-H for OBSGHn
OBSORBIT

SPECSYSa for SPECna
SSYSOBSa for SOBSna
VELOSYSa for VSYSna
VSOURCEa for VSOUna ... Only if WCSHDR_VSOURCE is set.

ZSOURCEa for ZSOUna
SSYSSRCa for SSRCna
VELANGLa for VANGna

Global image-header keywords, such as MJD-OBS, apply to all alternate
representations, and would therefore provide a default value for all
images in the header.

This auxiliary inheritance mechanism applies to binary table image
arrays and pixel lists alike. Most of these keywords have no default
value, the exceptions being LONPOLEa and LATPOLEa, and also RADESYSa
and EQUINOXa which provide defaults for each other. Thus one potential
difficulty in using WCSHDR_AUXIMG is that of erroneously inheriting
one of these four keywords.

Also, beware of potential inconsistencies that may arise where, for
example, DATE-OBS is inherited, but MJD-OBS is overridden by MJDOBn
and specifies a different time. Pairs in this category are:

DATE-OBS/DOBSn versus MJD-OBS/MJDOBn
DATE-AVG/DAVGn versus MJD-AVG/MJDAn
RESTFRQa/RFRQna versus RESTWAVa/RWAVna

OBSGEO-[XYZ]/OBSG[XYZ]n versus OBSGEO-[LBH]/OBSG[LBH]n

The wcsfixi() routines datfix() and obsfix() are provided to check
the consistency of these and other such pairs of keywords.

Unlike WCSHDR_ALLIMG, the existence of one (or all) of these auxiliary
WCS image header keywords will not by itself cause a wcsprm struct
to be created for alternate representation "a". This is because
they do not provide sufficient information to create a non-trivial
coordinate representation when used in conjunction with the default
values of those keywords that are parameterized by axis number, such
as CTYPEia.

• WCSHDR_ALLIMG (wcsbth() only): Allow the image-header form of ∗all∗
image header WCS keywords to provide a default value for all image
arrays in a binary table (n.b. not pixel list). This default may
be overridden by the column-specific form of the keyword.

For example, a keyword like CRPIXja would apply to all image arrays
in a binary table with alternate representation "a" unless overridden
by jCRPna.

Specifically the keywords are those listed above for WCSHDR_AUXIMG
plus

WCSAXESa for WCAXna

which defines the coordinate dimensionality, and the following keywords
that are parameterized by axis number:

CRPIXja for jCRPna
PCi_ja for ijPCna

Generated by Doxygen

19.15 wcshdr.h File Reference 235

CDi_ja for ijCDna
CDELTia for iCDEna
CROTAi for iCROTn
CROTAia ... Only if WCSHDR_CROTAia is set.

CUNITia for iCUNna
CTYPEia for iCTYna
CRVALia for iCRVna
PVi_ma for iVn_ma
PSi_ma for iSn_ma

CNAMEia for iCNAna
CRDERia for iCRDna
CSYERia for iCSYna
CZPHSia for TCZPna
CPERIia for iCPRna

where the image-header keywords on the left provide default values
for the column specific keywords on the right.

This full inheritance mechanism only applies to binary table image
arrays, not pixel lists, because in the latter case there is no well-defined
association between coordinate axis number and column number (see
note 9 below).

Note that CNAMEia, CRDERia, CSYERia, and their variants are not used
by WCSLIB but are stored in the wcsprm struct as auxiliary information.

Note especially that at least one wcsprm struct will be returned for
each "a" found in one of the image header keywords listed above:

– If the image header keywords for "a" are not inherited by a binary
table, then the struct will not be associated with any particular
table column number and it is up to the user to provide an association.

– If the image header keywords for "a" are inherited by a binary
table image array, then those keywords are considered to be "exhausted"
and do not result in a separate wcsprm struct.

For example, to accept CD00i00j and PC00i00j and reject all other extensions,
use
relax = WCSHDR_reject | WCSHDR_CD00i00j | WCSHDR_PC00i00j;

The parser always treats EPOCH as subordinate to EQUINOXa if both are
present, and VSOURCEa is always subordinate to ZSOURCEa.

Likewise, VELREF is subordinate to the formalism of WCS Paper III, see
spcaips().

Neither wcspih() nor wcsbth() currently recognize the AIPS-convention
keywords ALTRPIX or ALTRVAL which effectively define an alternative
representation for a spectral axis.

6. Depending on what flags have been set in its relax argument, wcsbth()
could return as many as 27027 wcsprm structs:

• Up to 27 unattached representations derived from image header keywords.

• Up to 27 structs for each of up to 999 columns containing an image
arrays.

• Up to 27 structs for a pixel list.

Note that it is considered legitimate for a column to contain an image
array and also form part of a pixel list, and in particular that wcsbth()
does not check the TFORM keyword for a pixel list column to check that
it is scalar.

Generated by Doxygen

236

In practice, of course, a realistic binary table header is unlikely to
contain more than a handful of images.

In order for wcsbth() to create a wcsprm struct for a particular coordinate
representation, at least one WCS keyword that defines an axis number
must be present, either directly or by inheritance if WCSHDR_ALLIMG is
set.

When the image header keywords for an alternate representation are inherited
by a binary table image array via WCSHDR_ALLIMG, those keywords are
considered to be "exhausted" and do not result in a separate wcsprm
struct. Otherwise they do.

7. Neither wcspih() nor wcsbth() check for duplicated keywords, in most
cases they accept the last encountered.

8. wcspih() and wcsbth() use wcsnpv() and wcsnps() (refer to the prologue
of wcs.h) to match the size of the pv[] and ps[] arrays in the wcsprm
structs to the number in the header. Consequently there are no unused
elements in the pv[] and ps[] arrays, indeed they will often be of zero
length.

9. The FITS WCS standard for pixel lists assumes that a pixel list defines
one and only one image, i.e. that each row of the binary table refers
to just one event, e.g. the detection of a single photon or neutrino,
for which the device "pixel" coordinates are stored in separate scalar
columns of the table.

In the absence of a standard for pixel lists - or even an informal description!
- let alone a formal mechanism for identifying the columns containing
pixel coordinates (as opposed to pixel values or metadata recorded at
the time the photon or neutrino was detected), WCS Paper I discusses
how the WCS keywords themselves may be used to identify them.

In practice, however, pixel lists have been used to store multiple images.
Besides not specifying how to identify columns, the pixel list convention
is also silent on the method to be used to associate table columns with
image axes.

An additional shortcoming is the absence of a formal method for associating
global binary-table WCS keywords, such as WCSNna or MJDOBn, with a pixel
list image, whether one or several.

In light of these uncertainties, wcsbth() simply collects all WCS keywords
for a particular pixel list coordinate representation (i.e. the "a"
value in TCTYna) into one wcsprm struct. However, these alternates
need not be associated with the same table columns and this allows a
pixel list to contain up to 27 separate images. As usual, if one of
these representations happened to contain more than two celestial axes,
for example, then an error would result when wcsset() is invoked on
it. In this case the "colsel" argument could be used to restrict the
columns used to construct the representation so that it only contained
one pair of celestial axes.

Global, binary-table WCS keywords are considered to apply to the pixel
list image with matching alternate (e.g. the "a" value in LONPna or
EQUIna), regardless of the table columns the image occupies. In other
words, the column number is ignored (the "n" value in LONPna or EQUIna).
This also applies for global, binary-table WCS keywords that have no
alternates, such as MJDOBn and OBSGXn, which match all images in a pixel
list. Take heed that this may lead to counterintuitive behaviour, especially
where such a keyword references a column that does not store pixel coordinates,
and moreso where the pixel list stores only a single image. In fact,
as the column number, n, is ignored for such keywords, it would make

Generated by Doxygen

19.15 wcshdr.h File Reference 237

no difference even if they referenced non-existent columns. Moreover,
there is no requirement for consistency in the column numbers used for
such keywords, even for OBSGXn, OBSGYn, and OBSGZn which are meant to
define the elements of a coordinate vector. Although it would surely
be perverse to construct a pixel list like this, such a situation may
still arise in practice where columns are deleted from a binary table.

The situation with global, binary-table WCS keywords becomes potentially
even more confusing when image arrays and pixel list images coexist in
one binary table. In that case, a keyword such as MJDOBn may legitimately
appear multiple times with n referencing different image arrays. Which
then is the one that applies to the pixel list images? In this implementation,
it is the last instance that appears in the header, whether or not it
is also associated with an image array.

19.15.4.3 wcstab() int wcstab (

struct wcsprm ∗ wcs)

wcstab() assists in filling in the information in the wcsprm struct relating to coordinate lookup tables.

Tabular coordinates ('TAB') present certain difficulties in that the main components of the lookup table - the
multidimensional coordinate array plus an index vector for each dimension - are stored in a FITS binary table
extension (BINTABLE). Information required to locate these arrays is stored in PVi_ma and PSi_ma keywords in
the image header.

wcstab() parses the PVi_ma and PSi_ma keywords associated with each 'TAB' axis and allocates memory in
the wcsprm struct for the required number of tabprm structs. It sets as much of the tabprm struct as can be gleaned
from the image header, and also sets up an array of wtbarr structs (described in the prologue of wtbarr.h) to assist
in extracting the required arrays from the BINTABLE extension(s).

It is then up to the user to allocate memory for, and copy arrays from the BINTABLE extension(s) into the tabprm
structs. A CFITSIO routine, fits_read_wcstab(), has been provided for this purpose, see getwcstab.h. wcsset() will
automatically take control of this allocated memory, in particular causing it to be freed by wcsfree(); the user must
not attempt to free it after wcsset() has been called.

Note that wcspih() and wcsbth() automatically invoke wcstab() on each of the wcsprm structs that they return.

Parameters

in,out wcs Coordinate transformation parameters (see below).
wcstab() sets ntab, tab, nwtb and wtb, allocating memory for the tab and wtb arrays. This
allocated memory will be freed automatically by wcsfree().

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid tabular parameters.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

Generated by Doxygen

238

19.15.4.4 wcsidx() int wcsidx (

int nwcs,

struct wcsprm ∗∗ wcs,

int alts[27])

wcsidx() returns an array of 27 indices for the alternate coordinate representations in the array of wcsprm structs
returned by wcspih(). For the array returned by wcsbth() it returns indices for the unattached (colnum == 0) repre-
sentations derived from image header keywords - use wcsbdx() for those derived from binary table image arrays or
pixel lists keywords.

Parameters

in nwcs Number of coordinate representations in the array.

in wcs Pointer to an array of wcsprm structs returned by wcspih() or wcsbth().

out alts Index of each alternate coordinate representation in the array: alts[0] for the primary, alts[1] for
'A', etc., set to -1 if not present.
For example, if there was no 'P' representation then
alts[’P’-’A’+1] == -1;

Otherwise, the address of its wcsprm struct would be
wcs + alts[’P’-’A’+1];

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.15.4.5 wcsbdx() int wcsbdx (

int nwcs,

struct wcsprm ∗∗ wcs,

int type,

short alts[1000][28])

wcsbdx() returns an array of 999 x 27 indices for the alternate coordinate representions for binary table image arrays
xor pixel lists in the array of wcsprm structs returned by wcsbth(). Use wcsidx() for the unattached representations
derived from image header keywords.

Parameters

in nwcs Number of coordinate representations in the array.

in wcs Pointer to an array of wcsprm structs returned by wcsbth().

in type Select the type of coordinate representation:

• 0: binary table image arrays,

• 1: pixel lists.

Generated by Doxygen

19.15 wcshdr.h File Reference 239

Parameters

out alts Index of each alternate coordinate represention in the array: alts[col][0] for the primary,
alts[col][1] for 'A', to alts[col][26] for 'Z', where col is the 1-relative column number, and col ==
0 is used for unattached image headers. Set to -1 if not present.
alts[col][27] counts the number of coordinate representations of the chosen type for each
column.
For example, if there was no 'P' represention for column 13 then
alts[13][’P’-’A’+1] == -1;

Otherwise, the address of its wcsprm struct would be
wcs + alts[13][’P’-’A’+1];

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.15.4.6 wcsvfree() int wcsvfree (

int ∗ nwcs,

struct wcsprm ∗∗ wcs)

wcsvfree() frees the memory allocated by wcspih() or wcsbth() for the array of wcsprm structs, first invoking
wcsfree() on each of the array members.

Parameters

in,out nwcs Number of coordinate representations found; set to 0 on return.

in,out wcs Pointer to the array of wcsprm structs; set to 0x0 on return.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.15.4.7 wcshdo() int wcshdo (

int ctrl,

struct wcsprm ∗ wcs,

int ∗ nkeyrec,

char ∗∗ header)

wcshdo() translates a wcsprm struct into a FITS header. If the colnum member of the struct is non-zero then a
binary table image array header will be produced. Otherwise, if the colax[] member of the struct is set non-zero then
a pixel list header will be produced. Otherwise, a primary image or image extension header will be produced.

If the struct was originally constructed from a header, e.g. by wcspih(), the output header will almost certainly differ
in a number of respects:

Generated by Doxygen

240

• The output header only contains WCS-related keywords. In particular, it does not contain syntactically-
required keywords such as SIMPLE, NAXIS, BITPIX, or END.

• Elements of the PCi_ja matrix will be written if and only if they differ from the unit matrix. Thus, if the matrix
is unity then no elements will be written.

• The redundant keywords MJDREF, JDREF, JDREFI, JDREFF, all of which duplicate MJDREFI +
MJDREFF, are never written. OBSGEO-[LBH] are not written if OBSGEO-[XYZ] are defined.

• Deprecated (e.g. CROTAn, RESTFREQ, VELREF, RADECSYS, EPOCH, VSOURCEa) or non-standard us-
age will be translated to standard (this is partially dependent on whether wcsfix() was applied).

• Additional keywords such as WCSAXESa, CUNITia, LONPOLEa and LATPOLEa may appear.

• Quantities will be converted to the units used internally, basically SI with the addition of degrees.

• Floating-point quantities may be given to a different decimal precision.

• The original keycomments will be lost, although wcshdo() tries hard to write meaningful comments.

• Keyword order will almost certainly be changed.

Keywords can be translated between the image array, binary table, and pixel lists forms by manipulating the colnum
or colax[] members of the wcsprm struct.

Parameters

in ctrl Vector of flag bits that controls the degree of permissiveness in departing from the published
WCS standard, and also controls the formatting of floating-point keyvalues. Set it to zero to get
the default behaviour.
Flag bits for the degree of permissiveness:

• WCSHDO_none: Recognize only FITS keywords defined by the published WCS standard.

• WCSHDO_all: Admit all recognized informal extensions of the WCS standard.

Fine-grained control of the degree of permissiveness is also possible as explained in the notes below.
As for controlling floating-point formatting, by default wcshdo() uses "%20.12G" for non-parameterized keywords
such as LONPOLEa, and attempts to make the header more human-readable by using the same "f" format for
all values of each of the following parameterized keywords: CRPIXja, PCi_ja, and CDELTia (n.b. excluding
CRVALia). Each has the same field width and precision so that the decimal points line up. The precision, allowing
for up to 15 significant digits, is chosen so that there are no excess trailing zeroes. A similar formatting scheme
applies by default for distortion function parameters.
However, where the values of, for example, CDELTia differ by many orders of magnitude, the default formatting
scheme may cause unacceptable loss of precision for the lower-valued keyvalues. Thus the default behaviour may
be overridden:

• WCSHDO_P12: Use "%20.12G" format for all floating- point keyvalues (12 significant digits).

• WCSHDO_P13: Use "%21.13G" format for all floating- point keyvalues (13 significant digits).

• WCSHDO_P14: Use "%22.14G" format for all floating- point keyvalues (14 significant digits).

• WCSHDO_P15: Use "%23.15G" format for all floating- point keyvalues (15 significant digits).

• WCSHDO_P16: Use "%24.16G" format for all floating- point keyvalues (16 significant digits).

• WCSHDO_P17: Use "%25.17G" format for all floating- point keyvalues (17 significant digits).

If more than one of the above flags are set, the highest number of significant digits prevails. In addition, there is an
anciliary flag:

Generated by Doxygen

19.15 wcshdr.h File Reference 241

• WCSHDO_EFMT: Use "E" format instead of the default "G" format above.

Note that excess trailing zeroes are stripped off the fractional part with "G" (which never occurs with "E"). Note
also that the higher-precision options eat into the keycomment area. In this regard, WCSHDO_P14 causes minimal
disruption with "G" format, while WCSHDO_P13 is appropriate with "E".

Parameters

in,out wcs Pointer to a wcsprm struct containing coordinate transformation parameters. Will be
initialized if necessary.

out nkeyrec Number of FITS header keyrecords returned in the "header" array.

out header Pointer to an array of char holding the header. Storage for the array is allocated by
wcshdo() in blocks of 2880 bytes (32 x 80-character keyrecords) and must be freed by
the user to avoid memory leaks. See wcsdealloc().
Each keyrecord is 80 characters long and is ∗NOT∗ null-terminated, so the first
keyrecord starts at (∗header)[0], the second at (∗header)[80], etc.

Returns

Status return value (associated with wcs_errmsg[]):

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

Notes:

1. wcshdo() interprets the relax argument as a vector of flag bits to provide fine-grained control over what non-
standard WCS keywords to write. The flag bits are subject to change in future and should be set by using the
preprocessor macros (see below) for the purpose.

• WCSHDO_none: Don't use any extensions.

• WCSHDO_all: Write all recognized extensions, equivalent to setting each flag bit.

• WCSHDO_safe: Write all extensions that are considered to be safe and recommended.

• WCSHDO_DOBSn: Write DOBSn, the column-specific analogue of DATE-OBS for use in binary tables
and pixel lists. WCS Paper III introduced DATE-AVG and DAVGn but by an oversight DOBSn (the
obvious analogy) was never formally defined by the standard. The alternative to using DOBSn is to write
DATE-OBS which applies to the whole table. This usage is considered to be safe and is recommended.

• WCSHDO_TPCn_ka: WCS Paper I defined

– TPn_ka and TCn_ka for pixel lists

but WCS Paper II uses TPCn_ka in one example and subsequently the errata for the WCS papers
legitimized the use of

– TPCn_ka and TCDn_ka for pixel lists

Generated by Doxygen

242

provided that the keyword does not exceed eight characters. This usage is considered to be safe and is
recommended because of the non-mnemonic terseness of the shorter forms.

• WCSHDO_PVn_ma: WCS Paper I defined

– iVn_ma and iSn_ma for bintables and

– TVn_ma and TSn_ma for pixel lists

but WCS Paper II uses iPVn_ma and TPVn_ma in the examples and subsequently the errata for the
WCS papers legitimized the use of

– iPVn_ma and iPSn_ma for bintables and

– TPVn_ma and TPSn_ma for pixel lists

provided that the keyword does not exceed eight characters. This usage is considered to be safe and is
recommended because of the non-mnemonic terseness of the shorter forms.

• WCSHDO_CRPXna: For historical reasons WCS Paper I defined

– jCRPXn, iCDLTn, iCUNIn, iCTYPn, and iCRVLn for bintables and

– TCRPXn, TCDLTn, TCUNIn, TCTYPn, and TCRVLn for pixel lists

for use without an alternate version specifier. However, because of the eight-character keyword con-
straint, in order to accommodate column numbers greater than 99 WCS Paper I also defined

– jCRPna, iCDEna, iCUNna, iCTYna and iCRVna for bintables and

– TCRPna, TCDEna, TCUNna, TCTYna and TCRVna for pixel lists

for use with an alternate version specifier (the "a"). Like the PC, CD, PV, and PS keywords there is an
obvious tendency to confuse these two forms for column numbers up to 99. It is very unlikely that any
parser would reject keywords in the first set with a non-blank alternate version specifier so this usage is
considered to be safe and is recommended.

• WCSHDO_CNAMna: WCS Papers I and III defined

– iCNAna, iCRDna, and iCSYna for bintables and

– TCNAna, TCRDna, and TCSYna for pixel lists

By analogy with the above, the long forms would be

– iCNAMna, iCRDEna, and iCSYEna for bintables and

– TCNAMna, TCRDEna, and TCSYEna for pixel lists

Note that these keywords provide auxiliary information only, none of them are needed to compute world
coordinates. This usage is potentially unsafe and is not recommended at this time.

• WCSHDO_WCSNna: In light of wcsbth() note 4, write WCSNna instead of TWCSna for pixel lists. While
wcsbth() treats WCSNna and TWCSna as equivalent, other parsers may not. Consequently, this usage
is potentially unsafe and is not recommended at this time.

19.15.5 Variable Documentation

19.15.5.1 wcshdr_errmsg const char ∗ wcshdr_errmsg[] [extern]

Error messages to match the status value returned from each function. Use wcs_errmsg[] for status returns from
wcshdo().

Generated by Doxygen

19.16 wcslib.h File Reference 243

19.16 wcslib.h File Reference

#include "cel.h"
#include "dis.h"
#include "fitshdr.h"
#include "lin.h"
#include "log.h"
#include "prj.h"
#include "spc.h"
#include "sph.h"
#include "spx.h"
#include "tab.h"
#include "wcs.h"
#include "wcserr.h"
#include "wcsfix.h"
#include "wcshdr.h"
#include "wcsmath.h"
#include "wcsprintf.h"
#include "wcstrig.h"
#include "wcsunits.h"
#include "wcsutil.h"
#include "wtbarr.h"

19.16.1 Detailed Description

This header file is provided purely for convenience. Use it to include all of the separate WCSLIB headers.

19.17 wcsmath.h File Reference

Macros

• #define PI 3.141592653589793238462643
• #define D2R PI/180.0

Degrees to radians conversion factor.

• #define R2D 180.0/PI

Radians to degrees conversion factor.

• #define SQRT2 1.4142135623730950488
• #define SQRT2INV 1.0/SQRT2
• #define UNDEFINED 987654321.0e99

Value used to indicate an undefined quantity.

• #define undefined(value) (value == UNDEFINED)

Macro used to test for an undefined quantity.

19.17.1 Detailed Description

Definition of mathematical constants used by WCSLIB.

19.17.2 Macro Definition Documentation

Generated by Doxygen

244

19.17.2.1 PI #define PI 3.141592653589793238462643

19.17.2.2 D2R #define D2R PI/180.0

Factor π/180◦ to convert from degrees to radians.

19.17.2.3 R2D #define R2D 180.0/PI

Factor 180◦/π to convert from radians to degrees.

19.17.2.4 SQRT2 #define SQRT2 1.4142135623730950488

√
2, used only by molset() (MOL projection).

19.17.2.5 SQRT2INV #define SQRT2INV 1.0/SQRT2

1/
√

2, used only by qscx2s() (QSC projection).

19.17.2.6 UNDEFINED #define UNDEFINED 987654321.0e99

Value used to indicate an undefined quantity (noting that NaNs cannot be used portably).

19.17.2.7 undefined #define undefined(

value) (value == UNDEFINED)

Macro used to test for an undefined value.

19.18 wcsprintf.h File Reference

#include <inttypes.h>
#include <stdio.h>

Macros

• #define WCSPRINTF_PTR(str1, ptr, str2)

Print addresses in a consistent way.

Functions

• int wcsprintf_set (FILE ∗wcsout)

Set output disposition for wcsprintf() and wcsfprintf().

• int wcsprintf (const char ∗format,...)

Print function used by WCSLIB diagnostic routines.

• int wcsfprintf (FILE ∗stream, const char ∗format,...)

Print function used by WCSLIB diagnostic routines.

• const char ∗ wcsprintf_buf (void)

Get the address of the internal string buffer.

Generated by Doxygen

19.18 wcsprintf.h File Reference 245

19.18.1 Detailed Description

Routines in this suite allow diagnostic output from celprt(), linprt(), prjprt(), spcprt(), tabprt(), wcsprt(), and
wcserr_prt() to be redirected to a file or captured in a string buffer. Those routines all use wcsprintf() for output.
Likewise wcsfprintf() is used by wcsbth() and wcspih(). Both functions may be used by application programmers to
have other output go to the same place.

19.18.2 Macro Definition Documentation

19.18.2.1 WCSPRINTF_PTR #define WCSPRINTF_PTR(

str1,

ptr,

str2)

Value:
if (ptr) { \
wcsprintf("%s%#" PRIxPTR "%s", (str1), (uintptr_t)(ptr), (str2)); \

} else { \
wcsprintf("%s0x0%s", (str1), (str2)); \

}

WCSPRINTF_PTR() is a preprocessor macro used to print addresses in a consistent way.

On some systems the "p" format descriptor renders a NULL pointer as the string "0x0". On others, however, it
produces "0" or even "(nil)". On some systems a non-zero address is prefixed with "0x", on others, not.

The WCSPRINTF_PTR() macro ensures that a NULL pointer is always rendered as "0x0" and that non-zero ad-
dresses are prefixed with "0x" thus providing consistency, for example, for comparing the output of test programs.

19.18.3 Function Documentation

19.18.3.1 wcsprintf_set() int wcsprintf_set (

FILE ∗ wcsout)

wcsprintf_set() sets the output disposition for wcsprintf() which is used by the celprt(), linprt(), prjprt(), spcprt(),
tabprt(), wcsprt(), and wcserr_prt() routines, and for wcsfprintf() which is used by wcsbth() and wcspih().

Parameters

in wcsout Pointer to an output stream that has been opened for writing, e.g. by the fopen() stdio library
function, or one of the predefined stdio output streams - stdout and stderr. If zero (NULL),
output is written to an internally-allocated string buffer, the address of which may be obtained
by wcsprintf_buf().

Returns

Status return value:

Generated by Doxygen

246

• 0: Success.

19.18.3.2 wcsprintf() int wcsprintf (

const char ∗ format,

...)

wcsprintf() is used by celprt(), linprt(), prjprt(), spcprt(), tabprt(), wcsprt(), and wcserr_prt() for diagnostic output
which by default goes to stdout. However, it may be redirected to a file or string buffer via wcsprintf_set().

Parameters

in format Format string, passed to one of the printf(3) family of stdio library functions.

in ... Argument list matching format, as per printf(3).

Returns

Number of bytes written.

19.18.3.3 wcsfprintf() int wcsfprintf (

FILE ∗ stream,

const char ∗ format,

...)

wcsfprintf() is used by wcsbth(), and wcspih() for diagnostic output which they send to stderr. However, it may be
redirected to a file or string buffer via wcsprintf_set().

Parameters

in stream The output stream if not overridden by a call to wcsprintf_set().

in format Format string, passed to one of the printf(3) family of stdio library functions.

in ... Argument list matching format, as per printf(3).

Returns

Number of bytes written.

19.18.3.4 wcsprintf_buf() wcsprintf_buf (

void)

wcsprintf_buf() returns the address of the internal string buffer created when wcsprintf_set() is invoked with its
FILE∗ argument set to zero.

Returns

Address of the internal string buffer. The user may free this buffer by calling wcsprintf_set() with a valid FILE∗,
e.g. stdout. The free() stdlib library function must NOT be invoked on this const pointer.

Generated by Doxygen

19.19 wcstrig.h File Reference 247

19.19 wcstrig.h File Reference

#include <math.h>
#include "wcsconfig.h"

Macros

• #define WCSTRIG_TOL 1e-10

Domain tolerance for asin() and acos() functions.

Functions

• double cosd (double angle)

Cosine of an angle in degrees.
• double sind (double angle)

Sine of an angle in degrees.
• void sincosd (double angle, double ∗sin, double ∗cos)

Sine and cosine of an angle in degrees.
• double tand (double angle)

Tangent of an angle in degrees.
• double acosd (double x)

Inverse cosine, returning angle in degrees.
• double asind (double y)

Inverse sine, returning angle in degrees.
• double atand (double s)

Inverse tangent, returning angle in degrees.
• double atan2d (double y, double x)

Polar angle of (x, y), in degrees.

19.19.1 Detailed Description

When dealing with celestial coordinate systems and spherical projections (some moreso than others) it is often
desirable to use an angular measure that provides an exact representation of the latitude of the north or south pole.
The WCSLIB routines use the following trigonometric functions that take or return angles in degrees:

• cosd()

• sind()

• tand()

• acosd()

• asind()

• atand()

• atan2d()

• sincosd()

These "trigd" routines are expected to handle angles that are a multiple of 90◦ returning an exact result. Some C
implementations provide these as part of a system library and in such cases it may (or may not!) be preferable to
use them. WCSLIB provides wrappers on the standard trig functions based on radian measure, adding tests for
multiples of 90◦.

However, wcstrig.h also provides the choice of using preprocessor macro implementations of the trigd functions that
don't test for multiples of 90◦ (compile with -DWCSTRIG_MACRO). These are typically 20% faster but may lead to
problems near the poles.

Generated by Doxygen

248

19.19.2 Macro Definition Documentation

19.19.2.1 WCSTRIG_TOL #define WCSTRIG_TOL 1e-10

Domain tolerance for the asin() and acos() functions to allow for floating point rounding errors.

If v lies in the range 1 < |v| < 1 +WCSTRIG_TOL then it will be treated as |v| == 1.

19.19.3 Function Documentation

19.19.3.1 cosd() double cosd (

double angle)

cosd() returns the cosine of an angle given in degrees.

Parameters

in angle [deg].

Returns

Cosine of the angle.

19.19.3.2 sind() double sind (

double angle)

sind() returns the sine of an angle given in degrees.

Parameters

in angle [deg].

Returns

Sine of the angle.

19.19.3.3 sincosd() void sincosd (

double angle,

Generated by Doxygen

19.19 wcstrig.h File Reference 249

double ∗ sin,

double ∗ cos)

sincosd() returns the sine and cosine of an angle given in degrees.

Parameters

in angle [deg].

out sin Sine of the angle.

out cos Cosine of the angle.

Returns

19.19.3.4 tand() double tand (

double angle)

tand() returns the tangent of an angle given in degrees.

Parameters

in angle [deg].

Returns

Tangent of the angle.

19.19.3.5 acosd() double acosd (

double x)

acosd() returns the inverse cosine in degrees.

Parameters

in x in the range [-1,1].

Returns

Inverse cosine of x [deg].

Generated by Doxygen

250

19.19.3.6 asind() double asind (

double y)

asind() returns the inverse sine in degrees.

Generated by Doxygen

19.20 wcsunits.h File Reference 251

Parameters

in y in the range [-1,1].

Returns

Inverse sine of y [deg].

19.19.3.7 atand() double atand (

double s)

atand() returns the inverse tangent in degrees.

Parameters

in s

Returns

Inverse tangent of s [deg].

19.19.3.8 atan2d() double atan2d (

double y,

double x)

atan2d() returns the polar angle, β, in degrees, of polar coordinates (ρ, β) corresponding to Cartesian coordinates
(x, y). It is equivalent to the arg(x, y) function of WCS Paper II, though with transposed arguments.

Parameters

in y Cartesian y-coordinate.

in x Cartesian x-coordinate.

Returns

Polar angle of (x, y) [deg].

19.20 wcsunits.h File Reference

#include "wcserr.h"

Generated by Doxygen

252

Macros

• #define WCSUNITS_PLANE_ANGLE 0

Array index for plane angle units type.

• #define WCSUNITS_SOLID_ANGLE 1

Array index for solid angle units type.

• #define WCSUNITS_CHARGE 2

Array index for charge units type.

• #define WCSUNITS_MOLE 3

Array index for mole units type.

• #define WCSUNITS_TEMPERATURE 4

Array index for temperature units type.

• #define WCSUNITS_LUMINTEN 5

Array index for luminous intensity units type.

• #define WCSUNITS_MASS 6

Array index for mass units type.

• #define WCSUNITS_LENGTH 7

Array index for length units type.

• #define WCSUNITS_TIME 8

Array index for time units type.

• #define WCSUNITS_BEAM 9

Array index for beam units type.

• #define WCSUNITS_BIN 10

Array index for bin units type.

• #define WCSUNITS_BIT 11

Array index for bit units type.

• #define WCSUNITS_COUNT 12

Array index for count units type.

• #define WCSUNITS_MAGNITUDE 13

Array index for stellar magnitude units type.

• #define WCSUNITS_PIXEL 14

Array index for pixel units type.

• #define WCSUNITS_SOLRATIO 15

Array index for solar mass ratio units type.

• #define WCSUNITS_VOXEL 16

Array index for voxel units type.

• #define WCSUNITS_NTYPE 17

Number of entries in the units array.

Enumerations

• enum wcsunits_errmsg_enum {
UNITSERR_SUCCESS = 0 , UNITSERR_BAD_NUM_MULTIPLIER = 1 , UNITSERR_DANGLING_BINOP =
2 , UNITSERR_BAD_INITIAL_SYMBOL = 3 ,
UNITSERR_FUNCTION_CONTEXT = 4 , UNITSERR_BAD_EXPON_SYMBOL = 5 , UNITSERR_UNBAL_BRACKET
= 6 , UNITSERR_UNBAL_PAREN = 7 ,
UNITSERR_CONSEC_BINOPS = 8 , UNITSERR_PARSER_ERROR = 9 , UNITSERR_BAD_UNIT_SPEC =
10 , UNITSERR_BAD_FUNCS = 11 ,
UNITSERR_UNSAFE_TRANS = 12 }

Generated by Doxygen

19.20 wcsunits.h File Reference 253

Functions

• int wcsunitse (const char have[], const char want[], double ∗scale, double ∗offset, double ∗power, struct
wcserr ∗∗err)

FITS units specification conversion.

• int wcsutrne (int ctrl, char unitstr[], struct wcserr ∗∗err)

Translation of non-standard unit specifications.

• int wcsulexe (const char unitstr[], int ∗func, double ∗scale, double units[WCSUNITS_NTYPE], struct wcserr
∗∗err)

FITS units specification parser.

• int wcsunits (const char have[], const char want[], double ∗scale, double ∗offset, double ∗power)
• int wcsutrn (int ctrl, char unitstr[])
• int wcsulex (const char unitstr[], int ∗func, double ∗scale, double units[WCSUNITS_NTYPE])

Variables

• const char ∗ wcsunits_errmsg []

Status return messages.

• const char ∗ wcsunits_types []

Names of physical quantities.

• const char ∗ wcsunits_units []

Names of units.

19.20.1 Detailed Description

Routines in this suite deal with units specifications and conversions, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)

The Flexible Image Transport System (FITS), a data format widely used in astronomy for data interchange and
archive, is described in
"Definition of the Flexible Image Transport System (FITS), version 3.0",
Pence, W.D., Chiappetti, L., Page, C.G., Shaw, R.A., & Stobie, E. 2010,
A&A, 524, A42 - http://dx.doi.org/10.1051/0004-6361/201015362

See also http:
These routines perform basic units-related operations:

• wcsunitse(): given two unit specifications, derive the conversion from one to the other.

• wcsutrne(): translates certain commonly used but non-standard unit strings. It is intended to be called before
wcsulexe() which only handles standard FITS units specifications.

• wcsulexe(): parses a standard FITS units specification of arbitrary complexity, deriving the conversion to
canonical units.

19.20.2 Macro Definition Documentation

19.20.2.1 WCSUNITS_PLANE_ANGLE #define WCSUNITS_PLANE_ANGLE 0

Array index for plane angle units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

Generated by Doxygen

254

19.20.2.2 WCSUNITS_SOLID_ANGLE #define WCSUNITS_SOLID_ANGLE 1

Array index for solid angle units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

19.20.2.3 WCSUNITS_CHARGE #define WCSUNITS_CHARGE 2

Array index for charge units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.20.2.4 WCSUNITS_MOLE #define WCSUNITS_MOLE 3

Array index for mole ("gram molecular weight") units in the units array returned by wcsulex(), and the
wcsunits_types[] and wcsunits_units[] global variables.

19.20.2.5 WCSUNITS_TEMPERATURE #define WCSUNITS_TEMPERATURE 4

Array index for temperature units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

19.20.2.6 WCSUNITS_LUMINTEN #define WCSUNITS_LUMINTEN 5

Array index for luminous intensity units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

19.20.2.7 WCSUNITS_MASS #define WCSUNITS_MASS 6

Array index for mass units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.20.2.8 WCSUNITS_LENGTH #define WCSUNITS_LENGTH 7

Array index for length units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.20.2.9 WCSUNITS_TIME #define WCSUNITS_TIME 8

Array index for time units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.20.2.10 WCSUNITS_BEAM #define WCSUNITS_BEAM 9

Array index for beam units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.20.2.11 WCSUNITS_BIN #define WCSUNITS_BIN 10

Array index for bin units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

Generated by Doxygen

19.20 wcsunits.h File Reference 255

19.20.2.12 WCSUNITS_BIT #define WCSUNITS_BIT 11

Array index for bit units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[] global
variables.

19.20.2.13 WCSUNITS_COUNT #define WCSUNITS_COUNT 12

Array index for count units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.20.2.14 WCSUNITS_MAGNITUDE #define WCSUNITS_MAGNITUDE 13

Array index for stellar magnitude units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

19.20.2.15 WCSUNITS_PIXEL #define WCSUNITS_PIXEL 14

Array index for pixel units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.20.2.16 WCSUNITS_SOLRATIO #define WCSUNITS_SOLRATIO 15

Array index for solar mass ratio units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

19.20.2.17 WCSUNITS_VOXEL #define WCSUNITS_VOXEL 16

Array index for voxel units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.20.2.18 WCSUNITS_NTYPE #define WCSUNITS_NTYPE 17

Number of entries in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[] global
variables.

19.20.3 Enumeration Type Documentation

19.20.3.1 wcsunits_errmsg_enum enum wcsunits_errmsg_enum

Enumerator

UNITSERR_SUCCESS
UNITSERR_BAD_NUM_MULTIPLIER

UNITSERR_DANGLING_BINOP
UNITSERR_BAD_INITIAL_SYMBOL
UNITSERR_FUNCTION_CONTEXT

UNITSERR_BAD_EXPON_SYMBOL
UNITSERR_UNBAL_BRACKET

UNITSERR_UNBAL_PAREN
UNITSERR_CONSEC_BINOPS
UNITSERR_PARSER_ERROR
UNITSERR_BAD_UNIT_SPEC

UNITSERR_BAD_FUNCS
UNITSERR_UNSAFE_TRANS

Generated by Doxygen

256

19.20.4 Function Documentation

19.20.4.1 wcsunitse() int wcsunitse (

const char have[],

const char want[],

double ∗ scale,

double ∗ offset,

double ∗ power,

struct wcserr ∗∗ err)

wcsunitse() derives the conversion from one system of units to another.

A deprecated form of this function, wcsunits(), lacks the wcserr∗∗ parameter.

Parameters

in have FITS units specification to convert from (null- terminated), with or without
surrounding square brackets (for inline specifications); text following the closing
bracket is ignored.

in want FITS units specification to convert to (null- terminated), with or without
surrounding square brackets (for inline specifications); text following the closing
bracket is ignored.

out scale,offset,power Convert units using
pow(scale*value + offset, power);

Normally offset is zero except for log() or ln() conversions, e.g. "log(MHz)" to
"ln(Hz)". Likewise, power is normally unity except for exp() conversions, e.g.
"exp(ms)" to "exp(/Hz)". Thus conversions ordinarily consist of
value *= scale;

out err If enabled, for function return values > 1, this struct will contain a detailed error
message, see wcserr_enable(). May be NULL if an error message is not desired.
Otherwise, the user is responsible for deleting the memory allocated for the
wcserr struct.

Returns

Status return value:

• 0: Success.

• 1-9: Status return from wcsulexe().

• 10: Non-conformant unit specifications.

• 11: Non-conformant functions.

scale is zeroed on return if an error occurs.

19.20.4.2 wcsutrne() int wcsutrne (

int ctrl,

char unitstr[],

struct wcserr ∗∗ err)

Generated by Doxygen

19.20 wcsunits.h File Reference 257

wcsutrne() translates certain commonly used but non-standard unit strings, e.g. "DEG", "MHZ", "KELVIN", that
are not recognized by wcsulexe(), refer to the notes below for a full list. Compounds are also recognized, e.g.
"JY/BEAM" and "KM/SEC/SEC". Extraneous embedded blanks are removed.

A deprecated form of this function, wcsutrn(), lacks the wcserr∗∗ parameter.

Generated by Doxygen

258

Parameters

in ctrl Although "S" is commonly used to represent seconds, its translation to "s" is potentially unsafe
since the standard recognizes "S" formally as Siemens, however rarely that may be used. The
same applies to "H" for hours (Henry), and "D" for days (Debye). This bit-flag controls what to do
in such cases:

• 1: Translate "S" to "s".

• 2: Translate "H" to "h".

• 4: Translate "D" to "d".

Thus ctrl == 0 doesn't do any unsafe translations, whereas ctrl == 7 does all of them.

Parameters

in,out unitstr Null-terminated character array containing the units specification to be translated.
Inline units specifications in a FITS header keycomment are also handled. If the first
non-blank character in unitstr is '[' then the unit string is delimited by its matching ']'.
Blanks preceding '[' will be stripped off, but text following the closing bracket will be
preserved without modification.

in,out err If enabled, for function return values > 1, this struct will contain a detailed error
message, see wcserr_enable(). May be NULL if an error message is not desired.
Otherwise, the user is responsible for deleting the memory allocated for the wcserr
struct.

Returns

Status return value:

• -1: No change was made, other than stripping blanks (not an error).

• 0: Success.

• 9: Internal parser error.

• 12: Potentially unsafe translation, whether applied or not (see notes).

Notes:

1. Translation of non-standard unit specifications: apart from leading and trailing blanks, a case-sensitive match
is required for the aliases listed below, in particular the only recognized aliases with metric prefixes are "KM",
"KHZ", "MHZ", and "GHZ". Potentially unsafe translations of "D", "H", and "S", shown in parentheses, are
optional.
Unit Recognized aliases
---- --
Angstrom Angstroms angstrom angstroms
arcmin arcmins, ARCMIN, ARCMINS
arcsec arcsecs, ARCSEC, ARCSECS
beam BEAM
byte Byte
d day, days, (D), DAY, DAYS
deg degree, degrees, Deg, Degree, Degrees, DEG, DEGREE,

DEGREES
GHz GHZ
h hr, (H), HR
Hz hz, HZ
kHz KHZ
Jy JY
K kelvin, kelvins, Kelvin, Kelvins, KELVIN, KELVINS
km KM

Generated by Doxygen

19.20 wcsunits.h File Reference 259

m metre, meter, metres, meters, M, METRE, METER, METRES,
METERS

min MIN
MHz MHZ
Ohm ohm
Pa pascal, pascals, Pascal, Pascals, PASCAL, PASCALS
pixel pixels, PIXEL, PIXELS
rad radian, radians, RAD, RADIAN, RADIANS
s sec, second, seconds, (S), SEC, SECOND, SECONDS
V volt, volts, Volt, Volts, VOLT, VOLTS
yr year, years, YR, YEAR, YEARS

The aliases "angstrom", "ohm", and "Byte" for (Angstrom, Ohm, and byte) are recognized by wcsulexe() itself
as an unofficial extension of the standard, but they are converted to the standard form here.

19.20.4.3 wcsulexe() int wcsulexe (

const char unitstr[],

int ∗ func,

double ∗ scale,

double units[WCSUNITS_NTYPE],

struct wcserr ∗∗ err)

wcsulexe() parses a standard FITS units specification of arbitrary complexity, deriving the scale factor required to
convert to canonical units - basically SI with degrees and "dimensionless" additions such as byte, pixel and count.

A deprecated form of this function, wcsulex(), lacks the wcserr∗∗ parameter.

Parameters

in unitstr Null-terminated character array containing the units specification, with or without surrounding
square brackets (for inline specifications); text following the closing bracket is ignored.

out func Special function type, see note 4:

• 0: None

• 1: log() ...base 10

• 2: ln() ...base e

• 3: exp()

out scale Scale factor for the unit specification; multiply a value expressed in the given units by this
factor to convert it to canonical units.

out units A units specification is decomposed into powers of 16 fundamental unit types: angle, mass,
length, time, count, pixel, etc. Preprocessor macro WCSUNITS_NTYPE is defined to
dimension this vector, and others such WCSUNITS_PLANE_ANGLE,
WCSUNITS_LENGTH, etc. to access its elements.
Corresponding character strings, wcsunits_types[] and wcsunits_units[], are predefined to
describe each quantity and its canonical units.

out err If enabled, for function return values > 1, this struct will contain a detailed error message,
see wcserr_enable(). May be NULL if an error message is not desired. Otherwise, the user is
responsible for deleting the memory allocated for the wcserr struct.

Returns

Status return value:

• 0: Success.

Generated by Doxygen

260

• 1: Invalid numeric multiplier.

• 2: Dangling binary operator.

• 3: Invalid symbol in INITIAL context.

• 4: Function in invalid context.

• 5: Invalid symbol in EXPON context.

• 6: Unbalanced bracket.

• 7: Unbalanced parenthesis.

• 8: Consecutive binary operators.

• 9: Internal parser error.

scale and units[] are zeroed on return if an error occurs.

Notes:

1. wcsulexe() is permissive in accepting whitespace in all contexts in a units specification where it does not
create ambiguity (e.g. not between a metric prefix and a basic unit string), including in strings like "log (m ∗∗
2)" which is formally disallowed.

2. Supported extensions:

• "angstrom" (OGIP usage) is allowed in addition to "Angstrom".

• "ohm" (OGIP usage) is allowed in addition to "Ohm".

• "Byte" (common usage) is allowed in addition to "byte".

3. Table 6 of WCS Paper I lists eleven units for which metric prefixes are allowed. However, in this implemen-
tation only prefixes greater than unity are allowed for "a" (annum), "yr" (year), "pc" (parsec), "bit", and "byte",
and only prefixes less than unity are allowed for "mag" (stellar magnitude).

Metric prefix "P" (peta) is specifically forbidden for "a" (annum) to avoid confusion with "Pa" (Pascal, not peta-
annum). Note that metric prefixes are specifically disallowed for "h" (hour) and "d" (day) so that "ph" (photons)
cannot be interpreted as pico-hours, nor "cd" (candela) as centi-days.

4. Function types log(), ln() and exp() may only occur at the start of the units specification. The scale and units[]
returned for these refers to the string inside the function "argument", e.g. to "MHz" in log(MHz) for which a
scale of 106 will be returned.

19.20.4.4 wcsunits() int wcsunits (

const char have[],

const char want[],

double ∗ scale,

double ∗ offset,

double ∗ power)

19.20.4.5 wcsutrn() int wcsutrn (

int ctrl,

char unitstr[])

Generated by Doxygen

19.20 wcsunits.h File Reference 261

19.20.4.6 wcsulex() int wcsulex (

const char unitstr[],

int ∗ func,

double ∗ scale,

double units[WCSUNITS_NTYPE])

19.20.5 Variable Documentation

19.20.5.1 wcsunits_errmsg const char ∗ wcsunits_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.20.5.2 wcsunits_types const char ∗ wcsunits_types[] [extern]

Names for physical quantities to match the units vector returned by wcsulexe():

• 0: plane angle

• 1: solid angle

• 2: charge

• 3: mole

• 4: temperature

• 5: luminous intensity

• 6: mass

• 7: length

• 8: time

• 9: beam

• 10: bin

• 11: bit

• 12: count

• 13: stellar magnitude

• 14: pixel

• 15: solar ratio

• 16: voxel

Generated by Doxygen

262

19.20.5.3 wcsunits_units const char ∗ wcsunits_units[] [extern]

Names for the units (SI) to match the units vector returned by wcsulexe():

• 0: degree

• 1: steradian

• 2: Coulomb

• 3: mole

• 4: Kelvin

• 5: candela

• 6: kilogram

• 7: metre

• 8: second

The remainder are dimensionless.

19.21 wcsutil.h File Reference

Functions

• void wcsdealloc (void ∗ptr)

free memory allocated by WCSLIB functions.
• void wcsutil_strcvt (int n, char c, const char src[], char dst[])

Copy character string with padding.
• void wcsutil_blank_fill (int n, char c[])

Fill a character string with blanks.
• void wcsutil_null_fill (int n, char c[])

Fill a character string with NULLs.
• int wcsutil_allEq (int nvec, int nelem, const double ∗first)

Test for equality of a particular vector element.
• int wcsutil_Eq (int nelem, double tol, const double ∗arr1, const double ∗arr2)

Test for equality of two double arrays.
• int wcsutil_intEq (int nelem, const int ∗arr1, const int ∗arr2)

Test for equality of two int arrays.
• int wcsutil_strEq (int nelem, char(∗arr1)[72], char(∗arr2)[72])

Test for equality of two string arrays.
• void wcsutil_setAll (int nvec, int nelem, double ∗first)

Set a particular vector element.
• void wcsutil_setAli (int nvec, int nelem, int ∗first)

Set a particular vector element.
• void wcsutil_setBit (int nelem, const int ∗sel, int bits, int ∗array)

Set bits in selected elements of an array.
• char ∗ wcsutil_fptr2str (void(∗fptr)(void), char hext[19])

Translate pointer-to-function to string.
• void wcsutil_double2str (char ∗buf, const char ∗format, double value)

Translate double to string ignoring the locale.
• int wcsutil_str2double (const char ∗buf, double ∗value)

Translate string to a double, ignoring the locale.
• int wcsutil_str2double2 (const char ∗buf, double ∗value)

Translate string to doubles, ignoring the locale.

Generated by Doxygen

19.21 wcsutil.h File Reference 263

19.21.1 Detailed Description

Simple utility functions. With the exception of wcsdealloc(), these functions are intended for internal use only by
WCSLIB.

The internal-use functions are documented here solely as an aid to understanding the code. They are not intended
for external use - the API may change without notice!

19.21.2 Function Documentation

19.21.2.1 wcsdealloc() void wcsdealloc (

void ∗ ptr)

wcsdealloc() invokes the free() system routine to free memory. Specifically, it is intended to free memory allocated
(using calloc()) by certain WCSLIB functions (e.g. wcshdo(), wcsfixi(), fitshdr()), which it is the user's responsibility
to deallocate.

In certain situations, for example multithreading, it may be important that this be done within the WCSLIB sharable
library's runtime environment.

PLEASE NOTE: wcsdealloc() must not be used in place of the destructors for particular structs, such as wcsfree(),
celfree(), etc.

Parameters

in,out ptr Address of the allocated memory.

Returns

19.21.2.2 wcsutil_strcvt() void wcsutil_strcvt (

int n,

char c,

const char src[],

char dst[])

INTERNAL USE ONLY.

wcsutil_strcvt() copies one character string to another up to the specified maximum number of characters.

If the given string is null-terminated, then the terminating NULL character, and all characters following it up to the
specified maximum, are replaced with the specified substitute character, either blank or NULL.

If the source string is not null-terminated and the substitute character is blank, then copy the maximum number
of characters and do nothing further. However, if the substitute character is NULL, then the last character and all
consecutive blank characters preceding it will be replaced with NULLs.

Used by the Fortran wrapper functions in translating C strings into Fortran CHARACTER variables and vice versa.

Generated by Doxygen

264

Parameters

in n Maximum number of characters to copy.

in c Substitute character, either NULL or blank (anything other than NULL).

in src Character string to be copied. Need not be null-terminated.

out dst Destination character string, which must be long enough to hold n characters. Note that this
string will not be null-terminated if the substitute character is blank.

Returns

19.21.2.3 wcsutil_blank_fill() void wcsutil_blank_fill (

int n,

char c[])

INTERNAL USE ONLY.

wcsutil_blank_fill() pads a character sub-string with blanks starting with the terminating NULL character (if any).

Parameters

in n Length of the sub-string.

in,out c The character sub-string, which will not be null-terminated on return.

Returns

19.21.2.4 wcsutil_null_fill() void wcsutil_null_fill (

int n,

char c[])

INTERNAL USE ONLY.

wcsutil_null_fill() strips trailing blanks from a string (or sub-string) and propagates the terminating NULL character
(if any) to the end of the string.

If the string is not null-terminated, then the last character and all consecutive blank characters preceding it will be
replaced with NULLs.

Mainly used in the C library to strip trailing blanks from FITS keyvalues. Also used to make character strings intel-
ligible in the GNU debugger, which prints the rubbish following the terminating NULL character, thereby obscuring
the valid part of the string.

Generated by Doxygen

19.21 wcsutil.h File Reference 265

Parameters

in n Number of characters.
in,out c The character (sub-)string.

Returns

19.21.2.5 wcsutil_allEq() int wcsutil_allEq (

int nvec,

int nelem,

const double ∗ first)

INTERNAL USE ONLY.

wcsutil_allEq() tests for equality of a particular element in a set of vectors.

Parameters

in nvec The number of vectors.
in nelem The length of each vector.

in first Pointer to the first element to test in the array. The elements tested for equality are
*first == *(first + nelem) == *(first + nelem*2)
:
== *(first + nelem*(nvec-1));

The array might be dimensioned as
double v[nvec][nelem];

Returns

Status return value:

• 0: Not all equal.

• 1: All equal.

19.21.2.6 wcsutil_Eq() int wcsutil_Eq (

int nelem,

double tol,

const double ∗ arr1,

const double ∗ arr2)

INTERNAL USE ONLY.

wcsutil_Eq() tests for equality of two double-precision arrays.

Generated by Doxygen

266

Parameters

in nelem The number of elements in each array.

in tol Tolerance for comparison of the floating-point values. For example, for tol == 1e-6, all
floating-point values in the arrays must be equal to the first 6 decimal places. A value of 0
implies exact equality.

in arr1 The first array.

in arr2 The second array

Returns

Status return value:

• 0: Not equal.

• 1: Equal.

19.21.2.7 wcsutil_intEq() int wcsutil_intEq (

int nelem,

const int ∗ arr1,

const int ∗ arr2)

INTERNAL USE ONLY.

wcsutil_intEq() tests for equality of two int arrays.

Parameters

in nelem The number of elements in each array.

in arr1 The first array.

in arr2 The second array

Returns

Status return value:

• 0: Not equal.

• 1: Equal.

19.21.2.8 wcsutil_strEq() int wcsutil_strEq (

int nelem,

char(∗) arr1[72],

char(∗) arr2[72])

INTERNAL USE ONLY.

wcsutil_strEq() tests for equality of two string arrays.

Generated by Doxygen

19.21 wcsutil.h File Reference 267

Parameters

in nelem The number of elements in each array.

in arr1 The first array.

in arr2 The second array

Returns

Status return value:

• 0: Not equal.

• 1: Equal.

19.21.2.9 wcsutil_setAll() void wcsutil_setAll (

int nvec,

int nelem,

double ∗ first)

INTERNAL USE ONLY.

wcsutil_setAll() sets the value of a particular element in a set of vectors.

Parameters

in nvec The number of vectors.
in nelem The length of each vector.

in,out first Pointer to the first element in the array, the value of which is used to set the others
*(first + nelem) = *first; *(first + nelem*2) = *first;
:

(first + nelem(nvec-1)) = *first;

The array might be dimensioned as
double v[nvec][nelem];

Returns

19.21.2.10 wcsutil_setAli() void wcsutil_setAli (

int nvec,

int nelem,

int ∗ first)

INTERNAL USE ONLY.

wcsutil_setAli() sets the value of a particular element in a set of vectors.

Generated by Doxygen

268

Parameters

in nvec The number of vectors.
in nelem The length of each vector.

in,out first Pointer to the first element in the array, the value of which is used to set the others
*(first + nelem) = *first; *(first + nelem*2) = *first;
:

(first + nelem(nvec-1)) = *first;

The array might be dimensioned as
int v[nvec][nelem];

Returns

19.21.2.11 wcsutil_setBit() void wcsutil_setBit (

int nelem,

const int ∗ sel,

int bits,

int ∗ array)

INTERNAL USE ONLY.

wcsutil_setBit() sets bits in selected elements of an array.

Parameters

in nelem Number of elements in the array.

in sel Address of a selection array of length nelem. May be specified as the null pointer in
which case all elements are selected.

in bits Bit mask.
in,out array Address of the array of length nelem.

Returns

19.21.2.12 wcsutil_fptr2str() char ∗ wcsutil_fptr2str (

void(∗)(void) fptr,

char hext[19])

INTERNAL USE ONLY.

wcsutil_fptr2str() translates a pointer-to-function to hexadecimal string representation for output. It is used by the
various routines that print the contents of WCSLIB structs, noting that it is not strictly legal to type-pun a function
pointer to void∗. See http://stackoverflow.com/questions/2741683/how-to-format-a-function-pointer

Generated by Doxygen

http://stackoverflow.com/questions/2741683/how-to-format-a-function-pointer

19.21 wcsutil.h File Reference 269

Parameters

in fptr

out hext Null-terminated string. Should be at least 19 bytes in size to accomodate a 64-bit address (16
bytes in hex), plus the leading "0x" and trailing '\0'.

Returns

The address of hext.

19.21.2.13 wcsutil_double2str() void wcsutil_double2str (

char ∗ buf,

const char ∗ format,

double value)

INTERNAL USE ONLY.

wcsutil_double2str() converts a double to a string, but unlike sprintf() it ignores the locale and always uses
a '.' as the decimal separator. Also, unless it includes an exponent, the formatted value will always have a fractional
part, ".0" being appended if necessary.

Parameters

out buf The buffer to write the string into.

in format The formatting directive, such as "f". This may be any of the forms accepted by
sprintf(), but should only include a formatting directive and nothing else. For "g" and
"G" formats, unless it includes an exponent, the formatted value will always have a fractional
part, ".0" being appended if necessary.

in value The value to convert to a string.

19.21.2.14 wcsutil_str2double() int wcsutil_str2double (

const char ∗ buf,

double ∗ value)

INTERNAL USE ONLY.

wcsutil_str2double() converts a string to a double, but unlike sscanf() it ignores the locale and always expects
a '.' as the decimal separator.

Parameters

in buf The string containing the value

out value The double value parsed from the string.

Generated by Doxygen

270

19.21.2.15 wcsutil_str2double2() int wcsutil_str2double2 (

const char ∗ buf,

double ∗ value)

INTERNAL USE ONLY.

wcsutil_str2double2() converts a string to a pair of doubles containing the integer and fractional parts. Unlike
sscanf() it ignores the locale and always expects a '.' as the decimal separator.

Parameters

in buf The string containing the value

out value parts, parsed from the string.

19.22 wtbarr.h File Reference

Data Structures

• struct wtbarr

Extraction of coordinate lookup tables from BINTABLE.

19.22.1 Detailed Description

The wtbarr struct is used by wcstab() in extracting coordinate lookup tables from a binary table extension
(BINTABLE) and copying them into the tabprm structs stored in wcsprm.

Generated by Doxygen

Index

acosd
wcstrig.h, 249

affine
linprm, 39

afrq
spxprm, 50

afrqfreq
spx.h, 169

airs2x
prj.h, 135

airset
prj.h, 135

airx2s
prj.h, 135

aits2x
prj.h, 139

aitset
prj.h, 138

aitx2s
prj.h, 139

alt
wcsprm, 66

altlin
wcsprm, 65

arcs2x
prj.h, 134

arcset
prj.h, 134

arcx2s
prj.h, 134

arrayp
wtbarr, 78

asind
wcstrig.h, 249

atan2d
wcstrig.h, 251

atand
wcstrig.h, 251

aux
wcsprm, 72

AUXLEN
wcs.h, 188

auxprm, 22
crln_obs, 23
dsun_obs, 23
hgln_obs, 23
hglt_obs, 23
rsun_ref, 22

awav
spxprm, 51

awavfreq
spx.h, 170

awavvelo
spx.h, 173

awavwave

spx.h, 171
axmap

disprm, 28
azps2x

prj.h, 132
azpset

prj.h, 132
azpx2s

prj.h, 132

bepoch
wcsprm, 69

beta
spxprm, 51

betavelo
spx.h, 171

bons2x
prj.h, 141

bonset
prj.h, 141

bonx2s
prj.h, 141

bounds
prjprm, 41

c
fitskey, 34

cars2x
prj.h, 137

carset
prj.h, 136

carx2s
prj.h, 136

category
prjprm, 42

cd
wcsprm, 64

cdelt
linprm, 37
wcsprm, 62

CDFIX
wcsfix.h, 208

cdfix
wcsfix.h, 211

ceas2x
prj.h, 136

ceaset
prj.h, 136

ceax2s
prj.h, 136

cel
wcsprm, 74

cel.h, 78
cel_errmsg, 85
cel_errmsg_enum, 81
CELERR_BAD_COORD_TRANS, 81

Generated by Doxygen

272 INDEX

CELERR_BAD_PARAM, 81
CELERR_BAD_PIX, 81
CELERR_BAD_WORLD, 81
CELERR_ILL_COORD_TRANS, 81
CELERR_NULL_POINTER, 81
CELERR_SUCCESS, 81
celfree, 82
celini, 81
celini_errmsg, 80
CELLEN, 80
celperr, 82
celprt, 82
celprt_errmsg, 80
cels2x, 84
cels2x_errmsg, 81
celset, 83
celset_errmsg, 80
celx2s, 83
celx2s_errmsg, 80

cel_errmsg
cel.h, 85

cel_errmsg_enum
cel.h, 81

CELERR_BAD_COORD_TRANS
cel.h, 81

CELERR_BAD_PARAM
cel.h, 81

CELERR_BAD_PIX
cel.h, 81

CELERR_BAD_WORLD
cel.h, 81

CELERR_ILL_COORD_TRANS
cel.h, 81

CELERR_NULL_POINTER
cel.h, 81

CELERR_SUCCESS
cel.h, 81

CELFIX
wcsfix.h, 209

celfix
wcsfix.h, 214

celfree
cel.h, 82

celini
cel.h, 81

celini_errmsg
cel.h, 80

CELLEN
cel.h, 80

celperr
cel.h, 82

celprm, 23
err, 25
euler, 25
flag, 24
isolat, 25
latpreq, 25
offset, 24

padding, 26
phi0, 24
prj, 25
ref, 24
theta0, 24

celprt
cel.h, 82

celprt_errmsg
cel.h, 80

cels2x
cel.h, 84

cels2x_errmsg
cel.h, 81

celset
cel.h, 83

celset_errmsg
cel.h, 80

celx2s
cel.h, 83

celx2s_errmsg
cel.h, 80

cname
wcsprm, 66

code
prjprm, 41
spcprm, 47

cods2x
prj.h, 140

codset
prj.h, 140

codx2s
prj.h, 140

coes2x
prj.h, 140

coeset
prj.h, 139

coex2s
prj.h, 139

colax
wcsprm, 66

colnum
wcsprm, 66

comment
fitskey, 35

conformal
prjprm, 43

CONIC
prj.h, 144

CONVENTIONAL
prj.h, 144

coord
tabprm, 56

coos2x
prj.h, 140

cooset
prj.h, 140

coox2s
prj.h, 140

Generated by Doxygen

INDEX 273

cops2x
prj.h, 139

copset
prj.h, 139

copx2s
prj.h, 139

cosd
wcstrig.h, 248

count
fitskeyid, 35

cperi
wcsprm, 67

crder
wcsprm, 66

crln_obs
auxprm, 23

crota
wcsprm, 65

crpix
linprm, 37
wcsprm, 62

crval
spcprm, 47
tabprm, 55
wcsprm, 63

cscs2x
prj.h, 142

cscset
prj.h, 142

cscx2s
prj.h, 142

csyer
wcsprm, 66

ctype
wcsprm, 63

cubeface
wcsprm, 73

cunit
wcsprm, 63

CYLFIX
wcsfix.h, 209

cylfix
wcsfix.h, 215

cylfix_errmsg
wcsfix.h, 209

CYLINDRICAL
prj.h, 144

cyps2x
prj.h, 136

cypset
prj.h, 135

cypx2s
prj.h, 136

czphs
wcsprm, 67

D2R
wcsmath.h, 244

dafrqfreq

spxprm, 51
dateavg

wcsprm, 68
datebeg

wcsprm, 68
dateend

wcsprm, 68
dateobs

wcsprm, 68
dateref

wcsprm, 68
DATFIX

wcsfix.h, 209
datfix

wcsfix.h, 211
dawavfreq

spxprm, 52
dawavvelo

spxprm, 53
dawavwave

spxprm, 53
dbetavelo

spxprm, 53
delta

tabprm, 56
denerfreq

spxprm, 51
dfreqafrq

spxprm, 51
dfreqawav

spxprm, 52
dfreqener

spxprm, 51
dfreqvelo

spxprm, 52
dfreqvrad

spxprm, 52
dfreqwave

spxprm, 52
dfreqwavn

spxprm, 51
dimlen

wtbarr, 78
dis.h, 85

dis_errmsg, 99
dis_errmsg_enum, 91
discpy, 94
DISERR_BAD_PARAM, 91
DISERR_DEDISTORT, 91
DISERR_DISTORT, 91
DISERR_MEMORY, 91
DISERR_NULL_POINTER, 91
DISERR_SUCCESS, 91
disfree, 94
dishdo, 96
disini, 93
disinit, 93
DISLEN, 91

Generated by Doxygen

274 INDEX

disndp, 91
disp2x, 96
DISP2X_ARGS, 90
disperr, 95
disprt, 95
disset, 96
diswarp, 97
disx2p, 97
DISX2P_ARGS, 90
dpfill, 92
dpkeyd, 93
dpkeyi, 92
DPLEN, 91

dis_errmsg
dis.h, 99

dis_errmsg_enum
dis.h, 91

discpy
dis.h, 94

DISERR_BAD_PARAM
dis.h, 91

DISERR_DEDISTORT
dis.h, 91

DISERR_DISTORT
dis.h, 91

DISERR_MEMORY
dis.h, 91

DISERR_NULL_POINTER
dis.h, 91

DISERR_SUCCESS
dis.h, 91

disfree
dis.h, 94

dishdo
dis.h, 96

disini
dis.h, 93

disinit
dis.h, 93

DISLEN
dis.h, 91

disndp
dis.h, 91

disp2x
dis.h, 96
disprm, 29

DISP2X_ARGS
dis.h, 90

disperr
dis.h, 95

dispre
linprm, 38

disprm, 26
axmap, 28
disp2x, 29
disx2p, 29
docorr, 28
dp, 27

dparm, 29
dtype, 27
err, 29
flag, 27
i_naxis, 29
iparm, 29
m_dp, 30
m_dtype, 30
m_flag, 29
m_maxdis, 30
m_naxis, 30
maxdis, 28
naxis, 27
ndis, 29
ndp, 27
ndpmax, 27
Nhat, 28
offset, 28
scale, 29
tmpmem, 29
totdis, 28

disprt
dis.h, 95

disseq
linprm, 38

disset
dis.h, 96

diswarp
dis.h, 97

disx2p
dis.h, 97
disprm, 29

DISX2P_ARGS
dis.h, 90

divergent
prjprm, 43

docorr
disprm, 28

dp
disprm, 27

dparm
disprm, 29

dpfill
dis.h, 92

dpkey, 30
f, 31
field, 30
i, 31
j, 31
type, 31
value, 31

dpkeyd
dis.h, 93

dpkeyi
dis.h, 92

DPLEN
dis.h, 91

dsun_obs

Generated by Doxygen

INDEX 275

auxprm, 23
dtype

disprm, 27
dveloawav

spxprm, 53
dvelobeta

spxprm, 53
dvelofreq

spxprm, 52
dvelowave

spxprm, 53
dvoptwave

spxprm, 52
dvradfreq

spxprm, 52
dwaveawav

spxprm, 53
dwavefreq

spxprm, 52
dwavevelo

spxprm, 53
dwavevopt

spxprm, 52
dwavezopt

spxprm, 53
dwavnfreq

spxprm, 52
dzoptwave

spxprm, 53

ener
spxprm, 50

enerfreq
spx.h, 170

equiareal
prjprm, 43

equinox
wcsprm, 71

err
celprm, 25
disprm, 29
linprm, 39
prjprm, 43
spcprm, 48
spxprm, 53
tabprm, 57
wcsprm, 74

ERRLEN
wcserr.h, 203

euler
celprm, 25

extlev
wtbarr, 78

extnam
wtbarr, 77

extrema
tabprm, 56

extver
wtbarr, 77

f
dpkey, 31
fitskey, 34

field
dpkey, 30

file
wcserr, 58

fits_read_wcstab
getwcstab.h, 104

fitshdr
fitshdr.h, 102

fitshdr.h, 99
fitshdr, 102
FITSHDR_CARD, 101
FITSHDR_COMMENT, 100
fitshdr_errmsg, 103
fitshdr_errmsg_enum, 101
FITSHDR_KEYREC, 100
FITSHDR_KEYVALUE, 100
FITSHDR_KEYWORD, 100
FITSHDR_TRAILER, 101
FITSHDRERR_FLEX_PARSER, 102
FITSHDRERR_MEMORY, 102
FITSHDRERR_NULL_POINTER, 102
FITSHDRERR_SUCCESS, 102
int64, 101
KEYIDLEN, 101
KEYLEN, 101

FITSHDR_CARD
fitshdr.h, 101

FITSHDR_COMMENT
fitshdr.h, 100

fitshdr_errmsg
fitshdr.h, 103

fitshdr_errmsg_enum
fitshdr.h, 101

FITSHDR_KEYREC
fitshdr.h, 100

FITSHDR_KEYVALUE
fitshdr.h, 100

FITSHDR_KEYWORD
fitshdr.h, 100

FITSHDR_TRAILER
fitshdr.h, 101

FITSHDRERR_FLEX_PARSER
fitshdr.h, 102

FITSHDRERR_MEMORY
fitshdr.h, 102

FITSHDRERR_NULL_POINTER
fitshdr.h, 102

FITSHDRERR_SUCCESS
fitshdr.h, 102

fitskey, 31
c, 34
comment, 35
f, 34
i, 34
k, 34

Generated by Doxygen

276 INDEX

keyid, 32
keyno, 32
keyvalue, 34
keyword, 32
l, 34
padding, 33
s, 34
status, 32
type, 33
ulen, 34

fitskeyid, 35
count, 35
idx, 35
name, 35

FIXERR_BAD_COORD_TRANS
wcsfix.h, 210

FIXERR_BAD_CORNER_PIX
wcsfix.h, 210

FIXERR_BAD_CTYPE
wcsfix.h, 210

FIXERR_BAD_PARAM
wcsfix.h, 210

FIXERR_DATE_FIX
wcsfix.h, 210

FIXERR_ILL_COORD_TRANS
wcsfix.h, 210

FIXERR_MEMORY
wcsfix.h, 210

FIXERR_NO_CHANGE
wcsfix.h, 210

FIXERR_NO_REF_PIX_COORD
wcsfix.h, 210

FIXERR_NO_REF_PIX_VAL
wcsfix.h, 210

FIXERR_NULL_POINTER
wcsfix.h, 210

FIXERR_OBSGEO_FIX
wcsfix.h, 210

FIXERR_SINGULAR_MTX
wcsfix.h, 210

FIXERR_SPC_UPDATE
wcsfix.h, 210

FIXERR_SUCCESS
wcsfix.h, 210

FIXERR_UNITS_ALIAS
wcsfix.h, 210

flag
celprm, 24
disprm, 27
linprm, 36
prjprm, 40
spcprm, 46
tabprm, 55
wcsprm, 61

freq
spxprm, 50

freqafrq
spx.h, 169

freqawav
spx.h, 170

freqener
spx.h, 169

freqvelo
spx.h, 171

freqvrad
spx.h, 172

freqwave
spx.h, 170

freqwavn
spx.h, 170

function
wcserr, 58

getwcstab.h, 104
fits_read_wcstab, 104

global
prjprm, 43

HEALPIX
prj.h, 144

hgln_obs
auxprm, 23

hglt_obs
auxprm, 23

hpxs2x
prj.h, 143

hpxset
prj.h, 143

hpxx2s
prj.h, 143

i
dpkey, 31
fitskey, 34
pscard, 44
pvcard, 45
wtbarr, 77

i_naxis
disprm, 29
linprm, 38

idx
fitskeyid, 35

imgpix
linprm, 38

index
tabprm, 56

int64
fitshdr.h, 101

iparm
disprm, 29

isGrism
spcprm, 47

isolat
celprm, 25

j
dpkey, 31

Generated by Doxygen

INDEX 277

jepoch
wcsprm, 69

K
tabprm, 55

k
fitskey, 34

keyid
fitskey, 32

KEYIDLEN
fitshdr.h, 101

KEYLEN
fitshdr.h, 101

keyno
fitskey, 32

keyvalue
fitskey, 34

keyword
fitskey, 32

kind
wtbarr, 77

l
fitskey, 34

lat
wcsprm, 73

latpole
wcsprm, 63

latpreq
celprm, 25

lattyp
wcsprm, 73

lin
wcsprm, 74

lin.h, 105
lin_errmsg, 116
lin_errmsg_enum, 108
lincpy, 110
lincpy_errmsg, 107
lindis, 109
lindist, 110
LINERR_DEDISTORT, 108
LINERR_DISTORT, 108
LINERR_DISTORT_INIT, 108
LINERR_MEMORY, 108
LINERR_NULL_POINTER, 108
LINERR_SINGULAR_MTX, 108
LINERR_SUCCESS, 108
linfree, 111
linfree_errmsg, 107
linini, 109
linini_errmsg, 107
lininit, 109
LINLEN, 107
linp2x, 113
linp2x_errmsg, 108
linperr, 112
linprt, 111
linprt_errmsg, 108

linset, 112
linset_errmsg, 108
linwarp, 114
linx2p, 113
linx2p_errmsg, 108
matinv, 115

lin_errmsg
lin.h, 116

lin_errmsg_enum
lin.h, 108

lincpy
lin.h, 110

lincpy_errmsg
lin.h, 107

lindis
lin.h, 109

lindist
lin.h, 110

line_no
wcserr, 58

LINERR_DEDISTORT
lin.h, 108

LINERR_DISTORT
lin.h, 108

LINERR_DISTORT_INIT
lin.h, 108

LINERR_MEMORY
lin.h, 108

LINERR_NULL_POINTER
lin.h, 108

LINERR_SINGULAR_MTX
lin.h, 108

LINERR_SUCCESS
lin.h, 108

linfree
lin.h, 111

linfree_errmsg
lin.h, 107

linini
lin.h, 109

linini_errmsg
lin.h, 107

lininit
lin.h, 109

LINLEN
lin.h, 107

linp2x
lin.h, 113

linp2x_errmsg
lin.h, 108

linperr
lin.h, 112

linprm, 36
affine, 39
cdelt, 37
crpix, 37
dispre, 38
disseq, 38

Generated by Doxygen

278 INDEX

err, 39
flag, 36
i_naxis, 38
imgpix, 38
m_cdelt, 39
m_crpix, 39
m_dispre, 39
m_disseq, 39
m_flag, 39
m_naxis, 39
m_pc, 39
naxis, 37
pc, 37
piximg, 38
simple, 39
tmpcrd, 39
unity, 38

linprt
lin.h, 111

linprt_errmsg
lin.h, 108

linset
lin.h, 112

linset_errmsg
lin.h, 108

linwarp
lin.h, 114

linx2p
lin.h, 113

linx2p_errmsg
lin.h, 108

lng
wcsprm, 73

lngtyp
wcsprm, 73

log.h, 116
log_errmsg, 118
log_errmsg_enum, 116
LOGERR_BAD_LOG_REF_VAL, 117
LOGERR_BAD_WORLD, 117
LOGERR_BAD_X, 117
LOGERR_NULL_POINTER, 117
LOGERR_SUCCESS, 117
logs2x, 117
logx2s, 117

log_errmsg
log.h, 118

log_errmsg_enum
log.h, 116

LOGERR_BAD_LOG_REF_VAL
log.h, 117

LOGERR_BAD_WORLD
log.h, 117

LOGERR_BAD_X
log.h, 117

LOGERR_NULL_POINTER
log.h, 117

LOGERR_SUCCESS

log.h, 117
logs2x

log.h, 117
logx2s

log.h, 117
lonpole

wcsprm, 63

M
tabprm, 55

m
prjprm, 44
pscard, 45
pvcard, 45
wtbarr, 77

m_aux
wcsprm, 76

m_cd
wcsprm, 75

m_cdelt
linprm, 39
wcsprm, 75

m_cname
wcsprm, 76

m_colax
wcsprm, 76

m_coord
tabprm, 58

m_cperi
wcsprm, 76

m_crder
wcsprm, 76

m_crota
wcsprm, 75

m_crpix
linprm, 39
wcsprm, 75

m_crval
tabprm, 57
wcsprm, 75

m_csyer
wcsprm, 76

m_ctype
wcsprm, 75

m_cunit
wcsprm, 75

m_czphs
wcsprm, 76

m_dispre
linprm, 39

m_disseq
linprm, 39

m_dp
disprm, 30

m_dtype
disprm, 30

m_flag
disprm, 29
linprm, 39

Generated by Doxygen

INDEX 279

tabprm, 57
wcsprm, 74

m_index
tabprm, 57

m_indxs
tabprm, 57

m_K
tabprm, 57

m_M
tabprm, 57

m_map
tabprm, 57

m_maxdis
disprm, 30

m_N
tabprm, 57

m_naxis
disprm, 30
linprm, 39
wcsprm, 75

m_pc
linprm, 39
wcsprm, 75

m_ps
wcsprm, 75

m_pv
wcsprm, 75

m_tab
wcsprm, 76

m_wtb
wcsprm, 76

map
tabprm, 55

matinv
lin.h, 115

maxdis
disprm, 28

mers2x
prj.h, 137

merset
prj.h, 137

merx2s
prj.h, 137

mjdavg
wcsprm, 69

mjdbeg
wcsprm, 69

mjdend
wcsprm, 69

mjdobs
wcsprm, 69

mjdref
wcsprm, 68

mols2x
prj.h, 138

molset
prj.h, 138

molx2s

prj.h, 138
msg

wcserr, 59

n
prjprm, 44

name
fitskeyid, 35
prjprm, 42

naxis
disprm, 27
linprm, 37
wcsprm, 62

nc
tabprm, 56

ndim
wtbarr, 78

ndis
disprm, 29

ndp
disprm, 27

ndpmax
disprm, 27

Nhat
disprm, 28

nps
wcsprm, 64

npsmax
wcsprm, 64

npv
wcsprm, 64

npvmax
wcsprm, 64

ntab
wcsprm, 72

NWCSFIX
wcsfix.h, 209

nwtb
wcsprm, 72

OBSFIX
wcsfix.h, 209

obsfix
wcsfix.h, 212

obsgeo
wcsprm, 70

obsorbit
wcsprm, 71

offset
celprm, 24
disprm, 28

p0
tabprm, 56

padding
celprm, 26
fitskey, 33
prjprm, 43
spxprm, 54

Generated by Doxygen

280 INDEX

tabprm, 56
padding1

spcprm, 48
padding2

spcprm, 48
pars2x

prj.h, 138
parset

prj.h, 138
parx2s

prj.h, 138
pc

linprm, 37
wcsprm, 62

pcos2x
prj.h, 141

pcoset
prj.h, 141

pcox2s
prj.h, 141

phi0
celprm, 24
prjprm, 41

PI
wcsmath.h, 243

piximg
linprm, 38

plephem
wcsprm, 67

POLYCONIC
prj.h, 144

prj
celprm, 25

prj.h, 118
airs2x, 135
airset, 135
airx2s, 135
aits2x, 139
aitset, 138
aitx2s, 139
arcs2x, 134
arcset, 134
arcx2s, 134
azps2x, 132
azpset, 132
azpx2s, 132
bons2x, 141
bonset, 141
bonx2s, 141
cars2x, 137
carset, 136
carx2s, 136
ceas2x, 136
ceaset, 136
ceax2s, 136
cods2x, 140
codset, 140
codx2s, 140

coes2x, 140
coeset, 139
coex2s, 139
CONIC, 144
CONVENTIONAL, 144
coos2x, 140
cooset, 140
coox2s, 140
cops2x, 139
copset, 139
copx2s, 139
cscs2x, 142
cscset, 142
cscx2s, 142
CYLINDRICAL, 144
cyps2x, 136
cypset, 135
cypx2s, 136
HEALPIX, 144
hpxs2x, 143
hpxset, 143
hpxx2s, 143
mers2x, 137
merset, 137
merx2s, 137
mols2x, 138
molset, 138
molx2s, 138
pars2x, 138
parset, 138
parx2s, 138
pcos2x, 141
pcoset, 141
pcox2s, 141
POLYCONIC, 144
prj_categories, 144
prj_codes, 145
prj_errmsg, 144
prj_errmsg_enum, 126
prj_ncode, 145
prjbchk, 128
PRJERR_BAD_PARAM, 127
PRJERR_BAD_PIX, 127
PRJERR_BAD_WORLD, 127
PRJERR_NULL_POINTER, 127
PRJERR_SUCCESS, 127
prjfree, 127
prjini, 127
prjini_errmsg, 126
PRJLEN, 126
prjperr, 128
prjprt, 127
prjprt_errmsg, 126
prjs2x, 131
PRJS2X_ARGS, 125
prjs2x_errmsg, 126
prjset, 130
prjset_errmsg, 126

Generated by Doxygen

INDEX 281

prjx2s, 130
PRJX2S_ARGS, 125
prjx2s_errmsg, 126
PSEUDOCYLINDRICAL, 144
PVN, 125
qscs2x, 143
qscset, 142
qscx2s, 142
QUADCUBE, 144
sfls2x, 137
sflset, 137
sflx2s, 137
sins2x, 134
sinset, 133
sinx2s, 133
stgs2x, 133
stgset, 133
stgx2s, 133
szps2x, 132
szpset, 132
szpx2s, 132
tans2x, 133
tanset, 132
tanx2s, 133
tscs2x, 142
tscset, 141
tscx2s, 142
xphs2x, 143
xphset, 143
xphx2s, 143
zeas2x, 135
zeaset, 135
zeax2s, 135
ZENITHAL, 144
zpns2x, 134
zpnset, 134
zpnx2s, 134

prj_categories
prj.h, 144

prj_codes
prj.h, 145

prj_errmsg
prj.h, 144

prj_errmsg_enum
prj.h, 126

prj_ncode
prj.h, 145

prjbchk
prj.h, 128

PRJERR_BAD_PARAM
prj.h, 127

PRJERR_BAD_PIX
prj.h, 127

PRJERR_BAD_WORLD
prj.h, 127

PRJERR_NULL_POINTER
prj.h, 127

PRJERR_SUCCESS

prj.h, 127
prjfree

prj.h, 127
prjini

prj.h, 127
prjini_errmsg

prj.h, 126
PRJLEN

prj.h, 126
prjperr

prj.h, 128
prjprm, 40

bounds, 41
category, 42
code, 41
conformal, 43
divergent, 43
equiareal, 43
err, 43
flag, 40
global, 43
m, 44
n, 44
name, 42
padding, 43
phi0, 41
prjs2x, 44
prjx2s, 44
pv, 41
pvrange, 42
r0, 41
simplezen, 42
theta0, 41
w, 43
x0, 43
y0, 43

prjprt
prj.h, 127

prjprt_errmsg
prj.h, 126

prjs2x
prj.h, 131
prjprm, 44

PRJS2X_ARGS
prj.h, 125

prjs2x_errmsg
prj.h, 126

prjset
prj.h, 130

prjset_errmsg
prj.h, 126

prjx2s
prj.h, 130
prjprm, 44

PRJX2S_ARGS
prj.h, 125

prjx2s_errmsg
prj.h, 126

Generated by Doxygen

282 INDEX

ps
wcsprm, 64

pscard, 44
i, 44
m, 45
value, 45

PSEUDOCYLINDRICAL
prj.h, 144

PSLEN
wcs.h, 187

pv
prjprm, 41
spcprm, 47
wcsprm, 64

pvcard, 45
i, 45
m, 45
value, 45

PVLEN
wcs.h, 187

PVN
prj.h, 125

pvrange
prjprm, 42

qscs2x
prj.h, 143

qscset
prj.h, 142

qscx2s
prj.h, 142

QUADCUBE
prj.h, 144

r0
prjprm, 41

R2D
wcsmath.h, 244

radesys
wcsprm, 71

ref
celprm, 24

restfrq
spcprm, 47
spxprm, 50
wcsprm, 63

restwav
spcprm, 47
spxprm, 50
wcsprm, 64

row
wtbarr, 78

rsun_ref
auxprm, 22

s
fitskey, 34

scale
disprm, 29

sense
tabprm, 56

set_M
tabprm, 57

sfls2x
prj.h, 137

sflset
prj.h, 137

sflx2s
prj.h, 137

simple
linprm, 39

simplezen
prjprm, 42

sincosd
wcstrig.h, 248

sind
wcstrig.h, 248

sins2x
prj.h, 134

sinset
prj.h, 133

sinx2s
prj.h, 133

spc
wcsprm, 74

spc.h, 145
spc_errmsg, 159
spc_errmsg_enum, 149
spcaips, 157
SPCERR_BAD_SPEC, 150
SPCERR_BAD_SPEC_PARAMS, 150
SPCERR_BAD_X, 150
SPCERR_NO_CHANGE, 150
SPCERR_NULL_POINTER, 150
SPCERR_SUCCESS, 150
spcfree, 150
spcini, 150
spcini_errmsg, 149
SPCLEN, 149
spcperr, 151
spcprt, 151
spcprt_errmsg, 149
spcs2x, 152
spcs2x_errmsg, 149
spcset, 151
spcset_errmsg, 149
spcspx, 159
spcspxe, 154
spctrn, 159
spctrne, 156
spctyp, 159
spctype, 153
spcx2s, 152
spcx2s_errmsg, 149
spcxps, 159
spcxpse, 155

spc_errmsg

Generated by Doxygen

INDEX 283

spc.h, 159
spc_errmsg_enum

spc.h, 149
spcaips

spc.h, 157
SPCERR_BAD_SPEC

spc.h, 150
SPCERR_BAD_SPEC_PARAMS

spc.h, 150
SPCERR_BAD_X

spc.h, 150
SPCERR_NO_CHANGE

spc.h, 150
SPCERR_NULL_POINTER

spc.h, 150
SPCERR_SUCCESS

spc.h, 150
SPCFIX

wcsfix.h, 209
spcfix

wcsfix.h, 214
spcfree

spc.h, 150
spcini

spc.h, 150
spcini_errmsg

spc.h, 149
SPCLEN

spc.h, 149
spcperr

spc.h, 151
spcprm, 46

code, 47
crval, 47
err, 48
flag, 46
isGrism, 47
padding1, 48
padding2, 48
pv, 47
restfrq, 47
restwav, 47
spxP2S, 48
spxP2X, 48
spxS2P, 48
spxX2P, 48
type, 46
w, 47

spcprt
spc.h, 151

spcprt_errmsg
spc.h, 149

spcs2x
spc.h, 152

spcs2x_errmsg
spc.h, 149

spcset
spc.h, 151

spcset_errmsg
spc.h, 149

spcspx
spc.h, 159

spcspxe
spc.h, 154

spctrn
spc.h, 159

spctrne
spc.h, 156

spctyp
spc.h, 159

spctype
spc.h, 153

spcx2s
spc.h, 152

spcx2s_errmsg
spc.h, 149

spcxps
spc.h, 159

spcxpse
spc.h, 155

spec
wcsprm, 73

specsys
wcsprm, 71

specx
spx.h, 168

sph.h, 160
sphdpa, 162
sphpad, 163
sphs2x, 161
sphx2s, 160

sphdpa
sph.h, 162

sphpad
sph.h, 163

sphs2x
sph.h, 161

sphx2s
sph.h, 160

spx.h, 163
afrqfreq, 169
awavfreq, 170
awavvelo, 173
awavwave, 171
betavelo, 171
enerfreq, 170
freqafrq, 169
freqawav, 170
freqener, 169
freqvelo, 171
freqvrad, 172
freqwave, 170
freqwavn, 170
specx, 168
SPX_ARGS, 167
spx_errmsg, 167, 174

Generated by Doxygen

284 INDEX

SPXERR_BAD_INSPEC_COORD, 167
SPXERR_BAD_SPEC_PARAMS, 167
SPXERR_BAD_SPEC_VAR, 167
SPXERR_NULL_POINTER, 167
SPXERR_SUCCESS, 167
SPXLEN, 167
spxperr, 168
veloawav, 173
velobeta, 171
velofreq, 172
velowave, 173
voptwave, 173
vradfreq, 172
waveawav, 171
wavefreq, 170
wavevelo, 172
wavevopt, 173
wavezopt, 173
wavnfreq, 170
zoptwave, 173

SPX_ARGS
spx.h, 167

spx_errmsg
spx.h, 167, 174

SPXERR_BAD_INSPEC_COORD
spx.h, 167

SPXERR_BAD_SPEC_PARAMS
spx.h, 167

SPXERR_BAD_SPEC_VAR
spx.h, 167

SPXERR_NULL_POINTER
spx.h, 167

SPXERR_SUCCESS
spx.h, 167

SPXLEN
spx.h, 167

spxP2S
spcprm, 48

spxP2X
spcprm, 48

spxperr
spx.h, 168

spxprm, 49
afrq, 50
awav, 51
beta, 51
dafrqfreq, 51
dawavfreq, 52
dawavvelo, 53
dawavwave, 53
dbetavelo, 53
denerfreq, 51
dfreqafrq, 51
dfreqawav, 52
dfreqener, 51
dfreqvelo, 52
dfreqvrad, 52
dfreqwave, 52

dfreqwavn, 51
dveloawav, 53
dvelobeta, 53
dvelofreq, 52
dvelowave, 53
dvoptwave, 52
dvradfreq, 52
dwaveawav, 53
dwavefreq, 52
dwavevelo, 53
dwavevopt, 52
dwavezopt, 53
dwavnfreq, 52
dzoptwave, 53
ener, 50
err, 53
freq, 50
padding, 54
restfrq, 50
restwav, 50
velo, 51
velotype, 50
vopt, 51
vrad, 50
wave, 51
wavetype, 50
wavn, 50
zopt, 51

spxS2P
spcprm, 48

spxX2P
spcprm, 48

SQRT2
wcsmath.h, 244

SQRT2INV
wcsmath.h, 244

ssysobs
wcsprm, 71

ssyssrc
wcsprm, 72

status
fitskey, 32
wcserr, 58

stgs2x
prj.h, 133

stgset
prj.h, 133

stgx2s
prj.h, 133

szps2x
prj.h, 132

szpset
prj.h, 132

szpx2s
prj.h, 132

tab
wcsprm, 72

tab.h, 174

Generated by Doxygen

INDEX 285

tab_errmsg, 183
tab_errmsg_enum, 176
tabcmp, 178
tabcpy, 178
tabcpy_errmsg, 176
TABERR_BAD_PARAMS, 177
TABERR_BAD_WORLD, 177
TABERR_BAD_X, 177
TABERR_MEMORY, 177
TABERR_NULL_POINTER, 177
TABERR_SUCCESS, 177
tabfree, 179
tabfree_errmsg, 176
tabini, 177
tabini_errmsg, 176
TABLEN, 176
tabmem, 178
tabperr, 181
tabprt, 179
tabprt_errmsg, 176
tabs2x, 182
tabs2x_errmsg, 176
tabset, 181
tabset_errmsg, 176
tabx2s, 182
tabx2s_errmsg, 176

tab_errmsg
tab.h, 183

tab_errmsg_enum
tab.h, 176

tabcmp
tab.h, 178

tabcpy
tab.h, 178

tabcpy_errmsg
tab.h, 176

TABERR_BAD_PARAMS
tab.h, 177

TABERR_BAD_WORLD
tab.h, 177

TABERR_BAD_X
tab.h, 177

TABERR_MEMORY
tab.h, 177

TABERR_NULL_POINTER
tab.h, 177

TABERR_SUCCESS
tab.h, 177

tabfree
tab.h, 179

tabfree_errmsg
tab.h, 176

tabini
tab.h, 177

tabini_errmsg
tab.h, 176

TABLEN
tab.h, 176

tabmem
tab.h, 178

tabperr
tab.h, 181

tabprm, 54
coord, 56
crval, 55
delta, 56
err, 57
extrema, 56
flag, 55
index, 56
K, 55
M, 55
m_coord, 58
m_crval, 57
m_flag, 57
m_index, 57
m_indxs, 57
m_K, 57
m_M, 57
m_map, 57
m_N, 57
map, 55
nc, 56
p0, 56
padding, 56
sense, 56
set_M, 57

tabprt
tab.h, 179

tabprt_errmsg
tab.h, 176

tabs2x
tab.h, 182

tabs2x_errmsg
tab.h, 176

tabset
tab.h, 181

tabset_errmsg
tab.h, 176

tabx2s
tab.h, 182

tabx2s_errmsg
tab.h, 176

tand
wcstrig.h, 249

tans2x
prj.h, 133

tanset
prj.h, 132

tanx2s
prj.h, 133

telapse
wcsprm, 70

theta0
celprm, 24
prjprm, 41

Generated by Doxygen

286 INDEX

timedel
wcsprm, 70

timeoffs
wcsprm, 68

timepixr
wcsprm, 70

timesys
wcsprm, 67

timeunit
wcsprm, 67

timrder
wcsprm, 70

timsyer
wcsprm, 70

tmpcrd
linprm, 39

tmpmem
disprm, 29

totdis
disprm, 28

trefdir
wcsprm, 67

trefpos
wcsprm, 67

tscs2x
prj.h, 142

tscset
prj.h, 141

tscx2s
prj.h, 142

tstart
wcsprm, 69

tstop
wcsprm, 70

ttype
wtbarr, 78

type
dpkey, 31
fitskey, 33
spcprm, 46

types
wcsprm, 73

ulen
fitskey, 34

UNDEFINED
wcsmath.h, 244

undefined
wcsmath.h, 244

UNITFIX
wcsfix.h, 209

unitfix
wcsfix.h, 213

UNITSERR_BAD_EXPON_SYMBOL
wcsunits.h, 255

UNITSERR_BAD_FUNCS
wcsunits.h, 255

UNITSERR_BAD_INITIAL_SYMBOL
wcsunits.h, 255

UNITSERR_BAD_NUM_MULTIPLIER
wcsunits.h, 255

UNITSERR_BAD_UNIT_SPEC
wcsunits.h, 255

UNITSERR_CONSEC_BINOPS
wcsunits.h, 255

UNITSERR_DANGLING_BINOP
wcsunits.h, 255

UNITSERR_FUNCTION_CONTEXT
wcsunits.h, 255

UNITSERR_PARSER_ERROR
wcsunits.h, 255

UNITSERR_SUCCESS
wcsunits.h, 255

UNITSERR_UNBAL_BRACKET
wcsunits.h, 255

UNITSERR_UNBAL_PAREN
wcsunits.h, 255

UNITSERR_UNSAFE_TRANS
wcsunits.h, 255

unity
linprm, 38

value
dpkey, 31
pscard, 45
pvcard, 45

velangl
wcsprm, 72

velo
spxprm, 51

veloawav
spx.h, 173

velobeta
spx.h, 171

velofreq
spx.h, 172

velosys
wcsprm, 71

velotype
spxprm, 50

velowave
spx.h, 173

velref
wcsprm, 65

vopt
spxprm, 51

voptwave
spx.h, 173

vrad
spxprm, 50

vradfreq
spx.h, 172

w
prjprm, 43
spcprm, 47

wave
spxprm, 51

Generated by Doxygen

INDEX 287

waveawav
spx.h, 171

wavefreq
spx.h, 170

wavetype
spxprm, 50

wavevelo
spx.h, 172

wavevopt
spx.h, 173

wavezopt
spx.h, 173

wavn
spxprm, 50

wavnfreq
spx.h, 170

wcs.h, 183
AUXLEN, 188
PSLEN, 187
PVLEN, 187
wcs_errmsg, 202
wcs_errmsg_enum, 189
wcsauxi, 191
wcsbchk, 197
wcscompare, 194
WCSCOMPARE_ANCILLARY, 187
WCSCOMPARE_CRPIX, 187
WCSCOMPARE_TILING, 187
wcscopy, 188
wcscopy_errmsg, 188
WCSERR_BAD_COORD_TRANS, 189
WCSERR_BAD_CTYPE, 189
WCSERR_BAD_PARAM, 189
WCSERR_BAD_PIX, 189
WCSERR_BAD_SUBIMAGE, 189
WCSERR_BAD_WORLD, 189
WCSERR_BAD_WORLD_COORD, 189
WCSERR_ILL_COORD_TRANS, 189
WCSERR_MEMORY, 189
WCSERR_NO_SOLUTION, 189
WCSERR_NON_SEPARABLE, 189
WCSERR_NULL_POINTER, 189
WCSERR_SINGULAR_MTX, 189
WCSERR_SUCCESS, 189
wcsfree, 195
wcsfree_errmsg, 188
wcsini, 190
wcsini_errmsg, 188
wcsinit, 190
WCSLEN, 188
wcslib_version, 202
wcsmix, 200
wcsmix_errmsg, 189
wcsnps, 190
wcsnpv, 190
wcsp2s, 198
wcsp2s_errmsg, 189
wcsperr, 195

wcsprt, 195
wcsprt_errmsg, 188
wcss2p, 199
wcss2p_errmsg, 189
wcsset, 197
wcsset_errmsg, 189
wcssptr, 201
wcssub, 192
WCSSUB_CELESTIAL, 187
WCSSUB_CUBEFACE, 187
wcssub_errmsg, 188
WCSSUB_LATITUDE, 187
WCSSUB_LONGITUDE, 187
WCSSUB_SPECTRAL, 187
WCSSUB_STOKES, 187

wcs_errmsg
wcs.h, 202

wcs_errmsg_enum
wcs.h, 189

wcsauxi
wcs.h, 191

wcsbchk
wcs.h, 197

wcsbdx
wcshdr.h, 238

wcsbth
wcshdr.h, 226

wcscompare
wcs.h, 194

WCSCOMPARE_ANCILLARY
wcs.h, 187

WCSCOMPARE_CRPIX
wcs.h, 187

WCSCOMPARE_TILING
wcs.h, 187

wcscopy
wcs.h, 188

wcscopy_errmsg
wcs.h, 188

wcsdealloc
wcsutil.h, 263

wcserr, 58
file, 58
function, 58
line_no, 58
msg, 59
status, 58

wcserr.h, 202
ERRLEN, 203
wcserr_clear, 205
wcserr_copy, 206
wcserr_enable, 204
wcserr_prt, 204
WCSERR_SET, 203
wcserr_set, 205

WCSERR_BAD_COORD_TRANS
wcs.h, 189

WCSERR_BAD_CTYPE

Generated by Doxygen

288 INDEX

wcs.h, 189
WCSERR_BAD_PARAM

wcs.h, 189
WCSERR_BAD_PIX

wcs.h, 189
WCSERR_BAD_SUBIMAGE

wcs.h, 189
WCSERR_BAD_WORLD

wcs.h, 189
WCSERR_BAD_WORLD_COORD

wcs.h, 189
wcserr_clear

wcserr.h, 205
wcserr_copy

wcserr.h, 206
wcserr_enable

wcserr.h, 204
WCSERR_ILL_COORD_TRANS

wcs.h, 189
WCSERR_MEMORY

wcs.h, 189
WCSERR_NO_SOLUTION

wcs.h, 189
WCSERR_NON_SEPARABLE

wcs.h, 189
WCSERR_NULL_POINTER

wcs.h, 189
wcserr_prt

wcserr.h, 204
WCSERR_SET

wcserr.h, 203
wcserr_set

wcserr.h, 205
WCSERR_SINGULAR_MTX

wcs.h, 189
WCSERR_SUCCESS

wcs.h, 189
wcsfix

wcsfix.h, 210
wcsfix.h, 206

CDFIX, 208
cdfix, 211
CELFIX, 209
celfix, 214
CYLFIX, 209
cylfix, 215
cylfix_errmsg, 209
DATFIX, 209
datfix, 211
FIXERR_BAD_COORD_TRANS, 210
FIXERR_BAD_CORNER_PIX, 210
FIXERR_BAD_CTYPE, 210
FIXERR_BAD_PARAM, 210
FIXERR_DATE_FIX, 210
FIXERR_ILL_COORD_TRANS, 210
FIXERR_MEMORY, 210
FIXERR_NO_CHANGE, 210
FIXERR_NO_REF_PIX_COORD, 210

FIXERR_NO_REF_PIX_VAL, 210
FIXERR_NULL_POINTER, 210
FIXERR_OBSGEO_FIX, 210
FIXERR_SINGULAR_MTX, 210
FIXERR_SPC_UPDATE, 210
FIXERR_SUCCESS, 210
FIXERR_UNITS_ALIAS, 210
NWCSFIX, 209
OBSFIX, 209
obsfix, 212
SPCFIX, 209
spcfix, 214
UNITFIX, 209
unitfix, 213
wcsfix, 210
wcsfix_errmsg, 216
wcsfix_errmsg_enum, 209
wcsfixi, 210

wcsfix_errmsg
wcsfix.h, 216

wcsfix_errmsg_enum
wcsfix.h, 209

wcsfixi
wcsfix.h, 210

wcsfprintf
wcsprintf.h, 246

wcsfree
wcs.h, 195

wcsfree_errmsg
wcs.h, 188

wcshdo
wcshdr.h, 239

WCSHDO_all
wcshdr.h, 222

WCSHDO_CNAMna
wcshdr.h, 223

WCSHDO_CRPXna
wcshdr.h, 223

WCSHDO_DOBSn
wcshdr.h, 222

WCSHDO_EFMT
wcshdr.h, 224

WCSHDO_none
wcshdr.h, 222

WCSHDO_P12
wcshdr.h, 223

WCSHDO_P13
wcshdr.h, 223

WCSHDO_P14
wcshdr.h, 223

WCSHDO_P15
wcshdr.h, 223

WCSHDO_P16
wcshdr.h, 223

WCSHDO_P17
wcshdr.h, 224

WCSHDO_PVn_ma
wcshdr.h, 223

Generated by Doxygen

INDEX 289

WCSHDO_safe
wcshdr.h, 222

WCSHDO_TPCn_ka
wcshdr.h, 222

WCSHDO_WCSNna
wcshdr.h, 223

wcshdr.h, 216
wcsbdx, 238
wcsbth, 226
wcshdo, 239
WCSHDO_all, 222
WCSHDO_CNAMna, 223
WCSHDO_CRPXna, 223
WCSHDO_DOBSn, 222
WCSHDO_EFMT, 224
WCSHDO_none, 222
WCSHDO_P12, 223
WCSHDO_P13, 223
WCSHDO_P14, 223
WCSHDO_P15, 223
WCSHDO_P16, 223
WCSHDO_P17, 224
WCSHDO_PVn_ma, 223
WCSHDO_safe, 222
WCSHDO_TPCn_ka, 222
WCSHDO_WCSNna, 223
WCSHDR_all, 219
WCSHDR_ALLIMG, 222
WCSHDR_AUXIMG, 221
WCSHDR_BIMGARR, 222
WCSHDR_CD00i00j, 220
WCSHDR_CD0i_0ja, 220
WCSHDR_CNAMn, 221
WCSHDR_CROTAia, 219
WCSHDR_DATEREF, 221
WCSHDR_DOBSn, 220
WCSHDR_EPOCHa, 221
wcshdr_errmsg, 242
wcshdr_errmsg_enum, 224
WCSHDR_IMGHEAD, 222
WCSHDR_LONGKEY, 221
WCSHDR_none, 219
WCSHDR_OBSGLBHn, 221
WCSHDR_PC00i00j, 220
WCSHDR_PC0i_0ja, 220
WCSHDR_PIXLIST, 222
WCSHDR_PROJPn, 220
WCSHDR_PS0i_0ma, 220
WCSHDR_PV0i_0ma, 220
WCSHDR_RADECSYS, 221
WCSHDR_reject, 219
WCSHDR_strict, 219
WCSHDR_VELREFa, 220
WCSHDR_VSOURCE, 221
WCSHDRERR_BAD_COLUMN, 224
WCSHDRERR_BAD_TABULAR_PARAMS, 224
WCSHDRERR_MEMORY, 224
WCSHDRERR_NULL_POINTER, 224

WCSHDRERR_PARSER, 224
WCSHDRERR_SUCCESS, 224
wcsidx, 237
wcspih, 224
wcstab, 237
wcsvfree, 239

WCSHDR_all
wcshdr.h, 219

WCSHDR_ALLIMG
wcshdr.h, 222

WCSHDR_AUXIMG
wcshdr.h, 221

WCSHDR_BIMGARR
wcshdr.h, 222

WCSHDR_CD00i00j
wcshdr.h, 220

WCSHDR_CD0i_0ja
wcshdr.h, 220

WCSHDR_CNAMn
wcshdr.h, 221

WCSHDR_CROTAia
wcshdr.h, 219

WCSHDR_DATEREF
wcshdr.h, 221

WCSHDR_DOBSn
wcshdr.h, 220

WCSHDR_EPOCHa
wcshdr.h, 221

wcshdr_errmsg
wcshdr.h, 242

wcshdr_errmsg_enum
wcshdr.h, 224

WCSHDR_IMGHEAD
wcshdr.h, 222

WCSHDR_LONGKEY
wcshdr.h, 221

WCSHDR_none
wcshdr.h, 219

WCSHDR_OBSGLBHn
wcshdr.h, 221

WCSHDR_PC00i00j
wcshdr.h, 220

WCSHDR_PC0i_0ja
wcshdr.h, 220

WCSHDR_PIXLIST
wcshdr.h, 222

WCSHDR_PROJPn
wcshdr.h, 220

WCSHDR_PS0i_0ma
wcshdr.h, 220

WCSHDR_PV0i_0ma
wcshdr.h, 220

WCSHDR_RADECSYS
wcshdr.h, 221

WCSHDR_reject
wcshdr.h, 219

WCSHDR_strict
wcshdr.h, 219

Generated by Doxygen

290 INDEX

WCSHDR_VELREFa
wcshdr.h, 220

WCSHDR_VSOURCE
wcshdr.h, 221

WCSHDRERR_BAD_COLUMN
wcshdr.h, 224

WCSHDRERR_BAD_TABULAR_PARAMS
wcshdr.h, 224

WCSHDRERR_MEMORY
wcshdr.h, 224

WCSHDRERR_NULL_POINTER
wcshdr.h, 224

WCSHDRERR_PARSER
wcshdr.h, 224

WCSHDRERR_SUCCESS
wcshdr.h, 224

wcsidx
wcshdr.h, 237

wcsini
wcs.h, 190

wcsini_errmsg
wcs.h, 188

wcsinit
wcs.h, 190

WCSLEN
wcs.h, 188

wcslib.h, 243
wcslib_version

wcs.h, 202
wcsmath.h, 243

D2R, 244
PI, 243
R2D, 244
SQRT2, 244
SQRT2INV, 244
UNDEFINED, 244
undefined, 244

wcsmix
wcs.h, 200

wcsmix_errmsg
wcs.h, 189

wcsname
wcsprm, 67

wcsnps
wcs.h, 190

wcsnpv
wcs.h, 190

wcsp2s
wcs.h, 198

wcsp2s_errmsg
wcs.h, 189

wcsperr
wcs.h, 195

wcspih
wcshdr.h, 224

wcsprintf
wcsprintf.h, 246

wcsprintf.h, 244

wcsfprintf, 246
wcsprintf, 246
wcsprintf_buf, 246
WCSPRINTF_PTR, 245
wcsprintf_set, 245

wcsprintf_buf
wcsprintf.h, 246

WCSPRINTF_PTR
wcsprintf.h, 245

wcsprintf_set
wcsprintf.h, 245

wcsprm, 59
alt, 66
altlin, 65
aux, 72
bepoch, 69
cd, 64
cdelt, 62
cel, 74
cname, 66
colax, 66
colnum, 66
cperi, 67
crder, 66
crota, 65
crpix, 62
crval, 63
csyer, 66
ctype, 63
cubeface, 73
cunit, 63
czphs, 67
dateavg, 68
datebeg, 68
dateend, 68
dateobs, 68
dateref, 68
equinox, 71
err, 74
flag, 61
jepoch, 69
lat, 73
latpole, 63
lattyp, 73
lin, 74
lng, 73
lngtyp, 73
lonpole, 63
m_aux, 76
m_cd, 75
m_cdelt, 75
m_cname, 76
m_colax, 76
m_cperi, 76
m_crder, 76
m_crota, 75
m_crpix, 75
m_crval, 75

Generated by Doxygen

INDEX 291

m_csyer, 76
m_ctype, 75
m_cunit, 75
m_czphs, 76
m_flag, 74
m_naxis, 75
m_pc, 75
m_ps, 75
m_pv, 75
m_tab, 76
m_wtb, 76
mjdavg, 69
mjdbeg, 69
mjdend, 69
mjdobs, 69
mjdref, 68
naxis, 62
nps, 64
npsmax, 64
npv, 64
npvmax, 64
ntab, 72
nwtb, 72
obsgeo, 70
obsorbit, 71
pc, 62
plephem, 67
ps, 64
pv, 64
radesys, 71
restfrq, 63
restwav, 64
spc, 74
spec, 73
specsys, 71
ssysobs, 71
ssyssrc, 72
tab, 72
telapse, 70
timedel, 70
timeoffs, 68
timepixr, 70
timesys, 67
timeunit, 67
timrder, 70
timsyer, 70
trefdir, 67
trefpos, 67
tstart, 69
tstop, 70
types, 73
velangl, 72
velosys, 71
velref, 65
wcsname, 67
wtb, 72
xposure, 70
zsource, 71

wcsprt
wcs.h, 195

wcsprt_errmsg
wcs.h, 188

wcss2p
wcs.h, 199

wcss2p_errmsg
wcs.h, 189

wcsset
wcs.h, 197

wcsset_errmsg
wcs.h, 189

wcssptr
wcs.h, 201

wcssub
wcs.h, 192

WCSSUB_CELESTIAL
wcs.h, 187

WCSSUB_CUBEFACE
wcs.h, 187

wcssub_errmsg
wcs.h, 188

WCSSUB_LATITUDE
wcs.h, 187

WCSSUB_LONGITUDE
wcs.h, 187

WCSSUB_SPECTRAL
wcs.h, 187

WCSSUB_STOKES
wcs.h, 187

wcstab
wcshdr.h, 237

wcstrig.h, 247
acosd, 249
asind, 249
atan2d, 251
atand, 251
cosd, 248
sincosd, 248
sind, 248
tand, 249
WCSTRIG_TOL, 248

WCSTRIG_TOL
wcstrig.h, 248

wcsulex
wcsunits.h, 260

wcsulexe
wcsunits.h, 259

wcsunits
wcsunits.h, 260

wcsunits.h, 251
UNITSERR_BAD_EXPON_SYMBOL, 255
UNITSERR_BAD_FUNCS, 255
UNITSERR_BAD_INITIAL_SYMBOL, 255
UNITSERR_BAD_NUM_MULTIPLIER, 255
UNITSERR_BAD_UNIT_SPEC, 255
UNITSERR_CONSEC_BINOPS, 255
UNITSERR_DANGLING_BINOP, 255

Generated by Doxygen

292 INDEX

UNITSERR_FUNCTION_CONTEXT, 255
UNITSERR_PARSER_ERROR, 255
UNITSERR_SUCCESS, 255
UNITSERR_UNBAL_BRACKET, 255
UNITSERR_UNBAL_PAREN, 255
UNITSERR_UNSAFE_TRANS, 255
wcsulex, 260
wcsulexe, 259
wcsunits, 260
WCSUNITS_BEAM, 254
WCSUNITS_BIN, 254
WCSUNITS_BIT, 254
WCSUNITS_CHARGE, 254
WCSUNITS_COUNT, 255
wcsunits_errmsg, 261
wcsunits_errmsg_enum, 255
WCSUNITS_LENGTH, 254
WCSUNITS_LUMINTEN, 254
WCSUNITS_MAGNITUDE, 255
WCSUNITS_MASS, 254
WCSUNITS_MOLE, 254
WCSUNITS_NTYPE, 255
WCSUNITS_PIXEL, 255
WCSUNITS_PLANE_ANGLE, 253
WCSUNITS_SOLID_ANGLE, 253
WCSUNITS_SOLRATIO, 255
WCSUNITS_TEMPERATURE, 254
WCSUNITS_TIME, 254
wcsunits_types, 261
wcsunits_units, 261
WCSUNITS_VOXEL, 255
wcsunitse, 256
wcsutrn, 260
wcsutrne, 256

WCSUNITS_BEAM
wcsunits.h, 254

WCSUNITS_BIN
wcsunits.h, 254

WCSUNITS_BIT
wcsunits.h, 254

WCSUNITS_CHARGE
wcsunits.h, 254

WCSUNITS_COUNT
wcsunits.h, 255

wcsunits_errmsg
wcsunits.h, 261

wcsunits_errmsg_enum
wcsunits.h, 255

WCSUNITS_LENGTH
wcsunits.h, 254

WCSUNITS_LUMINTEN
wcsunits.h, 254

WCSUNITS_MAGNITUDE
wcsunits.h, 255

WCSUNITS_MASS
wcsunits.h, 254

WCSUNITS_MOLE
wcsunits.h, 254

WCSUNITS_NTYPE
wcsunits.h, 255

WCSUNITS_PIXEL
wcsunits.h, 255

WCSUNITS_PLANE_ANGLE
wcsunits.h, 253

WCSUNITS_SOLID_ANGLE
wcsunits.h, 253

WCSUNITS_SOLRATIO
wcsunits.h, 255

WCSUNITS_TEMPERATURE
wcsunits.h, 254

WCSUNITS_TIME
wcsunits.h, 254

wcsunits_types
wcsunits.h, 261

wcsunits_units
wcsunits.h, 261

WCSUNITS_VOXEL
wcsunits.h, 255

wcsunitse
wcsunits.h, 256

wcsutil.h, 262
wcsdealloc, 263
wcsutil_allEq, 265
wcsutil_blank_fill, 264
wcsutil_double2str, 269
wcsutil_Eq, 265
wcsutil_fptr2str, 268
wcsutil_intEq, 266
wcsutil_null_fill, 264
wcsutil_setAli, 267
wcsutil_setAll, 267
wcsutil_setBit, 268
wcsutil_str2double, 269
wcsutil_str2double2, 269
wcsutil_strcvt, 263
wcsutil_strEq, 266

wcsutil_allEq
wcsutil.h, 265

wcsutil_blank_fill
wcsutil.h, 264

wcsutil_double2str
wcsutil.h, 269

wcsutil_Eq
wcsutil.h, 265

wcsutil_fptr2str
wcsutil.h, 268

wcsutil_intEq
wcsutil.h, 266

wcsutil_null_fill
wcsutil.h, 264

wcsutil_setAli
wcsutil.h, 267

wcsutil_setAll
wcsutil.h, 267

wcsutil_setBit
wcsutil.h, 268

Generated by Doxygen

INDEX 293

wcsutil_str2double
wcsutil.h, 269

wcsutil_str2double2
wcsutil.h, 269

wcsutil_strcvt
wcsutil.h, 263

wcsutil_strEq
wcsutil.h, 266

wcsutrn
wcsunits.h, 260

wcsutrne
wcsunits.h, 256

wcsvfree
wcshdr.h, 239

wtb
wcsprm, 72

wtbarr, 76
arrayp, 78
dimlen, 78
extlev, 78
extnam, 77
extver, 77
i, 77
kind, 77
m, 77
ndim, 78
row, 78
ttype, 78

wtbarr.h, 270

x0
prjprm, 43

xphs2x
prj.h, 143

xphset
prj.h, 143

xphx2s
prj.h, 143

xposure
wcsprm, 70

y0
prjprm, 43

zeas2x
prj.h, 135

zeaset
prj.h, 135

zeax2s
prj.h, 135

ZENITHAL
prj.h, 144

zopt
spxprm, 51

zoptwave
spx.h, 173

zpns2x
prj.h, 134

zpnset

prj.h, 134
zpnx2s

prj.h, 134
zsource

wcsprm, 71

Generated by Doxygen

	1 WCSLIB 7.4 and PGSBOX 7.4
	1.1 Contents
	1.2 Copyright

	2 Introduction
	3 FITS-WCS and related software
	4 Overview of WCSLIB
	5 WCSLIB data structures
	6 Memory management
	7 Diagnostic output
	8 Vector API
	8.1 Vector lengths
	8.2 Vector strides

	9 Thread-safety
	10 Limits
	11 Example code, testing and verification
	12 WCSLIB Fortran wrappers
	13 PGSBOX
	14 WCSLIB version numbers
	15 Deprecated List
	16 Data Structure Index
	16.1 Data Structures

	17 File Index
	17.1 File List

	18 Data Structure Documentation
	18.1 auxprm Struct Reference
	18.1.1 Detailed Description
	18.1.2 Field Documentation

	18.2 celprm Struct Reference
	18.2.1 Detailed Description
	18.2.2 Field Documentation

	18.3 disprm Struct Reference
	18.3.1 Detailed Description
	18.3.2 Field Documentation

	18.4 dpkey Struct Reference
	18.4.1 Detailed Description
	18.4.2 Field Documentation

	18.5 fitskey Struct Reference
	18.5.1 Detailed Description
	18.5.2 Field Documentation

	18.6 fitskeyid Struct Reference
	18.6.1 Detailed Description
	18.6.2 Field Documentation

	18.7 linprm Struct Reference
	18.7.1 Detailed Description
	18.7.2 Field Documentation

	18.8 prjprm Struct Reference
	18.8.1 Detailed Description
	18.8.2 Field Documentation

	18.9 pscard Struct Reference
	18.9.1 Detailed Description
	18.9.2 Field Documentation

	18.10 pvcard Struct Reference
	18.10.1 Detailed Description
	18.10.2 Field Documentation

	18.11 spcprm Struct Reference
	18.11.1 Detailed Description
	18.11.2 Field Documentation

	18.12 spxprm Struct Reference
	18.12.1 Detailed Description
	18.12.2 Field Documentation

	18.13 tabprm Struct Reference
	18.13.1 Detailed Description
	18.13.2 Field Documentation

	18.14 wcserr Struct Reference
	18.14.1 Detailed Description
	18.14.2 Field Documentation

	18.15 wcsprm Struct Reference
	18.15.1 Detailed Description
	18.15.2 Field Documentation

	18.16 wtbarr Struct Reference
	18.16.1 Detailed Description
	18.16.2 Field Documentation

	19 File Documentation
	19.1 cel.h File Reference
	19.1.1 Detailed Description
	19.1.2 Macro Definition Documentation
	19.1.3 Enumeration Type Documentation
	19.1.4 Function Documentation
	19.1.5 Variable Documentation

	19.2 dis.h File Reference
	19.2.1 Detailed Description
	19.2.2 Macro Definition Documentation
	19.2.3 Enumeration Type Documentation
	19.2.4 Function Documentation
	19.2.5 Variable Documentation

	19.3 fitshdr.h File Reference
	19.3.1 Detailed Description
	19.3.2 Macro Definition Documentation
	19.3.3 Typedef Documentation
	19.3.4 Enumeration Type Documentation
	19.3.5 Function Documentation
	19.3.6 Variable Documentation

	19.4 getwcstab.h File Reference
	19.4.1 Detailed Description
	19.4.2 Function Documentation

	19.5 lin.h File Reference
	19.5.1 Detailed Description
	19.5.2 Macro Definition Documentation
	19.5.3 Enumeration Type Documentation
	19.5.4 Function Documentation
	19.5.5 Variable Documentation

	19.6 log.h File Reference
	19.6.1 Detailed Description
	19.6.2 Enumeration Type Documentation
	19.6.3 Function Documentation
	19.6.4 Variable Documentation

	19.7 prj.h File Reference
	19.7.1 Detailed Description
	19.7.2 Macro Definition Documentation
	19.7.3 Enumeration Type Documentation
	19.7.4 Function Documentation
	19.7.5 Variable Documentation

	19.8 spc.h File Reference
	19.8.1 Detailed Description
	19.8.2 Macro Definition Documentation
	19.8.3 Enumeration Type Documentation
	19.8.4 Function Documentation
	19.8.5 Variable Documentation

	19.9 sph.h File Reference
	19.9.1 Detailed Description
	19.9.2 Function Documentation

	19.10 spx.h File Reference
	19.10.1 Detailed Description
	19.10.2 Macro Definition Documentation
	19.10.3 Enumeration Type Documentation
	19.10.4 Function Documentation
	19.10.5 Variable Documentation

	19.11 tab.h File Reference
	19.11.1 Detailed Description
	19.11.2 Macro Definition Documentation
	19.11.3 Enumeration Type Documentation
	19.11.4 Function Documentation
	19.11.5 Variable Documentation

	19.12 wcs.h File Reference
	19.12.1 Detailed Description
	19.12.2 Macro Definition Documentation
	19.12.3 Enumeration Type Documentation
	19.12.4 Function Documentation
	19.12.5 Variable Documentation

	19.13 wcserr.h File Reference
	19.13.1 Detailed Description
	19.13.2 Macro Definition Documentation
	19.13.3 Function Documentation

	19.14 wcsfix.h File Reference
	19.14.1 Detailed Description
	19.14.2 Macro Definition Documentation
	19.14.3 Enumeration Type Documentation
	19.14.4 Function Documentation
	19.14.5 Variable Documentation

	19.15 wcshdr.h File Reference
	19.15.1 Detailed Description
	19.15.2 Macro Definition Documentation
	19.15.3 Enumeration Type Documentation
	19.15.4 Function Documentation
	19.15.5 Variable Documentation

	19.16 wcslib.h File Reference
	19.16.1 Detailed Description

	19.17 wcsmath.h File Reference
	19.17.1 Detailed Description
	19.17.2 Macro Definition Documentation

	19.18 wcsprintf.h File Reference
	19.18.1 Detailed Description
	19.18.2 Macro Definition Documentation
	19.18.3 Function Documentation

	19.19 wcstrig.h File Reference
	19.19.1 Detailed Description
	19.19.2 Macro Definition Documentation
	19.19.3 Function Documentation

	19.20 wcsunits.h File Reference
	19.20.1 Detailed Description
	19.20.2 Macro Definition Documentation
	19.20.3 Enumeration Type Documentation
	19.20.4 Function Documentation
	19.20.5 Variable Documentation

	19.21 wcsutil.h File Reference
	19.21.1 Detailed Description
	19.21.2 Function Documentation

	19.22 wtbarr.h File Reference
	19.22.1 Detailed Description

	Index

