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1 Introduction

Clustering is widely used in gene expression data analysis. By grouping genes together
based on the similarity between their gene expression profiles, functionally related genes
may be found. Such a grouping suggests the function of presently unknown genes.

The C Clustering Library is a collection of numerical routines that implement the clus-
tering algorithms that are most commonly used. The routines can be applied both to genes
and to arrays. The clustering algorithms are:

• Hierarchical clustering (pairwise centroid-, single-, complete-, and average-linkage);

• k -means clustering;

• Self-Organizing Maps;

• Principal Component Analysis.

To measure the similarity or distance between gene expression data, eight distance mea-
sures are available:

• Pearson correlation;

• Absolute value of the Pearson correlation;

• Uncentered Pearson correlation (equivalent to the cosine of the angle between two data
vectors);

• Absolute uncentered Pearson correlation (equivalent to the cosine of the smallest angle
between two data vectors);

• Spearman’s rank correlation;

• Kendall’s rank correlation τ ;

• Euclidean distance;

• City-block distance.

This library was written in ANSI C and can therefore be easily linked to other C/C++
programs. Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster) is an
example of such a program. This library may be particularly useful when called from a
scripting language such as Python (http://www.python.org), Perl (http://www.perl.
org), or Ruby (http://www.ruby.org). The C Clustering Library contains wrappers for
Python and Perl; interfaces to other scripting languages may be generated using SWIG
(http://www.swig.org).

This manual contains a description of clustering techniques, their implementation in the
C Clustering Library, the Python and Perl modules that give access to the C Clustering
Library, and information on how to use the routines in the library from other C or C++
programs.

The C Clustering Library was released under the Python License.

Michiel de Hoon (michiel.dehoon "AT" riken.jp; mdehoon "AT" cal.berkeley.edu),
Seiya Imoto, Satoru Miyano
Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical
Science, University of Tokyo.
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2 Distance functions

In order to cluster gene expression data into groups with similar genes or microarrays, we
should first define what exactly we mean by similar. In the C Clustering Library, eight
distance functions are available to measure similarity, or conversely, distance:

‘c’ Pearson correlation coefficient;

‘a’ Absolute value of the Pearson correlation coefficient;

‘u’ Uncentered Pearson correlation (equivalent to the cosine of the angle between
two data vectors);

‘x’ Absolute uncentered Pearson correlation;

‘s’ Spearman’s rank correlation;

‘k’ Kendall’s rank correlation τ ;

‘e’ Euclidean distance;

‘b’ City-block distance.

The first six of these distance measures are related to the correlation coefficient, while
the remaining three are related to the Euclidean distance. The characters in front of the
distance measures are used as mnemonics to be passed to various routines in the C Clustering
Library.

One of the properties one would like to see in a distance function is that it satisfies the
triangle inequality:

d (u, v) ≤ d (u,w) + d (w, v) for all u, v,w.

In everyday language, this equation means that the shortest distance between two points is
a straight line.

Correlation-based distance functions usually define the distance d in terms of the corre-
lation r as

d = 1− r.

All correlation-based similarity measures are converted to a distance using this definition.
Note that this distance function does not satisfy the triangle inequality. As an example, try

u = (1, 0,−1) ;

v = (1, 1, 0) .

w = (0, 1, 1) ;

Using the Pearson correlation, we find d (u,w) = 1.8660, while d (u, v) + d (v, w) = 1.6340.
None of the distance functions based on the correlation coefficient satisfy the triangle in-
equality; this is a general characteristic of the correlation coefficient. The Euclidean dis-
tance and the city-block distance, which are metrics, do satisfy the triangle inequality. The
correlation-based distance functions are sometimes called semi-metric.
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2.1 Data handling

The input to the distance functions contains two arrays and two row or column indices,
instead of two data vectors. This makes it easier to calculate the distance between two
columns in the gene expression data matrix. If the distance functions would require two
vectors, we would have to extract two columns from the matrix and save them in two
vectors to be passed to the distance function. In order to specify if the distance between
rows or between columns is to be calculated, each distance function has a flag transpose. If
transpose==0, then the distance between two rows is calculated. Otherwise, the distance
between two columns is calculated.

2.2 Weighting

For most of the distance functions available in the C Clustering Library, a weight vector
can be applied. The weight vector contains weights for the elements in the data vector. If
the weight for element i is wi, then that element is treated as if it occurred wi times in the
data. The weight do not have to be integers.

2.3 Missing Values

Often in microarray experiments, some of the data values are missing. In the distance
functions, we therefore use an additional matrix mask which shows which data values are
missing. If mask[i][j]==0, then data[i][j] is missing, and is not included in the distance
calculation.

2.4 The Pearson correlation coefficient

The Pearson correlation coefficient is defined as

r =
1

n

n
∑

i=1

(

xi − x̄

σx

)(

yi − ȳ

σy

)

in which x̄, ȳ are the sample mean of x and y respectively, and σx, σy are the sample standard
deviation of x and y. The Pearson correlation coefficient is a measure for how well a straight
line can be fitted to a scatterplot of x and y. If all the points in the scatterplot lie on a
straight line, the Pearson correlation coefficient is either +1 or −1, depending on whether
the slope of line is positive or negative. If the Pearson correlation coefficient is equal to
zero, there is no correlation between x and y.

The Pearson distance is then defined as

dP ≡ 1− r.

As the Pearson correlation coefficient lies between −1 and 1, the Pearson distance lies
between 0 and 2.

Note that the Pearson correlation automatically centers the data by subtracting the
mean, and normalizes them by dividing by the standard deviation. While such normaliza-
tion may be useful in some situations (e.g., when clustering gene expression levels directly
instead of gene expression ratios), information is being lost in this step. In particular, the
magnitude of changes in gene expression is being ignored. This is in fact the reason that
the Pearson distance does not satisfy the triangle inequality.
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2.5 Absolute Pearson correlation

By taking the absolute value of the Pearson correlation, we find a number between zero
and one. If the absolute value is one, all the points in the scatter plot lie on a straight line
with either a positive or a negative slope. If the absolute value is equal to zero, there is no
correlation between x and y.

The distance is defined as usual as

dA ≡ 1− |r| ,

where r is the Pearson correlation coefficient. As the absolute value of the Pearson corre-
lation coefficient lies between 0 and 1, the corresponding distance lies between 0 and 1 as
well.

In the context of gene expression experiments, note that the absolute correlation is
equal to one if the gene expression data of two genes/microarrays have a shape that is
either exactly the same or exactly opposite. The absolute correlation coefficient should
therefore be used with care.

2.6 Uncentered correlation (cosine of the angle)

In some cases, it may be preferable to use the uncentered correlation instead of the regular
Pearson correlation coefficient. The uncentered correlation is defined as

rU =
1

n

n
∑

i=1

(

xi

σ
(0)
x

)

(

yi

σ
(0)
y

)

,

where

σ(0)
x =

√

√

√

√

1

n

n
∑

i=1

x2
i ;

σ(0)
y =

√

√

√

√

1

n

n
∑

i=1

y2
i .

This is the same expression as for the regular Pearson correlation coefficient, except that
the sample means x̄, ȳ are set equal to zero. The uncentered correlation may be appropriate
if there is a zero reference state. For instance, in the case of gene expression data given in
terms of log-ratios, a log-ratio equal to zero corresponds to the green and red signal being
equal, which means that the experimental manipulation did not affect the gene expression.

The distance corresponding to the uncentered correlation coefficient is defined as

dU ≡ 1− rU,

where rU is the uncentered correlation. As the uncentered correlation coefficient lies between
−1 and 1, the corresponding distance lies between 0 and 2.

The uncentered correlation is equal to the cosine of the angle of the two data vectors in
n-dimensional space, and is often referred to as such. (From this viewpoint, it would make
more sense to define the distance as the arc cosine of the uncentered correlation coefficient).
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2.7 Absolute uncentered correlation

As for the regular Pearson correlation, we can define a distance measure using the absolute
value of the uncentered correlation:

dAU ≡ 1− |rU| ,

where rU is the uncentered correlation coefficient. As the absolute value of the uncentered
correlation coefficient lies between 0 and 1, the corresponding distance lies between 0 and
1 as well.

Geometrically, the absolute value of the uncentered correlation is equal to the cosine
between the supporting lines of the two data vectors (i.e., the angle without taking the
direction of the vectors into consideration).

2.8 Spearman rank correlation

The Spearman rank correlation is an example of a non-parametric similarity measure. It is
useful because it is more robust against outliers than the Pearson correlation.

To calculate the Spearman rank correlation, we replace each data value by their rank
if we would order the data in each vector by their value. We then calculate the Pearson
correlation between the two rank vectors instead of the data vectors.

As in the case of the Pearson correlation, we can define a distance measure corresponding
to the Spearman rank correlation as

dS ≡ 1− rS,

where rS is the Spearman rank correlation.

2.9 Kendall’s rank correlation

Kendall’s rank correlation, usually referred to as Kendall’s τ , is another example of a non-
parametric similarity measure. It is similar to the Spearman rank correlation, but instead
of the ranks themselves only the relative ranks are used to calculate τ (see Snedecor &
Cochran).

We can define a distance measure corresponding to Kendall’s τ as

dK ≡ 1− τ.

As Kendall’s τ is defined such that it will lie between −1 and 1, the corresponding distance
will be between 0 and 2.

2.10 Euclidean distance

The Euclidean distance is a true metric, as it satisfies the triangle inequality. In this software
package, we define the Euclidean distance as

d =
1

n

n
∑

i=1

(xi − yi)
2
.
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Only those terms are included in the summation for which both xi and yi are present. The
denominator n is chosen accordingly.

In this formula, the expression data xi and yi are subtracted directly from each other.
We should therefore make sure that the expression data are properly normalized when using
the Euclidean distance, for example by converting the measured gene expression levels to
log-ratios.

Unlike the correlation-based distance functions, the Euclidean distance takes the mag-
nitude of the expression data into account. It therefore preserves more information about
the data and may be preferable. De Hoon, Imoto, Miyano (2002) give an example of the
use of the Euclidean distance for k -means clustering.

2.11 City-block distance

The city-block distance, alternatively known as the Manhattan distance, is related to the
Euclidean distance. Whereas the Euclidean distance corresponds to the length of the short-
est path between two points, the city-block distance is the sum of distances along each
dimension. As gene expression data tend to have missing values, in the C Clustering Li-
brary we define the city-block distance as the sum of distances divided by the number of
dimensions:

d =
1

n

n
∑

i=1

|xi − yi| .

This is equal to the distance you would have to walk between two points in a city, where you
have to walk along city blocks. The city-block distance is a metric, as it satisfies the triangle
inequality. As for the Euclidean distance, the expression data are subtracted directly from
each other, and we should therefore make sure that they are properly normalized.

2.12 Calculating the distance between clusters

In the hierarchical clustering methods, the distance matrix between all genes/microarrays is
first calculated, and at successive steps of the algorithm the new distance matrix is calculated
from the previous distance matrix. In some cases, however, we would like to calculate the
distance between clusters directly, given their members. For this purpose, the function
clusterdistance can be used. This function can also be used to calculate the distance
between two genes/microarrays by defining two clusters consisting of one gene/microarray
each. While this function is not used internally in the C Clustering Library, it may be used
by other C applications, and can also be called from Python (See 〈undefined〉 [Using the
C Clustering Library with Python: Pycluster and Bio.Cluster], page 〈undefined〉) and Perl
(See 〈undefined〉 [Using the C Clustering Library with Perl: Algorithm::Cluster], page 〈un-
defined〉).

The distance between two clusters can be defined in several ways. The distance between
the arithmetic means of the two clusters is used in pairwise centroid-linkage clustering and in
k -means clustering. For the latter, the distance between the medians of the two clusters can
be used alternatively. The shortest pairwise distance between elements of the two clusters
is used in pairwise single-linkage clustering, while the longest pairwise distance is used in
pairwise maximum-linkage clustering. In pairwise average-linkage clustering, the distance
between two clusters is defined as the average over the pairwise distances.
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Prototype

double clusterdistance(int nrows, int ncolumns, double** data, int** mask,

double weight[], int n1, int n2, int index1[], int index2[], char dist, char

method, int transpose);

Arguments

• int nrows;

The number of rows in the data matrix, equal to the number of genes in the gene
expression experiment.

• int ncolumns;

The number of columns in the data matrix, equal to the number of microarrays in the
gene expression experiment.

• double** data;

The data array containing the gene expression data. Genes are stored row-wise, while
microarrays are stored column-wise. Dimension: [nrows][ncolumns].

• int** mask;

This array shows which elements in the data array, if any, are missing. If
mask[i][j]==0, then data[i][j] is missing. Dimension: [nrows][ncolumns].

• double weight[];

The weights that are used to calculate the distance. Dimension: [ncolumns] if
transpose==0; [nrows] if transpose==1.

• int n1;

The number of elements in the first cluster.

• int n2;

The number of elements in the second cluster.

• int index1[];

Contains the indices of the elements belonging to the first cluster. Dimension: [n1].

• int index2[];

Contains the indices of the elements belonging to the second cluster. Dimension: [n2].

• char dist;

Specifies which distance measure is used. See 〈undefined〉 [Distance functions],
page 〈undefined〉.

• char method;

Specifies how the distance between clusters is defined:

‘a’ Distance between the two cluster centroids (arithmetic mean);

‘m’ Distance between the two cluster centroids (median);

‘s’ Shortest pairwise distance between elements in the two clusters;

‘x’ Longest pairwise distance between elements in the two clusters;

‘v’ Average over the pairwise distances between elements in the two clusters.

• int transpose;

If transpose==0, the distances between rows in the data matrix are calculated. Oth-
erwise, the distances between columns are calculated.
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Return value

The distance between two clusters (double).

2.13 The distance matrix

The first step in clustering problems is usually to calculate the distance matrix. This matrix
contains all the distances between the items that are being clustered. As the distance
functions are symmetric, the distance matrix is also symmetric. Furthermore, the elements
on the diagonal are zero, as the distance of an item to itself is zero. The distance matrix
can therefore be stored as a ragged array, with the number of columns in each row equal
to the (zero-offset) row number. The distance between items i and j is stored in location
[i][j] if j < i, in [j][i] if j > i, while it is zero if j = i. Note that the first row of
the distance matrix is empty. It is included for computational convenience, as including an
empty row requires minimal storage.

Prototype

void distancematrix(int nrows, int ncolumns, double** data, int** mask, double

weight[], char dist, int transpose, double** matrix);

Arguments

• int nrows;

The number of rows in the data matrix, equal to the number of genes in the gene
expression experiment.

• int ncolumns;

The number of columns in the data matrix, equal to the number of microarrays in the
gene expression experiment.

• double** data;

The data array containing the gene expression data. Genes are stored row-wise, while
microarrays are stored column-wise. Dimension: [nrows][ncolumns].

• int** mask;

This array shows which elements in the data array, if any, are missing. If
mask[i][j]==0, then data[i][j] is missing. Dimension: [nrows][ncolumns].

• double weight[];

The weights that are used to calculate the distance. Dimension: [ncolumns] if
transpose==0; [nrows] if transpose==1.

• char dist;

Specifies which distance measure is used. See 〈undefined〉 [Distance functions],
page 〈undefined〉.

• int transpose;

If transpose==0, the distances between the rows in the data matrix are calculated.
Otherwise, the distances between the columns are calculated.

• int matrix;

A pointer to a ragged array in which the distance matrix will be stored. The ragged
array must be allocated before calling distancematrix. The size of this array should
be nrows if transpose==0, or ncolumns if transpose==1. Sufficient memory should
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be allocated to each row matrix[i] to store i values of size double. The first row
matrix[0] is not accessed by the routine, and can be NULL.
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3 Partitioning algorithms

Partitioning algorithms divide items into k clusters such that the sum of distances over the
items to their cluster centers is minimal. The number of clusters k is specified by the user.
In the C Clustering Library, three partitioning algorithms are available:

• k -means clustering

• k -medians clustering

• k -medoids clustering

These algorithms differ in how the cluster center is defined. In k -means clustering, the
cluster center is defined as the mean data vector averaged over all items in the cluster.
Instead of the mean, in k -medians clustering the median is calculated for each dimension
in the data vector. Finally, in k -medoids clustering the cluster center is defined as the item
which has the smallest sum of distances to the other items in the cluster. This clustering
algorithm is suitable for cases in which the distance matrix is known but the original data
matrix is not available, for example when clustering proteins based on their structural
similarity.

The expectation-maximization (EM) algorithm is commonly used to find the partitioning
into k groups. The first step in the EM algorithm is to create k clusters and randomly assign
items (genes or microarrays) to them. We then iterate:

• Calculate the centroid of each cluster;

• For each item, determine which cluster centroid is closest;

• Reassign the item to that cluster.

The iteration is stopped if no further item reassignments take place.

As the initial assignment of items to clusters is done randomly, usually a different cluster-
ing solution is found each time the EM algorithm is executed. To find the optimal clustering
solution, the k -means algorithm is repeated many times, each time starting from a different
initial random clustering. The sum of distances of the items to their cluster center is saved
for each run, and the solution with the smallest value of this sum will be returned as the
overall clustering solution.

How often the EM algorithm should be run depends on the number of items being
clustered. As a rule of thumb, we can consider how often the optimal solution was found.
This number is returned by the partitioning algorithms as implemented in this library. If
the optimal solution was found many times, it is unlikely that better solutions exist than
the one that was found. However, if the optimal solution was found only once, there may
well be other solutions with a smaller within-cluster sum of distances.

3.1 Initialization

The k -means algorithm is initialized by randomly assigning items (genes or microarrays) to
clusters. To ensure that no empty clusters are produced, we use the binomial distribution to
randomly choose the number of items in each cluster to be one or more. We then randomly
permute the cluster assignments to items such that each item has an equal probability to
be in any cluster. Each cluster is thus guaranteed to contain at least one item.
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3.2 Finding the cluster centroid

The centroid of a cluster can be defined in different ways. For k -means clustering, the
centroid of a cluster is defined as the mean over all items in a cluster for each dimension
separately. For robustness against outliers, in k -medians clustering the median is used
instead of the mean. In k -medoids clustering, the cluster centroid is the item with the
smallest sum of distances to the other items in the cluster. The C Clustering Library
provides routines to calculate the cluster mean, the cluster median, and the cluster medoid.

3.2.1 Finding the cluster mean or median

The routine getclustercentroids calculates the centroids of the clusters by calculating the
mean or median for each dimension separately over all items in a cluster. Missing data values
are not included in the calculation of the mean or median. Missing values in the cluster
centroids are indicated in the array cmask. If for cluster i the data values for dimension j

are missing for all items, then cmask[i][j] (or cmask[j][i] if transpose==1) is set equal
to zero. Otherwise, it is set equal to one. The argument method determines if the means
or medians are calculated. If a memory allocation error occurred, getclustercentroids
returns 0; this can happen only if the cluster medians are being calculated. If no errors
occur, getclustercentroids returns 1;

Prototype

int getclustercentroids(int nclusters, int nrows, int ncolumns, double** data,

int** mask, int clusterid[], double** cdata, int** cmask, int transpose, char

method);

Arguments

• int nclusters;

The number of clusters.

• int nrows;

The number of rows in the data matrix, equal to the number of genes in the gene
expression experiment.

• int ncolumns;

The number of columns in the data matrix, equal to the number of microarrays in the
gene expression experiment.

• double** data;

The data array containing the gene expression data. Genes are stored row-wise, while
microarrays are stored column-wise. Dimension: [nrows][ncolumns].

• int** mask;

This array shows which elements in the data array, if any, are missing. If
mask[i][j]==0, then data[i][j] is missing. Dimension: [nrows][ncolumns].

• int clusterid[];

The cluster number to which each item belongs. Each element in this array should
be between 0 and nclusters-1 inclusive. Dimension: [nrows] if transpose==0, or
[ncolumns] if transpose==1.

• double** cdata;

This matrix stores the centroid information. Space for this matrix should be
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allocated before calling getclustercentroids. Dimension: [nclusters][ncolumns]
if transpose==0 (row-wise clustering), or [nrows][nclusters] if transpose==1

(column-wise clustering).

• int** cmask;

This matrix stores which values in cdata are missing. If cmask[i][j]==0, then
cdata[i][j] is missing. Space for cmask should be allocated before calling
getclustercentroids. Dimension: [nclusters][ncolumns] if transpose==0

(row-wise clustering), or [nrows][nclusters] if transpose==1 (column-wise
clustering).

• int transpose;

This flag indicates whether row-wise (gene) or column-wise (microarray) clustering
is being performed. If transpose==0, rows (genes) are being clustered. Otherwise,
columns (microarrays) are being clustered.

• char method;

If method==’a’, the cluster centroids are calculated as the arithmetic mean over each
dimension. For method==’m’, the cluster centroids are calculated as the median over
each dimension.

Return value

This routine returns 1 if successful, and 0 in case of a memory allocation error.

3.2.2 Finding the cluster medoid

The cluster medoid is defined as the item which has the smallest sum of distances to the
other items in the cluster. The getclustermedoids routine calculates the cluster medoids,
given to which cluster each item belongs.

Prototype

void getclustermedoids(int nclusters, int nelements, double** distance, int

clusterid[], int centroids[], double errors[]);

Arguments

• int nclusters;

The number of clusters.

• int nelements;

The total number of elements that are being clustered.

• double** distmatrix;

The distance matrix. The distance matrix is symmetric and has zeros on the diag-
onal. To save space, the distance matrix is stored as a ragged array. Dimension:
[nelements][] as a ragged array. The number of columns in each row is equal to the
row number (starting from zero). Accordingly, the first row always has zero columns.

• int clusterid[];

The cluster number to which each element belongs. Dimension: [nelements].

• int centroid[];

For each cluster, the element of the item that was determined to be its centroid. Di-
mension: [nclusters].
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• double errors[];

For each cluster, the sum of distances between the items belonging to the cluster and
the cluster centroid. Dimension: [nclusters].

3.3 The EM algorithm

The EM algorithm as implemented in the C Clustering Library first randomly assigns items
to clusters, followed by iterating to find a clustering solution with a smaller within-cluster
sum of distances. During the iteration, first we find the centroids of all clusters, where the
centroids are defined in terms of the mean, the median, or the medoid. The distances of
each item to the cluster centers are calculated, and we determine for each item which cluster
is closest. We then reassign the items to their closest clusters, and recalculate the cluster
centers.

All items are first reassigned before recalculating the cluster centroids. If unchecked,
clusters may become empty if all their items are reassigned. For k -means and k -medians
clustering, the EM routine therefore keeps track of the number of items in each cluster at all
times, and prohibits the last remaining item in a cluster from being reassigned to a different
cluster. For k -medoids clustering, such a check is not needed, as the item that functions as
the cluster centroid has a zero distance to itself, and will therefore not be reassigned to a
different cluster.

The EM algorithm terminates when no further reassignments take place. We noticed,
however, that for some sets of initial cluster assignments, the EM algorithm fails to converge
due to the same clustering solution reappearing periodically after a small number of iteration
steps. In the EM algorithm as implemented in the C Clustering Library, the occurrence
of such periodic solutions is checked for. After a given number of iteration steps, the
current clustering result is saved as a reference. By comparing the clustering result after
each subsequent iteration step to the reference state, we can determine if a previously
encountered clustering result is found. In such a case, the iteration is halted. If after a
given number of iterations the reference state has not yet been encountered, the current
clustering solution is saved to be used as the new reference state. Initially, ten iteration steps
are executed before resaving the reference state. This number of iteration steps is doubled
each time, to ensure that periodic behavior with longer periods can also be detected.

3.4 Finding the optimal solution

3.4.1 k-means and k-medians

The optimal solution is found by executing the EM algorithm repeatedly and saving the best
clustering solution that was returned by it. This can be done automatically by calling the
routine kcluster. The routine to calculate the cluster centroid and the distance function
are selected based on the arguments passed to kcluster.

The EM algorithm is then executed repeatedly, saving the best clustering solution that
was returned by these routines. In addition, kcluster counts how often the EM algorithm
found this solution. If it was found many times, we can assume that there are no other
solutions possible with a smaller within-cluster sum of distances. If, however, the solution
was found only once, it may well be that better clustering solutions exist.
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Prototype

void kcluster(int nclusters, int nrows, int ncolumns, double** data, int**

mask, double weight[], int transpose, int npass, char method, char dist, int

clusterid[], double* error, int* ifound);

Arguments

• int nclusters;

The number of clusters k.

• int nrows;

The number of rows in the data matrix, equal to the number of genes in the gene
expression experiment.

• int ncolumns;

The number of columns in the data matrix, equal to the number of microarrays in the
gene expression experiment.

• double** data;

The data array containing the gene expression data. Genes are stored row-wise, while
microarrays are stored column-wise. Dimension: [nrows][ncolumns].

• int** mask;

This array shows which elements in the data array, if any, are missing. If
mask[i][j]==0, then data[i][j] is missing. Dimension: [nrows][ncolumns].

• double weight[];

The weights that are used to calculate the distance. Dimension: [ncolumns] if
transpose==0; [nrows] if transpose==1.

• int transpose;

This flag indicates whether row-wise (gene) or column-wise (microarray) clustering
is being performed. If transpose==0, rows (genes) are being clustered. Otherwise,
columns (microarrays) are being clustered.

• int npass;

The number of times the EM algorithm should be run. If npass > 0, each run of the
EM algorithm uses a different (random) initial clustering. If npass == 0, then the
EM algorithm is run with an initial clustering specified by clusterid. Reassignment to
a different cluster is prevented for the last remaining item in the cluster in order to
prevent empty clusters. For npass==0, the EM algorithm is run only once, using the
initial clustering as specified by clusterid.

• char method;

Specifies whether the arithmetic mean (method==’a’) or the median (method==’m’)
should be used to calculate the cluster center.

• char dist;

Specifies which distance function should be used. The character should correspond
to one of the distance functions that are available in the C Clustering Library. See
〈undefined〉 [Distance functions], page 〈undefined〉.

• int clusterid[];

This array will be used to store the cluster number to which each item was assigned
by the clustering algorithm. Space for clusterid should be allocated before call-
ing kcluster. If npass==0, then the contents of clusterid on input is used as the
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initial assignment of items to clusters; on output, clusterid contains the optimal clus-
tering solution found by the EM algorithm. Dimension: [nrows] if transpose==0, or
[ncolumns] if transpose==1.

• double* error;

The sum of distances of the items to their cluster center after k -means clustering, which
can be used as a criterion to compare clustering solutions produced in different calls to
kcluster.

• int* ifound;

Returns how often the optimal clustering solution was found. In case of an inconsistency
in the input arguments (specifically, if nclusters is larger than the number of elements
to be clustered), *ifound is set to 0. If a memory allocation error occurred, *ifound
is set to -1.

3.4.2 k-medoids

The kmedoids routine performs k-medoids clustering on a given set of elements, using the
distance matrix and the number of clusters passed by the user. Multiple passes are being
made to find the optimal clustering solution, each time starting from a different initial
clustering.

Prototype

void kmedoids(int nclusters, int nelements, double** distance, int npass, int

clusterid[], double* error, int* ifound);

Arguments

• int nclusters;

The number of clusters to be found.

• int nelements;

The number of elements to be clustered.

• double** distmatrix;

The distance matrix. The distance matrix is symmetric and has zeros on the diag-
onal. To save space, the distance matrix is stored as a ragged array. Dimension:
[nelements][] as a ragged array. The number of columns in each row is equal to the
row number (starting from zero). Accordingly, the first row always has zero columns.

• int npass;

The number of times the EM algorithm should be run. If npass > 0, each run of the
EM algorithm uses a different (random) initial clustering. If npass == 0, then the EM
algorithm is run with an initial clustering specified by clusterid.

• int clusterid[];

This array will be used to store the cluster number to which each item was assigned
by the clustering algorithm. Space for clusterid should be allocated before calling
kcluster. On input, if npass==0, then clusterid contains the initial clustering assign-
ment from which the clustering algorithm starts; all numbers in clusterid should be
between 0 and nelements-1 inclusive. If npass!=0, clusterid is ignored on input. On
output, clusterid contains the number of the cluster to which each item was assigned in
the optimal clustering solution. The number of a cluster is defined as the item number
of the centroid of the cluster. Dimension: [nelements].
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• double* error;

The sum of distances of the items to their cluster center after k -means clustering, which
can be used as a criterion to compare clustering solutions produced in different calls to
kmedoids.

• int* ifound;

Returns how often the optimal clustering solution was found. In case of an inconsistency
in the input arguments (specifically, if nclusters is larger than nelements), ifound is set
to 0. If a memory allocation error occurred, ifound is set to -1.

3.5 Choosing the distance measure

Whereas all eight distance measures are accepted for k -means, k -medians, and k -medoids
clustering, using a distance measure other than the Euclidean distance or city-block distance
with k -means or k -medians is in a sense inconsistent. When using the distance measures
based on the Pearson correlation, the data are effectively normalized when calculating
the distance. However, no normalization is applied when calculating the centroid in the k -
means or k -medians algorithm. From a theoretical viewpoint, it is best to use the Euclidean
distance for the k -means algorithm, and the city-block distance for k -medians.
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4 Hierarchical clustering

Hierarchical clustering methods are inherently different from the k -means clustering method.
In hierarchical clustering, the similarity in the expression profile between genes or experi-
mental conditions are represented in the form of a tree structure. This tree structure can be
shown graphically by programs such as TreeView and Java TreeView, which has contributed
to the popularity of hierarchical clustering in the analysis of gene expression data.

The first step in hierarchical clustering is to calculate the distance matrix, specifying
all the distances between the items to be clustered. Next, we create a node by joining
the two closest items. Subsequent nodes are created by pairwise joining of items or nodes
based on the distance between them, until all items belong to the same node. A tree
structure can then be created by retracing which items and nodes were merged. Unlike the
EM algorithm, which is used in k -means clustering, the complete process of hierarchical
clustering is deterministic.

Several flavors of hierarchical clustering exist, which differ in how the distance between
subnodes is defined in terms of their members. In the C Clustering Library, pairwise single,
maximum, average, and centroid linkage are available.

• In pairwise single-linkage clustering, the distance between two nodes is defined as the
shortest distance among the pairwise distances between the members of the two nodes.

• In pairwise maximum-linkage clustering, alternatively known as pairwise complete-
linkage clustering, the distance between two nodes is defined as the longest distance
among the pairwise distances between the members of the two nodes.

• In pairwise average-linkage clustering, the distance between two nodes is defined as the
average over all pairwise distances between the elements of the two nodes.

• In pairwise centroid-linkage clustering, the distance between two nodes is defined as
the distance between their centroids. The centroids are calculated by taking the mean
over all the elements in a cluster. As the distance from each newly formed node
to existing nodes and items need to be calculated at each step, the computing time
of pairwise centroid-linkage clustering may be significantly longer than for the other
hierarchical clustering methods. Another peculiarity is that (for a distance measure
based on the Pearson correlation), the distances do not necessarily increase when going
up in the clustering tree, and may even decrease. This is caused by an inconsistency
between the centroid calculation and the distance calculation when using the Pearson
correlation: Whereas the Pearson correlation effectively normalizes the data for the
distance calculation, no such normalization occurs for the centroid calculation.

For pairwise single-, complete-, and average-linkage clustering, the distance between two
nodes can be found directly from the distances between the individual items. Therefore,
the clustering algorithm does not need access to the original gene expression data, once the
distance matrix is known. For pairwise centroid-linkage clustering, however, the centroids
of newly formed subnodes can only be calculated from the original data and not from the
distance matrix.

The implementation of pairwise single-linkage hierarchical clustering is based on the
SLINK algorithm (R. Sibson, 1973), which is much faster and more memory-efficient than a
straightforward implementation of pairwise single-linkage clustering. The clustering result
produced by this algorithm is identical to the clustering solution found by the conventional
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single-linkage algorithm. The single-linkage hierarchical clustering algorithm implemented
in this library can be used to cluster large gene expression data sets, for which conventional
hierarchical clustering algorithms fail due to excessive memory requirements and running
time.

4.1 Representing a hierarchical clustering solution

The result of hierarchical clustering consists of a tree of nodes, in which each node joins
two items or subnodes. Usually, we are not only interested in which items or subnodes are
joined at each node, but also in their similarity (or distance) as they are joined. To store
one node in the hierarchical clustering tree, we make use of a struct Node, which has the
following members:

• int left;

First item or subnode.

• int right;

Second item or subnode.

• double distance;

The distance between the two items or subnodes that were joined.

Each item and subnode is represented by an integer. For hierarchical clustering of n items,
we number the original items {0, . . . , n− 1}, nodes are numbered {−1, . . . ,−(n− 1)}. Note
that the number of nodes is one less than the number of items.

A hierarchical clustering tree can now be written as an array of Node structs. The
treecluster routine allocates this array, and returns a Node* pointer to the first element.
The calling function is responsible for deallocating the Node* array.

4.2 Performing hierarchical clustering: treecluster

The treecluster routine implements pairwise single-, complete, average-, and centroid-
linkage clustering. A pointer distmatrix to the distance matrix can be passed as one of the
arguments to treecluster; if this pointer is NULL, the treecluster routine will calculate
the distance matrix from the gene expression data using the arguments data, mask, weight,
and dist. For pairwise single-, complete-, and average-linkage clustering, the treecluster

routine ignores these four arguments if distmatrix is given, as the distance matrix by itself is
sufficient for the clustering calculation. For pairwise centroid-linkage clustering, on the other
hand, the arguments data, mask, weight, and dist are always needed, even if distmatrix is
available.

The treecluster routine will complete faster if it can make use of a previously calculated
distance matrix passed as the distmatrix argument. Note, however, that newly calculated
distances are stored in the distance matrix, and its elements may be rearranged during the
clustering calculation. Therefore, in order to save the original distance matrix, it should
be copied before treecluster is called. The memory that was allocated by the calling
routine for the distance matrix will not be deallocated by treecluster, and should be
deallocated by the calling routine after treecluster returns. If distmatrix is NULL, however,
treecluster takes care both of the allocation and the deallocation of memory for the
distance matrix. In that case, treecluster may fail if not enough memory can be allocated
for the distance matrix, in which case treecluster returns NULL.
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Prototype

tree* treecluster(int nrows, int ncolumns, double** data, int** mask, double

weight[], int transpose, char dist, char method, double** distmatrix);

Arguments

• int nrows;

The number of rows in the data matrix, equal to the number of genes in the gene
expression experiment.

• int ncolumns;

The number of columns in the data matrix, equal to the number of microarrays in the
gene expression experiment.

• double** data;

The data array containing the gene expression data. Genes are stored row-wise, while
microarrays are stored column-wise. Dimension: [nrows][ncolumns].

• int** mask;

This array shows which elements in the data array, if any, are missing. If
mask[i][j]==0, then data[i][j] is missing. Dimension: [nrows][ncolumns].

• double weight[];

The weights that are used to calculate the distance. Dimension: [ncolumns] if
transpose==0; [nrows] if transpose==1.

• int transpose;

This flag indicates whether row-wise (gene) or column-wise (microarray) clustering
is being performed. If transpose==0, rows (genes) are being clustered. Otherwise,
columns (microarrays) are being clustered.

• char dist;

Specifies which distance measure is used. See 〈undefined〉 [Distance functions],
page 〈undefined〉.

• char method;

Specifies which type of hierarchical clustering is used:

• ’s’: pairwise single-linkage clustering

• ’m’: pairwise maximum- (or complete-) linkage clustering

• ’a’: pairwise average-linkage clustering

• ’c’: pairwise centroid-linkage clustering

• double** distmatrix;

The distance matrix, stored as a ragged array. This argument is optional; if the distance
matrix is not available, it can be passed as NULL. In that case, treecluster will allocate
memory space for the distance matrix, calculate it from the gene expression data, and
deallocate the memory space before returning. If the distance matrix happens to be
available, the hierarchical clustering calculation can be completed faster by passing it
as the distmatrix argument. Note that the contents of the distance matrix will be
modified by the clustering algorithm in treecluster. The memory that was allocated
for the distance matrix should be deallocated by the calling routine after treecluster
returns. Dimension: Ragged array, [nrows][] if transpose==0, or [ncolumns][] if
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transpose==1. In both cases, the number of columns in each row is equal to the row
number (starting from zero). Accordingly, the first row always has zero columns.

Return value

A pointer to a newly allocated tree structure that describes the calculated hierarchical
clustering solution. If treecluster fails due to a memory allocation error, it returns NULL.

4.3 Sorting a hierarchical clustering tree: sorttree

A hierarchical clustering solution of n elements can be drawn as 2n−1 different trees. While
all of these trees represent the same hierarchical clustering solution, they differ from each
other by the ordering of the left and right subnode at each node, which is arbitrary. The
routine sorttree sorts a hierarchical clustering tree by visiting each node and if needed
switching the left and right subnode such that the average order value of the left node is
less than or equal to the average order value of the right node. Here, the order value of the
elements is specified by the user. Effectively, the sorttree routine finds the dendrogram
such that the left-to-right order of the elements tend to have increasing order values, while
remaining consistent with the hierarchical clustering solution.

Prototype

int sorttree(const int nnodes, Node* tree, const double order[], int

indices[]);

Arguments

• int nnodes;

The number of nodes in the hierarchical clustering tree.

• Node* tree;

The hierarchical clustering solution. Each node tree[i] in the array describes one
linking event, with tree[i].left and tree[i].right containing the numbers of the
nodes that were joined. The original elements are numbered {0, . . . , nelements-1},
nodes are numbered {-1, . . . , -(nelements-1)}. Note that the number of nodes is one
less than the number of elements. The sorttree function performs no error checking
of the tree structure. Dimension: [nnodes].

• const double order[];

The order values of the items. Dimension: [nnodes+1]. If order is NULL, the tree is
not reordered, and the indices[] of the current tree are calculated.

• int indices[];

The indices of each item after sorting, with item indices[i] appearing at position i

(counting left-to-right) in the hierarchical clustering tree after sorting. Memory space
for indices should be allocated before sorttree is called. Dimension: [nnodes+1].

Return value

The sorttree routine returns 1 if successful, and 0 in case of a memory allocation error.
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4.4 Cutting a hierarchical clustering tree: cuttree

The tree structure generated by the hierachical clustering routine treecluster can be
further analyzed by dividing the genes or microarrays into n clusters, where n is some
positive integer less than or equal to the number of items that were clustered. This can
be achieved by ignoring the top n − 1 linking events in the tree structure, resulting in n

separated subnodes. The items in each subnode are then assigned to the same cluster. The
routine cuttree determines to which cluster each item is assigned, based on the hierarchical
clustering result stored in the tree structure. Clusters are numbered from 0 to n− 1 in the
left-to-right order in which they appear in the hierarchical clustering tree.

Prototype

int cuttree(int nelements, Node* tree, unsigned int nclusters, int

clusterid[]);

Arguments

• int nelements;

The number of elements for which the clustering results are stored in the hierarchical
clustering result tree.

• Node* tree;

The hierarchical clustering solution. Each node tree[i] in the array describes one
linking event, with tree[i].left and tree[i].right containing the numbers of the
nodes that were joined. The original elements are numbered {0, . . . , nelements-1},
nodes are numbered {-1, . . . , -(nelements-1)}. Note that the number of nodes is one
less than the number of elements. The cuttree function performs no error checking of
the tree structure. Dimension: [nelements-1].

• unsigned int nclusters;

The desired number of clusters. The number of clusters should be positive, and less
than or equal to nelements.

• int clusterid[];

The cluster number to which each element is assigned. Memory space for clusterid
should be allocated before cuttree is called. Dimension: [nelements].

Return value

The cuttree routine returns 1 if successful, and 0 in case of a memory allocation error.
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5 Self-Organizing Maps

Self-Organizing Maps (SOMs) were invented by Kohonen to describe neural networks (see
for instance Kohonen, 1997). Tamayo (1999) first applied Self-Organizing Maps to gene
expression data.

SOMs organize items into clusters that are situated in some topology. Usually a rec-
tangular topology is chosen. The clusters generated by SOMs are such that neighboring
clusters in the topology are more similar to each other than clusters far from each other in
the topology.

The first step to calculate a SOM is to randomly assign a data vector to each cluster in
the topology. If genes are being clustered, then the number of elements in each data vector
is equal to the number of microarrays in the experiment.

An SOM is then generated by taking genes one at a time, and finding which cluster in
the topology has the closest data vector. The data vector of that cluster, as well as those of
the neighboring clusters, are adjusted using the data vector of the gene under consideration.
The adjustment is given by

∆xcell = τ ·
(

xgene − xcell

)

.

The parameter τ is a parameter that decreases at each iteration step. We have used a
simple linear function of the iteration step:

τ = τinit ·

(

1−
i

n

)

,

in which τinit is the initial value of τ as specified by the user, i is the number of the current
iteration step, and n is the total number of iteration steps to be performed. While changes
are made rapidly in the beginning of the iteration, at the end of iteration only small changes
are made.

All clusters within a radius R are adjusted to the gene under consideration. This radius
decreases as the calculation progresses as

R = Rmax ·

(

1−
i

n

)

,

in which the maximum radius is defined as

Rmax =
√

N 2
x +N 2

y ,

where (Nx, Ny) are the dimensions of the rectangle defining the topology.

The routine somcluster carries out the complete SOM algorithm. First it initializes the
random number generator. The distance function to be used is specified by dist. The node
data are then initialized using the random number generator. The order in which genes or
microarrays are used to modify the SOM is also randomized. The total number of iterations
is specified by niter, given by the user.

Prototype

void somcluster(int nrows, int ncolumns, double** data, int** mask, double

weight[], int transpose, int nxgrid, int nygrid, double inittau, int niter,

char dist, double*** celldata, int clusterid[][2]);
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Arguments

• int nrows;

The number of rows in the data matrix, equal to the number of genes in the gene
expression experiment.

• int ncolumns;

The number of columns in the data matrix, equal to the number of microarrays in the
gene expression experiment.

• double** data;

The data array containing the gene expression data. Genes are stored row-wise, while
microarrays are stored column-wise. Dimension: [nrows][ncolumns].

• int** mask;

This array shows which elements in the data array, if any, are missing. If
mask[i][j]==0, then data[i][j] is missing. Dimension: [nrows][ncolumns].

• double weight[];

The weights that are used to calculate the distance. Dimension: [ncolumns] if
transpose==0; [nrows] if transpose==1.

• int transpose;

This flag indicates whether row-wise (gene) or column-wise (microarray) clustering
is being performed. If transpose==0, rows (genes) are being clustered. Otherwise,
columns (microarrays) are being clustered.

• int nxgrid;

The number of cells horizontally in the rectangular topology containing the clusters.

• int nygrid;

The number of cells vertically in the rectangular topology containing the clusters.

• double inittau;

The initial value for the parameter τ that is used in the SOM algorithm. A typical
value for inittau is 0.02, which was used in Michael Eisen’s Cluster/TreeView program.

• int niter;

The total number of iterations.

• char dist;

Specifies which distance measure is used. See 〈undefined〉 [Distance functions],
page 〈undefined〉.

• double*** celldata;

The data vectors of the clusters in the rectangular topology that were found by the
SOM algorithm. These correspond to the cluster centroids. The first dimension is the
horizontal position of the cluster in the rectangle, the second dimension is the vertical
position of the cluster in the rectangle, while the third dimension is the dimension
along the data vector. The somcluster routine does not allocate storage space for the
celldata array. Space should be allocated before calling somcluster. Alternatively, if
celldata is equal to NULL, the somcluster routine allocates space for celldata and frees
it before returning. In that case, somcluster does not return the data vectors of the
clusters that were found. Dimension: [nxgrid][nygrid][ncolumns] if transpose==0,
or [nxgrid][nygrid][nrows] if transpose==1.
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• int clusterid[][2];

Specifies the cluster to which a gene or microarray was assigned, using two integers
to identify the horizontal and vertical position of a cell in the grid for each gene or
microarray. Gene or microarrays are assigned to clusters in the rectangular grid by
determining which cluster in the rectangular topology has the closest data vector.
Space for the clusterid argument should be allocated before calling somcluster. If
clusterid is NULL, the somcluster routine ignores this argument and does not return
the cluster assignments. Dimension: [nrows][2] if transpose==0; [ncolumns][2] if
transpose==1.
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6 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used technique for analyzing multivariate
data. A practical example of applying Principal Component Analysis to gene expression
data is presented by Yeung and Ruzzo (2001).

In essence, PCA is a coordinate transformation in which each row in the data matrix is
written as a linear sum over basis vectors called principal components, which are ordered
and chosen such that each maximally explains the remaining variance in the data vectors.
For example, an n× 3 data matrix can be represented as an ellipsoidal cloud of n points in
three dimensional space. The first principal component is the longest axis of the ellipsoid,
the second principal component the second longest axis of the ellipsoid, and the third
principal component is the shortest axis. Each row in the data matrix can be reconstructed
as a suitable linear combination of the principal components. However, in order to reduce
the dimensionality of the data, usually only the most important principal components are
retained. The remaining variance present in the data is then regarded as unexplained
variance.

The principal components can be found by calculating the eigenvectors of the covariance
matrix of the data. The corresponding eigenvalues determine how much of the variance
present in the data is explained by each principal component.

Before applying principal component analysis, typically the mean is subtracted from each
column in the data matrix. In the example above, this effectively centers the ellipsoidal cloud
around its centroid in 3D space, with the principal components describing the variation of
points in the ellipsoidal cloud with respect to their centroid.

The function pca below first uses the singular value decomposition to calculate the
eigenvalues and eigenvectors of the data matrix. The singular value decomposition is im-
plemented as a translation in C of the Algol procedure svd (Golub and Reinsch, 1970),
which uses Householder bidiagonalization and a variant of the QR algorithm. The principal
components, the coordinates of each data vector along the principal components, and the
eigenvalues corresponding to the principal components are then evaluated and returned in
decreasing order of the magnitude of the eigenvalue. If data centering is desired, the mean
should be subtracted from each column in the data matrix before calling the pca routine.

Prototype

int pca(int nrows, int ncolumns, double** u, double** v, double* w);

applies Principal Component Analysis to the data matrix u.

Arguments

• int nrows

The number of rows in u.

• int ncolumns

The number of columns in u.

• double** u;

On input: u is the rectangular matrix to which Principal Component Analysis is to
be applied. The function assumes that the mean has already been subtracted of each
column, and hence that the mean of each column is zero.
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On output:
If nrows ≥ ncolumns, then on output u contains the coordinates with respect to the
principal components.
If nrows < ncolumns, then on output u contains the principal component vectors.
Dimension: [nrows][ncolumns].

• double** v;

Unused on input.
On output:
If nrows ≥ ncolumns, then on output v contains the principal component vectors.
If nrows < ncolumns, then on output v contains the coordinates with respect to the
principal components.
Dimension: [n][n], where n = min(nrows, ncolumns).

• double* w;

Unused on input.
On output: The eigenvalues corresponding to the the principal component vectors.
Dimension: [n], where n = min(nrows, ncolumns).

If nrows ≥ ncolumns, then on output the dot product u ·v reproduces the data originally
passed in through u. If nrows < ncolumns, then on output the dot product v ·u reproduces
the data originally passed in through u.

Return value

The function returns 0 if successful, -1 if memory allocation fails, and a positive integer if
the singular value decomposition fails to converge.
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7 The random number generator

The random number generator in the C Clustering Library is used to initialize the k -
means/medians/medoids clustering algorithm and Self-Organizing Maps (SOMs), as well
as to randomly select a gene or microarray in the calculation of a SOM.

We need both a generator of uniform random deviates, and a generator whose deviates
follow the binomial distribution. The latter can be built, given a uniform random number
generator, using the BTPE algorithm by Kachitvichyanukul and Schmeiser (1988).

The uniform random number generator in the C Clustering Library is described by
L’Ecuyer (1988). The random number generator is initialized automatically during its first
call. As the random number generator by L’Ecuyer uses a combination of two multiplicative
linear congruential generators, two (integer) seeds are needed for initialization, for which
we use the system-supplied random number generator rand (in the C standard library). We
initialize this generator by calling srand with the epoch time in seconds, and use the first
two random numbers generated by rand as seeds for the uniform random number generator
in the C Clustering Library.
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8 Using the C Clustering Library with Python:
Pycluster and Bio.Cluster

The C Clustering Library is particularly useful when used as a module to a scripting lan-
guage. This chapter describes the routines in the C Clustering Library as seen from Python.

To make the routines available to Python, install Pycluster (see Section 10.1 [Installing
the C Clustering Library for Python], page 74). From Python, then type
>>> from Pycluster import *

Pycluster is also available as part of Biopython (http://www.biopython.org), in which
case you should use
>>> from Bio.Cluster import *

This will give you access to the clustering routines in the C Clustering Library directly from
Python.

To confirm the version number of the C Clustering Library, use
>>> import Pycluster

>>> Pycluster.__version__

or
>>> from Bio import Cluster

>>> Cluster.__version__

which will return the version number as a string.

8.1 Partitioning algorithms

8.1.1 k-means and k-medians clustering: kcluster

clusterid, error, nfound = kcluster(data, nclusters=2, mask=None,

weight=None, transpose=False, npass=1, method=’a’, dist=’e’, initialid=None)

implements the k -means and k -medians clustering algorithms.

Arguments

• data

Array containing the gene expression data, where genes are stored row-wise and mi-
croarray experiments column-wise.

• nclusters

The number of clusters k.

• mask

Array of integers showing which data are missing. If mask[i, j] == 0, then data[i,

j] is missing. If mask is None, then there are no missing data.

• weight

contains the weights to be used when calculating distances. If weight is None, then
equal weights are assumed.

• transpose

Determines if genes or microarrays are being clustered. If transpose is False, genes
(rows) are being clustered. If transpose is True, microarrays (columns) are clustered.

• npass

The number of times the k -means clustering algorithm is performed, each time with
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a different (random) initial condition. If initialid is given, the value of npass is
ignored and the clustering algorithm is run only once, as it behaves deterministically
in that case.

• method

describes how the center of a cluster is found:

• method == ’a’: arithmetic mean;

• method == ’m’: median.

For other values of method, the arithmetic mean is used.

• dist

defines the distance function to be used:

• dist == ’c’: correlation;

• dist == ’a’: absolute value of the correlation;

• dist == ’u’: uncentered correlation;

• dist == ’x’: absolute uncentered correlation;

• dist == ’s’: Spearman’s rank correlation;

• dist == ’k’: Kendall’s τ ;

• dist == ’e’: Euclidean distance;

• dist == ’b’: City-block distance.

• initialid

Specifies the initial clustering to be used for the EM algorithm. If initialid is None,
then a different random initial clustering is used for each of the npass runs of the EM
algorithm. If initialid is not None, then it should be equal to a 1D array containing
the cluster number (between 0 and nclusters-1) for each item. Each cluster should
contain at least one item. With the initial clustering specified, the EM algorithm is
deterministic.

Return values

This function returns a tuple (clusterid, error, nfound).

• clusterid

An array containing the number of the cluster to which each gene/microarray was
assigned.

• error

The within-cluster sum of distances for the optimal clustering solution.

• nfound

The number of times the optimal solution was found.

8.1.2 k-medoids clustering: kmedoids

clusterid, error, nfound = kmedoids(distance, nclusters=2, npass=1,

initialid=None)

implements the k -medoids clustering algorithm.
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Arguments

• distance

The matrix containing the distances between the elements. You can specify the distance
matrix in three ways:

• as a 2D Numerical Python array (in which only the left-lower part of the array
will be accessed):
distance = array([[0.0, 1.1, 2.3],

[1.1, 0.0, 4.5],

[2.3, 4.5, 0.0]])

• as a 1D Numerical Python array containing consecutively the distances in the left-
lower part of the distance matrix:
distance = array([1.1, 2.3, 4.5])

• as a list containing the rows of the left-lower part of the distance matrix:
distance = [array([]),

array([1.1]),

array([2.3, 4.5])

]

These three expressions correspond to the same distance matrix.

• nclusters

The number of clusters k.

• npass

The number of times the k -medoids clustering algorithm is performed, each time with
a different (random) initial condition. If initialid is given, the value of npass is
ignored, as the clustering algorithm behaves deterministically in that case.

• initialid

Specifies the initial clustering to be used for the EM algorithm. If initialid is None,
then a different random initial clustering is used for each of the npass runs of the EM
algorithm. If initialid is not None, then it should be equal to a 1D array containing
the cluster number (between 0 and nclusters-1) for each item. Each cluster should
contain at least one item. With the initial clustering specified, the EM algorithm is
deterministic.

Return values

This function returns a tuple (clusterid, error, nfound).

• clusterid

An array containing the number of the cluster to which each item was assigned, where
the cluster number is defined as the item number of the item representing the cluster
centroid.

• error

The within-cluster sum of distances for the optimal k -medoids clustering solution.

• nfound

The number of times the optimal solution was found.
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8.2 Hierarchical clustering

The pairwise single-, maximum-, average-, and centroid-linkage clustering methods are ac-
cessible through the function treecluster. The hierarchical clustering routines can be
applied either on the original gene expression data, or (except for centroid-linkage cluster-
ing) on the distance matrix directly. The tree structure generated by treecluster can be
cut in order to separate the elements into a given number of clusters.

8.2.1 Representing a hierarchical clustering solution

A hierarchical clustering solution is represented using two Python classes: Node and Tree.

The class Node

The Python class Node corresponds to the C struct Node described above. A Node object
has three attributes:

• left

• right

• distance

Here, left and right are integers referring to the two items or subnodes that are joined
at this node, and distance is the distance between them. The items being clustered are
numbered from 0 to (number of items - 1), while clusters are numbered -1 to -(number

of items-1).

To create a new Node object, we need to specify left and right; distance is optional.

>>> from Pycluster import *

>>> Node(2,3)

(2, 3): 0

>>> Node(2,3,0.91)

(2, 3): 0.91

The attributes left, right, and distance of an existing Node object can be modified
directly:

>>> node = Node(4,5)

>>> node.left = 6

>>> node.right = 2

>>> node.distance = 0.73

>>> node

(6, 2): 0.73

An error is raised if left and right are not integers, or if distance cannot be converted
to a floating-point value.

The class Tree

The Python class Tree represents a full hierarchical clustering solution. A Tree object can
be created from a list of Node objects:

>>> nodes = [Node(1,2,0.2), Node(0,3,0.5), Node(-2,4,0.6), Node(-1,-3,0.9)]

>>> tree = Tree(nodes)

>>> print tree

(1, 2): 0.2
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(0, 3): 0.5

(-2, 4): 0.6

(-1, -3): 0.9

The Tree initializer checks if the list of nodes is a valid hierarchical clustering result:

>>> nodes = [Node(1,2,0.2), Node(0,2,0.5)]

>>> Tree(nodes)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

cluster.error: Inconsistent tree

Individual nodes in a Tree object can be accessed using square brackets:

>>> nodes = [Node(1,2,0.2), Node(0,-1,0.5)]

>>> tree = Tree(nodes)

>>> tree[0]

(1, 2): 0.2

>>> tree[1]

(0, -1): 0.5

>>> tree[-1]

(0, -1): 0.5

As a Tree object is immutable, we cannot change individual nodes in a Tree object. How-
ever, we can convert the tree to a list of nodes, modify this list, and create a new tree from
this list:

>>> tree = Tree([Node(1,2,0.1), Node(0,-1,0.5), Node(-2,3,0.9)])

>>> print tree

(1, 2): 0.1

(0, -1): 0.5

(-2, 3): 0.9

>>> nodes = tree[:]

>>> nodes[0] = Node(0,1,0.2)

>>> nodes[1].left = 2

>>> tree = Tree(nodes)

>>> print tree

(0, 1): 0.2

(2, -1): 0.5

(-2, 3): 0.9

This guarantees that any Tree object is always well-formed.

A Tree object has two methods (scale and cut, described below). The treecluster

function returns Tree objects.

8.2.2 Performing hierarchical clustering: treecluster

tree = treecluster(data=None, mask=None, weight=None, transpose=False,

method=’m’, dist=’e’, distancematrix=None)

implements the hierachical clustering methods.
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Arguments

• data

Array containing the gene expression data, where genes are stored row-wise and mi-
croarray experiments column-wise. Either data or distancematrix should be None.

• mask

Array of integers showing which data are missing. If mask[i, j] == 0, then data[i,

j] is missing. If mask is None, then there are no missing data.

• weight

contains the weights to be used when calculating distances. If weight is None, then
equal weights are assumed.

• transpose

Determines if genes or microarrays are being clustered. If transpose is False, genes
(rows) are being clustered. If transpose is True, microarrays (columns) are clustered.

• method

defines the linkage method to be used:

• method == ’s’: pairwise single-linkage clustering

• method == ’m’: pairwise maximum- (or complete-) linkage clustering

• method == ’c’: pairwise centroid-linkage clustering

• method == ’a’: pairwise average-linkage clustering

• dist

defines the distance function to be used:

• dist == ’c’: correlation;

• dist == ’a’: absolute value of the correlation;

• dist == ’u’: uncentered correlation;

• dist == ’x’: absolute uncentered correlation;

• dist == ’s’: Spearman’s rank correlation;

• dist == ’k’: Kendall’s τ ;

• dist == ’e’: Euclidean distance;

• dist == ’b’: City-block distance.

• distancematrix

The distance matrix. Either data or distancematrix should be None. If data is None
and distancematrix is given, the arguments mask, weights, transpose, and dist are
ignored. Note that pairwise single-, maximum-, and average-linkage clustering can be
calculated from the distance matrix, but pairwise centroid-linkage cannot.

If not None, distancematrix should correspond to a distance matrix, which can be
specified in three ways:

• as a 2D Numerical Python array (in which only the left-lower part of the array
will be accessed):
distance = array([[0.0, 1.1, 2.3],

[1.1, 0.0, 4.5],

[2.3, 4.5, 0.0]])
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• as a 1D Numerical Python array containing consecutively the distances in the left-
lower part of the distance matrix:
distance = array([1.1, 2.3, 4.5])

• as a list containing the rows of the left-lower part of the distance matrix:
distance = [array([]),

array([1.1]),

array([2.3, 4.5])

]

These three expressions correspond to the same distance matrix. As treecluster may
shuffle the values in the distance matrix as part of the clustering algorithm, be sure to
save this array in a different variable before calling treecluster if you need it later.

Return values

This function returns a Tree object. This object contains number of items - 1 nodes,
where the number of items is the number of genes if genes were clustered, or the number
of microarrays if microarrays were clustered. Each node describes a pairwise linking event,
where the node attributes left and right each contain the number of one gene/microarray
or subnode, and distance the distance between them. Genes/microarrays are numbered
from 0 to (number of items - 1), while clusters are numbered -1 to -(number of items-

1).

8.2.3 Scaling a hierarchical clustering tree: tree.scale

To display a hierarchical clustering solution with Java TreeView, it is better to scale all
node distances such that they are between zero and one. This can be accomplished by
calling the scale method on an existing Tree object.

tree.scale()

scales the distances in the hierarchical clustering tree such that they are all between zero
and one. This function takes no arguments, and returns None.

8.2.4 Sorting a hierarchical clustering tree: tree.sort

indices = tree.sort(order)

sorts the hierarchical clustering tree such that the elements tend to increase in the order
value from left to right in the dendrogram, where the order value of each element is specified
by the user. This is accomplished by visting each node in the hierarchical clustering tree,
verifying if the average order value of the left node is less than or equal to the average
order value of the right node, and switching the left and right node otherwise. The method
returns the indices of the elements in the left-to-right order after sorting.

Arguments

• tree

The Tree object tree contains the hierarchical clustering result generated by
treecluster.

• order

The order values of the elements. If order is None, the tree is not reordered, and the
indices of the current tree are calculated.
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Return values

This function returns the array indices.

• indices

An array indicating the order of the elements in the dendogram after sorting, with
element indices[i] occurring at position i in the left-to-right order in the dendogram.

8.2.5 Cutting a hierarchical clustering tree: tree.cut

clusterid = tree.cut([nclusters])

groups the items into nclusters clusters based on the tree structure generated by the
hierarchical clustering routine treecluster.

Arguments

• tree

The Tree object tree contains the hierarchical clustering result generated by
treecluster.

• nclusters

The desired number of clusters. If specified, nclusters should be positive, and less
than or equal to the number of elements. If nclusters is not specified, the number of
elements is used as the default value.

Return values

This function returns the array clusterid.

• clusterid

An array containing the number of the cluster to which each gene/microarray is as-
signed. Clusters are numbered from 0 through nclusters-1 in the left-to-right order
in which they appear in the hierarchical clustering tree.

8.3 Self-Organizing Maps: somcluster

clusterid, celldata = somcluster(data, mask=None, weight=None, transpose=False,

nxgrid=2, nygrid=1, inittau=0.02, niter=1, dist=’e’)

implements a Self-Organizing Map on a rectangular grid.

Arguments

• data

Array containing the gene expression data, where genes are stored row-wise and mi-
croarray experiments column-wise.

• mask

Array of integers showing which data are missing. If mask[i, j] == 0, then data[i,

j] is missing. If mask is None, then there are no missing data.

• weight

contains the weights to be used when calculating distances. If weight is None, then
equal weights are assumed.

• transpose

Determines if genes or microarrays are being clustered. If transpose is False, genes
(rows) are being clustered. If transpose is True, microarrays (columns) are clustered.
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• nxgrid, nygrid

The number of cells horizontally and vertically in the rectangular grid, on which the
Self-Organizing Map is calculated.

• inittau

The initial value for the parameter τ that is used in the SOM algorithm. The default
value for inittau is 0.02, which was used in Michael Eisen’s Cluster/TreeView program.

• niter

The number of iterations to be performed.

• dist

defines the distance function to be used:

• dist == ’c’: correlation;

• dist == ’a’: absolute value of the correlation;

• dist == ’u’: uncentered correlation;

• dist == ’x’: absolute uncentered correlation;

• dist == ’s’: Spearman’s rank correlation;

• dist == ’k’: Kendall’s τ ;

• dist == ’e’: Euclidean distance;

• dist == ’b’: City-block distance.

Return values

This function returns the tuple clusterid, celldata.

• clusterid

An array with two columns, where the number of rows is equal to the number of genes
or the number of microarrays depending on whether genes or microarrays are being
clustered. Each row contains the x and y coordinates of the cell in the rectangular
SOM grid to which the gene or microarray was assigned.

• celldata

An array with dimensions (nxgrid, nygrid, number of microarrays) if genes are being
clustered, or (nxgrid, nygrid, number of genes) if microarrays are being clustered.
Each element [ix][iy] of this array is a 1D vector containing the gene expression
data for the centroid of the cluster in the grid cell with coordinates (ix,iy).

8.4 Finding the cluster centroids: clustercentroids

cdata, cmask = clustercentroids(data, mask=None, clusterid=None, method=’a’,

transpose=False)

calculates the cluster centroids.

Arguments

• data

Array containing the gene expression data, where genes are stored row-wise and mi-
croarray experiments column-wise.

• mask

Array of integers showing which data are missing. If mask[i, j] == 0, then data[i,

j] is missing. If mask is None, then there are no missing data.
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• clusterid

Vector of integers showing to which cluster each element belongs. If clusterid is not
given, then all elements are assumed to belong to the same cluster.

• method

Specifies whether the arithmetic mean (method == ’a’) or the median (method == ’m’)
is used to calculate the cluster center.

• transpose

Determines if gene or microarray clusters are being considered. If transpose is False,
then we are considering clusters of genes (rows). If transpose is True, then we are
considering clusters of microarrays (columns).

Return values

This function returns the tuple cdata, cmask.

• cdata

A 2D array containing the centroid data. The dimensions of this array are (number

of clusters, number of microarrays) if genes were clustered, or (number of genes,

number of clusters) if microarrays were clustered. Each row (if genes were clustered)
or column (if microarrays were clustered) contains the averaged gene expression data
for corresponding to the centroid of one cluster that was found.

• cmask

This matrix stores which values in cdata are missing. If cmask[i, j] == 0, then
cdata[i, j] is missing. The dimensions of this array are (number of clusters,

number of microarrays) if genes were clustered, or (number of genes, number of

clusters) if microarrays were clustered.

8.5 The distance between two clusters: clusterdistance

distance = clusterdistance(data, mask=None, weight=None, index1=0, index2=0,

method=’a’, dist=’e’, transpose=False)

calculates the distance between two clusters.

Arguments

• data

Array containing the gene expression data, where genes are stored row-wise and mi-
croarray experiments column-wise.

• mask

Array of integers showing which data are missing. If mask[i, j] == 0, then data[i,

j] is missing. If mask is None, then there are no missing data.

• weight

contains the weights to be used when calculating distances. If weight is None, then
equal weights are assumed.

• index1

is a list containing the indices of the elements belonging to the first cluster. A cluster
containing only one element i can be represented as either a list [i], or as an integer
i.



Chapter 8: Using the C Clustering Library with Python: Pycluster and Bio.Cluster 38

• index2

is a list containing the indices of the elements belonging to the second cluster. A cluster
containing only one element i can be represented as either a list [i], or as an integer
i.

• method

Specifies how the distance between clusters is defined:

• method == ’a’: Distance between the two cluster centroids (arithmetic mean);

• method == ’m’: Distance between the two cluster centroids (median);

• method == ’s’: Shortest pairwise distance between elements in the two clusters;

• method == ’x’: Longest pairwise distance between elements in the two clusters;

• method == ’v’: Average over the pairwise distances between elements in the two
clusters.

• dist

defines the distance function to be used:

• dist == ’c’: correlation;

• dist == ’a’: absolute value of the correlation;

• dist == ’u’: uncentered correlation;

• dist == ’x’: absolute uncentered correlation;

• dist == ’s’: Spearman’s rank correlation;

• dist == ’k’: Kendall’s τ ;

• dist == ’e’: Euclidean distance;

• dist == ’b’: City-block distance.

• transpose

Determines if gene or microarray clusters are being considered. If transpose is False,
then we are considering clusters of genes (rows). If transpose is True, then we are
considering clusters of microarrays (columns).

Return values

This function returns the distance between the two clusters.

8.6 Calculating the distance matrix: distancematrix

matrix = distancematrix(data, mask=None, weight=None, transpose=False,

dist=’e’)

returns the distance matrix between gene expression data.

Arguments

• data

Array containing the gene expression data, where genes are stored row-wise and mi-
croarray experiments column-wise.

• mask

Array of integers showing which data are missing. If mask[i, j]==0, then data[i, j]

is missing. If mask is None, then there are no missing data.
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• weight

contains the weights to be used when calculating distances. If weight is None, then
equal weights are assumed.

• transpose

Determines if genes or microarrays are being clustered. If transpose is False, genes
(rows) are being clustered. If transpose is True, microarrays (columns) are clustered.

• dist

defines the distance function to be used:

• dist == ’c’: correlation;

• dist == ’a’: absolute value of the correlation;

• dist == ’u’: uncentered correlation;

• dist == ’x’: absolute uncentered correlation;

• dist == ’s’: Spearman’s rank correlation;

• dist == ’k’: Kendall’s τ ;

• dist == ’e’: Euclidean distance;

• dist == ’b’: City-block distance.

Return values

• matrix is a list of 1D arrays containing the distance matrix between the gene expression
data. The number of columns in each row is equal to the row number. Hence, the first
row has zero elements. An example of the return value is
matrix = [array([]),

array([1.]),

array([7., 3.]),

array([4., 2., 6.])]

This corresponds to the distance matrix









0 1 7 4
1 0 3 2
7 3 0 6
4 2 6 0









8.7 Principal Component Analysis: pca

columnmean, coordinates, components, eigenvalues = pca(data)

applies Principal Component Analysis to the rectangular matrix data.

Arguments

• data

Array containing the data to which the Principal Component Analysis is to be applied.

Return values

The function returns a tuple columnmean, coordinates, components, eigenvalues.

• columnmean

Array containing the mean over each column in data.
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• coordinates

The coordinates of each row in data with respect to the principal components.

• components

The principal components.

• eigenvalues

The eigenvalues corresponding to each of the principal components.

The original matrix data can be recreated by calculating columnmean +

dot(coordinates, components).

8.8 Handling Cluster/TreeView-type files

Cluster/TreeView are GUI-based codes for clustering gene expression data. They were
originally written by Michael Eisen (http://rana.lbl.gov) while at Stanford Univer-
sity. Pycluster contains functions for reading and writing data files that correspond to the
format specified for Cluster/TreeView. In particular, by saving a clustering result in that
format, TreeView can be used to visualize the clustering results. We recommend using Alok
Saldanha’s Java TreeView program (http://jtreeview.sourceforge.net/), which can
display hierarchical as well as k -means clustering results.

8.8.1 The Record class

An object of the class Record contains all information stored in a Cluster/TreeView-type
data file. To store the information contained in the data file in a Record object, we first
open the file and then read it:

>>> import Pycluster

>>> handle = open("mydatafile.txt")

>>> record = Pycluster.read(handle)

This two-step process gives you some flexibility in the source of the data. For example,
you can use

>>> import gzip # Python standard library

>>> handle = gzip.open("mydatafile.txt.gz")

to open a gzipped file, or

>>> import urllib # Python standard library

>>> handle = urllib.urlopen("http://somewhere.org/mydatafile.txt")

to open a file stored on the Internet before calling read.

If you’re using the C Clustering Library from Biopython, you should use:

>>> from Bio import Cluster

>>> record = Cluster.read(handle)

The read command reads the tab-delimited text file mydatafile.txt containing gene
expression data in the format specified for Michael Eisen’s Cluster/TreeView program. For
a description of this file format, see the manual to Cluster/TreeView. It is available at
Michael Eisen’s lab website (http://rana.lbl.gov/manuals/ClusterTreeView.pdf) and
at our website (http://bonsai.hgc.jp/~mdehoon/software/cluster/cluster3.pdf).

A Record object stores the following information:
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• data

The data array containing the gene expression data. Genes are stored row-wise, while
microarrays are stored column-wise.

• mask

This array shows which elements in the data array, if any, are missing. If mask[i, j]

== 0, then data[i, j] is missing. If no data were found to be missing, mask is set to
None.

• geneid

This is a list containing a unique description for each gene (i.e., ORF numbers).

• genename

This is a list containing a description for each gene (i.e., gene name). If not present in
the data file, genename is set to None.

• gweight

The weights that are to be used to calculate the distance in expression profile between
genes. If not present in the data file, gweight is set to None.

• gorder

The preferred order in which genes should be stored in an output file. If not present
in the data file, gorder is set to None.

• expid

This is a list containing a description of each microarray, e.g. experimental condition.

• eweight

The weights that are to be used to calculate the distance in expression profile between
microarrays. If not present in the data file, eweight is set to None.

• eorder

The preferred order in which microarrays should be stored in an output file. If not
present in the data file, eorder is set to None.

• uniqid

The string that was used instead of UNIQID in the data file.

After loading a Record object, each of these attributes can be accessed and modi-
fied directly. For example, the data can be log-transformed by taking the logarithm of
record.data.

8.8.2 Performing hierarchical clustering

tree = record.treecluster(transpose=False, method=’m’, dist=’e’)

applies hierachical clustering to the data contained in the Record object.

Arguments

• transpose

Determines if genes or microarrays are being clustered. If transpose is False, genes
(rows) are being clustered. If transpose is True, microarrays (columns) are clustered.

• method

defines the linkage method to be used:

• method == ’s’: pairwise single-linkage clustering

• method == ’m’: pairwise maximum- (or complete-) linkage clustering
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• method == ’c’: pairwise centroid-linkage clustering

• method == ’a’: pairwise average-linkage clustering

• dist

defines the distance function to be used:

• dist == ’c’: correlation;

• dist == ’a’: absolute value of the correlation;

• dist == ’u’: uncentered correlation;

• dist == ’x’: absolute uncentered correlation;

• dist == ’s’: Spearman’s rank correlation;

• dist == ’k’: Kendall’s τ ;

• dist == ’e’: Euclidean distance;

• dist == ’b’: City-block distance.

Return values

This method returns a Tree object containing number of items - 1 nodes, where the num-
ber of items is the number of genes if genes were clustered, or the number of microarrays if
microarrays were clustered. Each node describes a pairwise linking event, where the node
attributes left and right each contain the number of one gene/microarray or subnode, and
distance the distance between them. Genes/microarrays are numbered from 0 to (number

of items - 1), while clusters are numbered -1 to -(number of items-1).

8.8.3 Performing k-means or k-medians clustering

clusterid, error, nfound = record.kcluster(nclusters=2, transpose=False,

npass=1, method=’a’, dist=’e’, initialid=None)

applies k -means or k -medians clustering to the data contained in the Record object.

Arguments

• nclusters

The number of clusters k.

• transpose

Determines if genes or microarrays are being clustered. If transpose is False, genes
(rows) are being clustered. If transpose is True, microarrays (columns) are clustered.

• npass

The number of times the k -means clustering algorithm is performed, each time with
a different (random) initial condition. If initialid is given, the value of npass is
ignored and the clustering algorithm is run only once, as it behaves deterministically
in that case.

• method

describes how the center of a cluster is found:

• method == ’a’: arithmetic mean;

• method == ’m’: median.

For other values of method, the arithmetic mean is used.
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• dist

defines the distance function to be used:

• dist == ’c’: correlation;

• dist == ’a’: absolute value of the correlation;

• dist == ’u’: uncentered correlation;

• dist == ’x’: absolute uncentered correlation;

• dist == ’s’: Spearman’s rank correlation;

• dist == ’k’: Kendall’s τ ;

• dist == ’e’: Euclidean distance;

• dist == ’b’: City-block distance.

• initialid

Specifies the initial clustering to be used for the EM algorithm. If initialid is None,
then a different random initial clustering is used for each of the npass runs of the EM
algorithm. If initialid is not None, then it should be equal to a 1D array containing
the cluster number (between 0 and nclusters-1) for each item. Each cluster should
contain at least one item. With the initial clustering specified, the EM algorithm is
deterministic.

Return values

This function returns a tuple (clusterid, error, nfound).

• clusterid

An array containing the number of the cluster to which each gene/microarray was
assigned.

• error

The within-cluster sum of distances for the optimal clustering solution.

• nfound

The number of times the optimal solution was found.

8.8.4 Calculating a Self-Organizing Map

clusterid, celldata = record.somcluster(transpose=False, nxgrid=2, nygrid=1,

inittau=0.02, niter=1, dist=’e’)

calculates a Self-Organizing Map on a rectangular grid, using the gene expression data in
the Record object record.

Arguments

• transpose

Determines if genes or microarrays are being clustered. If transpose is False, genes
(rows) are being clustered. If transpose is True, microarrays (columns) are clustered.

• nxgrid, nygrid

The number of cells horizontally and vertically in the rectangular grid, on which the
Self-Organizing Map is calculated.

• inittau

The initial value for the parameter τ that is used in the SOM algorithm. The default
value for inittau is 0.02, which was used in Michael Eisen’s Cluster/TreeView program.
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• niter

The number of iterations to be performed.

• dist

defines the distance function to be used:

• dist == ’c’: correlation;

• dist == ’a’: absolute value of the correlation;

• dist == ’u’: uncentered correlation;

• dist == ’x’: absolute uncentered correlation;

• dist == ’s’: Spearman’s rank correlation;

• dist == ’k’: Kendall’s τ ;

• dist == ’e’: Euclidean distance;

• dist == ’b’: City-block distance.

Return values

This function returns the tuple clusterid, celldata.

• clusterid

An array with two columns, where the number of rows is equal to the number of genes
or the number of microarrays depending on whether genes or microarrays are being
clustered. Each row contains the x and y coordinates of the cell in the rectangular
SOM grid to which the gene or microarray was assigned.

• celldata

An array with dimensions (nxgrid, nygrid, number of microarrays) if genes are being
clustered, or (nxgrid, nygrid, number of genes) if microarrays are being clustered.
Each element [ix][iy] of this array is a 1D vector containing the gene expression
data for the centroid of the cluster in the grid cell with coordinates (ix,iy).

8.8.5 Finding the cluster centroid

cdata, cmask = record.clustercentroids(clusterid=None, method=’a’,

transpose=False)

calculates the cluster centroids.

Arguments

• clusterid

Vector of integers showing to which cluster each element belongs. If clusterid is not
given, then all elements are assumed to belong to the same cluster.

• method

Specifies whether the arithmetic mean (method == ’a’) or the median (method == ’m’)
is used to calculate the cluster center.

• transpose

Determines if gene or microarray clusters are being considered. If transpose is False,
then we are considering clusters of genes (rows). If transpose is True, then we are
considering clusters of microarrays (columns).
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Return values

This function returns the tuple cdata, cmask.

• cdata

A 2D array containing the centroid data. The dimensions of this array are (number

of clusters, number of microarrays) if genes were clustered, or (number of genes,

number of clusters) if microarrays were clustered. Each row (if genes were clustered)
or column (if microarrays were clustered) contains the averaged gene expression data
for corresponding to the centroid of one cluster that was found.

• cmask

This matrix stores which values in cdata are missing. If cmask[i, j] == 0, then
cdata[i, j] is missing. The dimensions of this array are (number of clusters,

number of microarrays) if genes were clustered, or (number of genes, number of

clusters) if microarrays were clustered.

8.8.6 Calculating the distance between two clusters

distance = record.clusterdistance(index1=0, index2=0, method=’a’, dist=’e’,

transpose=False)

calculates the distance between two clusters.

Arguments

• index1

is a list containing the indices of the elements belonging to the first cluster. A cluster
containing only one element i can be represented as either a list [i], or as an integer
i.

• index2

is a list containing the indices of the elements belonging to the second cluster. A cluster
containing only one element i can be represented as either a list [i], or as an integer
i.

• method

Specifies how the distance between clusters is defined:

• method == ’a’: Distance between the two cluster centroids (arithmetic mean);

• method == ’m’: Distance between the two cluster centroids (median);

• method == ’s’: Shortest pairwise distance between elements in the two clusters;

• method == ’x’: Longest pairwise distance between elements in the two clusters;

• method == ’v’: Average over the pairwise distances between elements in the two
clusters.

• dist

defines the distance function to be used:

• dist == ’c’: correlation;

• dist == ’a’: absolute value of the correlation;

• dist == ’u’: uncentered correlation;

• dist == ’x’: absolute uncentered correlation;

• dist == ’s’: Spearman’s rank correlation;
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• dist == ’k’: Kendall’s τ ;

• dist == ’e’: Euclidean distance;

• dist == ’b’: City-block distance.

• transpose

Determines if gene or microarray clusters are being considered. If transpose is False,
then we are considering clusters of genes (rows). If transpose is True, then we are
considering clusters of microarrays (columns).

Return values

This function returns the distance between the two clusters.

8.8.7 Calculating the distance matrix

matrix = record.distancematrix(transpose=False, dist=’e’)

returns the distance matrix between gene expression data.

Arguments

• transpose

Determines if genes or microarrays are being clustered. If transpose is False, genes
(rows) are being clustered. If transpose is True, microarrays (columns) are clustered.

• dist

defines the distance function to be used:

• dist == ’c’: correlation;

• dist == ’a’: absolute value of the correlation;

• dist == ’u’: uncentered correlation;

• dist == ’x’: absolute uncentered correlation;

• dist == ’s’: Spearman’s rank correlation;

• dist == ’k’: Kendall’s τ ;

• dist == ’e’: Euclidean distance;

• dist == ’b’: City-block distance.

Return values

• matrix is a list of 1D arrays containing the distance matrix between the gene expression
data. The number of columns in each row is equal to the row number. Hence, the first
row has zero elements. An example of the return value is
matrix = [array([]),

array([1.]),

array([7., 3.]),

array([4., 2., 6.])]

This corresponds to the distance matrix









0 1 7 4
1 0 3 2
7 3 0 6
4 2 6 0






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8.8.8 Saving the clustering result

record.save(jobname, geneclusters, expclusters)

writes the text file jobname.cdt, jobname.gtr, jobname.atr, jobname*.kgg, and/or job-
name*.kag for subsequent reading by the Java TreeView program. If geneclusters and
expclusters are both None, this method only writes the text file jobname.cdt; this file
can subsequently be read into a new Record object.

Arguments

• jobname

The string jobname is used as the base name for names of the files that are to be saved.

• geneclusters

This argument describes the gene clustering result. In case of k -means clustering, this
is a 1D array containing the number of the cluster each gene belongs to. It can be
calculated using kcluster. In case of hierarchical clustering, geneclusters is a Tree

object.

• expclusters

This argument describes the clustering result for the experimental conditions. In case
of k -means clustering, this is a 1D array containing the number of the cluster each
experimental condition belongs to. It can be calculated using kcluster. In case of
hierarchical clustering, expclusters is a Tree object.

8.8.9 Example calculation

This is an example of a hierarchical clustering calculation, using single linkage clustering
for genes and maximum linkage clustering for experimental conditions. As the Euclidean
distance is being used for gene clustering, it is necessary to scale the node distances genetree
such that they are all between zero and one. This is needed for the Java TreeView code to
display the tree diagram correctly. To cluster the experimental conditions, the uncentered
correlation is being used. No scaling is needed in this case, as the distances in exptree

are already between zero and two. The example data cyano.txt can be found in the data
subdirectory.

>>> from Pycluster import *

>>> handle = open("cyano.txt")

>>> record = read(handle)

>>> genetree = record.treecluster(method=’s’)

>>> genetree.scale()

>>> exptree = record.treecluster(dist=’u’, transpose=True)

>>> record.save("cyano_result", genetree, exptree)

This will create the files cyano_result.cdt, cyano_result.gtr, and cyano_result.atr.

Similarly, we can save a k -means clustering solution:

>>> from Pycluster import *

>>> handle = open("cyano.txt")

>>> record = read(handle)

>>> (geneclusters, error, ifound) = record.kcluster(nclusters=5, npass=1000)

>>> (expclusters, error, ifound) = record.kcluster(nclusters=2, npass=100,
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transpose=True)

>>> record.save("cyano_result", geneclusters, expclusters)

This will create the files cyano_result_K_G2_A2.cdt, cyano_result_K_G2.kgg, and
cyano_result_K_A2.kag.
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9 Using the C Clustering Library with Perl:
Algorithm::Cluster

Algorithm::Cluster is a Perl wrapper extension of the C Clustering Library written by John
Nolan of the University of California, Santa Cruz.

Algorithm::Cluster requires Perl 5.6.0 at a minimum. It will not compile properly with
5.005 03 or previous versions or Perl. It has been tested on Win32, Mac OS X, Linux,
OpenBSD and Solaris.

To install Algorithm::Cluster on UNIX, Linux, Mac OS X, or Cygwin, you can download
the source code from http://bonsai.hgc.jp/~mdehoon/software/cluster. You will need
an ANSI C compiler; GNU’s free gcc compiler will do. Unpack the distribution and type
the following familiar commands to compile, test and install the module:
perl Makefile.PL

make

make test

make install

You can also use the CPAN shell from within Perl to download the module and install it.

Algorithm::Cluster offers the following functions:

• kcluster

• kmedoids

• treecluster

• somcluster

• clustercentroids

• clusterdistance

• distancematrix

• pca

• mean

• median

You can also use Algorithm::Cluster to read expression data files and to write the clus-
tering solution to a file; see below for details.

9.1 Using named parameters

Most of the interface functions in Algorithm::Cluster expect named parameters. This is
implemented by passing a hash as a parameter to the function. For example, if a Perl
function sign_up() accepts three named parameters, name, program and class, then you
can invoke the function like this:

$return_value = sign_up(

’name’ => ’Mr. Smith’,

’program’ => ’Biology’,

’class’ => ’Intro to Molecular Biology’,

);

When the function parses its parameters, it will create a hash, on the fly, with three
keys. The function can access the values by referring to the hash.
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This is convenient for several reasons. First, it means that you can pass the parameters
in any order. Both invocations below are valid:

$return_value = sign _up(

’class’ => ’Intro to Molecular Biology’,

’name’ => ’Ms. Jones’,

’program’ => ’Biology’,

);

$return_value = sign _up(

’name’ => ’Miss Chen’,

’program’ => ’Biology’,

’class’ => ’Intro to Molecular Biology’,

);

If the function defines default values for parameters, you can also leave some parameters
out, and the function will still know which parameter is which:

$return_value = sign_up(

’name’ => ’Ms. Jones’,

);

You can define the hash on your own, and pass this to the function. This is useful if your
function accepts a long list of parameters, and you intend to call it several times, (mostly)
reusing the same values. You can implement your own defaults:

%student = (

’name’ => ’Mr. Smith’,

’program’ => ’Biology’,

’class’ => ’Intro to Molecular Biology’,

);

$return_value = sign_up(%student);

$hash{student} = ’Ms. Jones’;

$return_value = sign_up(%student);

$hash{student} = ’Miss Chen’;

$return_value = sign_up(%student);

9.2 References to arrays, and two-dimensional matrices

Perl implements two-dimensional matrices using references. For example, a reference to a
one-dimensional array (a row) can be defined like this:

$row = [ 1, 2 ];

In this example, $row itself is not an array, but a reference to the array (1, 2). (The
square brackets indicate that we want to create a reference.) $row->[0] equals 1 and
$row->[1] equals 2. A 3× 2 matrix of integers can be defined like this:
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$row0 = [ 1, 2 ];

$row1 = [ 3, 4 ];

$row2 = [ 5, 6 ];

$data = [ $row0, $row1, $row2 ];

Or, more succinctly:

$data = [

[ 1, 2 ],

[ 3, 4 ],

[ 5, 6 ],

];

In this example, $data->[0]->[1] equals 2, while $data->[2]->[0] equals 5.

Many of the functions available in Algorithm::Cluster expect data to be in the form of
a two dimensional array, like the example above. Some functions also return references to
data structures like this.

9.3 Partitioning algorithms

9.3.1 The k-means clustering algorithm: kcluster

The function kcluster() implements the k -means clustering algorithm. In the example
invocation below, we have created $param{data} as an empty matrix, because that is the
default value, but you must populate $param{data} with real data, in order to invoke
kcluster() properly.

my %param = (

nclusters => 2,

data => [[]],

mask => ’’,

weight => ’’,

transpose => 0,

npass => 10,

method => ’a’,

dist => ’e’,

initialid => [],

);

my ($clusters, $error, $found) = kcluster(%param);

Arguments

• data

A reference to a two-dimensional matrix containing the gene expression data, where
genes are stored row-wise and microarray experiments column-wise.
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• nclusters

The number of clusters k.

• mask

A reference to a two-dimensional matrix of integers showing which data are missing. If
$param{mask}->[i]->[j]==0, then $param{data}->[i]->[j] is missing. If mask is
’’ (i.e., the null string, and not a reference at all), then there are no missing data.

• weight

A reference to an array containing the weights to be used when calculating distances. If
weight equals ’’ (i.e., the null string, and not a reference at all), then equal weights are
assumed. If transpose==0, the length of this array must equal the number of columns
in the data matrix. If transpose==1, the length of the weight array should equal the
number of rows in the data matrix. If weight has a different length, the entire array
will be ignored.

• transpose

Determines if genes or microarrays are being clustered. If $param{transpose}==0,
genes (rows) are being clustered. If $param{transpose}==1, microarrays (columns)
are clustered.

• npass

The number of times the k -means clustering algorithm is performed, each time with a
different (random) initial condition. If the argument initialid is given, the value of
npass is ignored and the clustering algorithm is run only once, as it behaves determin-
istically in that case.

• method

A one-character flag, indicating how the center of a cluster is found:

• ’a’: arithmetic mean

• ’m’: median

For any other values of method, the arithmetic mean is used.

• dist

A one-character flag, defining the distance function to be used:

• ’c’: correlation

• ’a’: absolute value of the correlation

• ’u’: uncentered correlation

• ’x’: absolute uncentered correlation

• ’s’: Spearman’s rank correlation

• ’k’: Kendall’s τ ;

• ’e’: Euclidean distance

• ’b’: City-block distance

For other values of dist, the default (Euclidean distance) is used.

• initialid

An optional parameter defining the initial clustering to be used for the EM algorithm.
If initialid is not specified, then a different random initial clustering is used for each
of the npass runs of the EM algorithm. If initialid is specified, then it should be
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equal to a 1D array containing the cluster number (between 0 and nclusters-1) for
each item. Each cluster should contain at least one item. With the initial clustering
specified, the EM algorithm is deterministic.

Return values

This function returns a list of three items: $clusterid, $error, $nfound.

• $clusterid

A reference to an array with a length equal to the number of rows in the data array.
Each element in the clusterid array contains the number of the cluster to which each
gene/microarray was assigned.

• $error

The within-cluster sum of distances of the optimal clustering solution that was found.

• $nfound

The number of times the optimal solution was found.

9.3.2 The k-medoids algorithm: kmedoids

The function kmedoids() implements the k -means clustering algorithm. In the example
invocation below, we have created the distance matrix $param{distances} as an empty
matrix, because that is the default value, but you must populate $param{distances} with
real data, in order to invoke kmedoids() properly.

my %param = (

nclusters => 2,

distances => [[]],

npass => 10,

initialid => [],

);

my ($clusters, $error, $found) = kmedoids(%param);

Arguments

• nclusters

The number of clusters k.

• distances

A list containing the distance matrix between the elements. An example of a distance
matrix is:
$distances = [[], [1.1], [1.0, 4.5], [2.3, 1.8, 6.1]];

• npass

The number of times the k -medoids clustering algorithm is performed, each time with
a different (random) initial condition. If initialid is given, the value of npass is
ignored, as the clustering algorithm behaves deterministically in that case.

• initialid

Specifies the initial clustering to be used for the EM algorithm. If initialid is not
specified, then a different random initial clustering is used for each of the npass runs
of the EM algorithm. If initialid is specified, then it should be equal to a 1D array



Chapter 9: Using the C Clustering Library with Perl: Algorithm::Cluster 54

containing the cluster number (between 0 and nclusters-1) for each item. Each
cluster should contain at least one item. With the initial clustering specified, the EM
algorithm is deterministic.

Return values

This function returns a list of three items: $clusterid, $error, $nfound.

• $clusterid

$clusterid is a reference to an array with a length equal to the number of rows of
the distance matrix. Each element in the clusterid array contains the number of the
cluster to which each gene/microarray was assigned. The cluster number is defined as
the number of the gene/microarray that is the centroid of the cluster.

• $error

$error is the within-cluster sum of distances of the optimal clustering solution that
was found.

• $nfound

$nfound is the number of times the optimal solution was found.

9.4 Hierarchical clustering: treecluster

The pairwise single-, maximum-, average-, and centroid-linkage clustering methods are ac-
cessible through the function treecluster. The hierarchical clustering routines can be
applied either on the original gene expression data, or (except for centroid-linkage cluster-
ing) on the distance matrix directly. The tree structure generated by treecluster can be
cut in order to separate the elements into a given number of clusters.

9.4.1 Representing a hierarchical clustering solution

A hierarchical clustering solution is represented using two Perl classes: Node and Tree.

The class Node

The Perl class Node corresponds to the C struct Node described above. A Node object has
three attributes:

• left

• right

• distance

Here, left and right are integers referring to the two items or subnodes that are joined
at this node, and distance is the distance between them. The items being clustered are
numbered from 0 to (number of items - 1), while clusters are numbered -1 to -(number

of items-1).

To create a new Node object, we need to specify left, right, and distance:

use Algorithm::Cluster;

my $node = Algorithm::Cluster::Node->new(3, 4, 2.7);

print "Left:", $node->left, "\n";

print "Right:", $node->right, "\n";

print "Distance:", $node->distance, "\n";
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Executing this code prints

Left:3

Right:4

Distance:2.7

The attributes left, right, and distance of an existing Node object can be modified
by using the set_left, set_right, and set_distance methods:

use Algorithm::Cluster;

my $node = Algorithm::Cluster::Node->new(3, 4, 2.7);

$node->set_left(2);

$node->set_right(1);

$node->set_distance(2.1);

The class Tree

The Perl class Tree represents a full hierarchical clustering solution. A Tree object can be
created from an array of Node objects:

use Algorithm::Cluster;

my $node1 = Algorithm::Cluster::Node->new(1,2,3.1);

my $node2 = Algorithm::Cluster::Node->new(-1,3,5.3);

my $node3 = Algorithm::Cluster::Node->new(4,0,5.9);

my $node4 = Algorithm::Cluster::Node->new(-2,-3,7.8);

my @nodes = [$node1,$node2,$node3,$node4];

my $tree = Algorithm::Cluster::Tree->new(@nodes);

The Tree initializer checks if the list of nodes is a valid hierarchical clustering result:

use Algorithm::Cluster;

my $node1 = Algorithm::Cluster::Node->new(1,2,0.3);

my $node2 = Algorithm::Cluster::Node->new(1,3,0.7);

my @nodes = [$node1,$node2];

my $tree = Algorithm::Cluster::Tree->new(@nodes);

results in the following error message:

the array of nodes passed to Algorithm::Cluster::Tree::new do not represent a

valid tree

Individual nodes in a Tree object can be accessed using the get method. Continuing
the previous example, the following code prints 0.7:

my $node3 = $tree->get(1);

print $node3->distance;

As a Tree object is read-only, we cannot change individual nodes in a Tree object. However,
we can convert the tree to a list of nodes, modify this list, and create a new tree from this
list:

use Algorithm::Cluster;

my $node1 = Algorithm::Cluster::Node->new(0,1,0.3);

my $node2 = Algorithm::Cluster::Node->new(2,3,0.7);
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my $node3 = Algorithm::Cluster::Node->new(-1,-2,0.9);

my $nodes = [$node1, $node2, $node3];

my $tree = Algorithm::Cluster::Tree->new($nodes);

my $i;

my $n = $tree->length;

my $node;

my $nodes2 = [];

for ($i = 0; $i < $n; $i++) {

$nodes2->[$i] = $tree->get($i);

}

$node = $nodes2->[1];

$node->set_left(-1);

$node = $nodes2->[2];

$node->set_left(2);

my $tree2 = Algorithm::Cluster::Tree->new($nodes2);

This guarantees that any Tree object is always well-formed.

A Tree object has three methods (scale, sort, and cut, described below). The
treecluster function returns Tree objects.

9.4.2 Performing hierarchical clustering: treecluster

The pairwise single-, maximum-, average-, and centroid-linkage clustering methods are ac-
cessible through the function treecluster.
my %param = (

data => [[]],

mask => ’’,

weight => ’’,

transpose => 0,

dist => ’e’,

method => ’s’,

);

my $tree = Algorithm::Cluster::treecluster(%param);

Arguments

• data

A reference to a two-dimensional matrix containing the gene expression data, where
genes are stored row-wise and microarray experiments column-wise. It is also possible
to pass a user-defined distance matrix as a lower-diagonal matrix, for example:
$data = [

[],

[ 3.4],

[ 4.3, 10.1],

[ 3.7, 11.5, 1.0]

];
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If the data argument has this form, it will be interpreted as a distance matrix instead
of a raw data matrix, and the arguments mask, weight, transpose, and dist will be
ignored.

• mask

A referene to a two-dimensional matrix of integers showing which data are missing. If
$param{mask}->[i]->[j]==0, then $param{data}->[i]->[j] is missing. If mask is
’’ (i.e., the null string, and not a reference at all), then there are no missing data.

• weight

A reference to an array containing the weights to be used when calculating distances. If
weight equals ’’ (i.e., the null string, and not a reference at all), then equal weights are
assumed. If transpose==0, the length of this array must equal the number of columns
in the data matrix. If transpose==1, the length of the weight array should equal the
number of rows in the data matrix. If weight has a different length, the entire array
will be ignored.

• transpose

Determines if genes or microarrays are being clustered. If $param{transpose}==0,
genes (rows) are being clustered. If $param{transpose}==1, microarrays (columns)
are clustered.

• dist

A one-character flag, defining the distance function to be used:

• ’c’: correlation

• ’a’: absolute value of the correlation

• ’u’: uncentered correlation

• ’x’: absolute uncentered correlation

• ’s’: Spearman’s rank correlation

• ’k’: Kendall’s τ ;

• ’e’: Euclidean distance

• ’b’: City-block distance

• method

Specifies which type of hierarchical clustering is used:

• ’s’: pairwise single-linkage clustering

• ’m’: pairwise maximum- (or complete-) linkage clustering

• ’a’: pairwise average-linkage clustering

• ’c’: pairwise centroid-linkage clustering

Pairwise centroid-linkage clustering is not available if a user-defined distance matrix is
passed via data.

Return values

This function returns a Tree object. This object contains number of items - 1 nodes,
where the number of items is the number of genes if genes were clustered, or the number
of microarrays if microarrays were clustered. Each node describes a pairwise linking event,
where the node attributes left and right each contain the number of one gene/microarray
or subnode, and distance the distance between them. Genes/microarrays are numbered
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from 0 to (number of items - 1), while clusters are numbered -1 to -(number of items-

1).

9.4.3 Scaling a hierarchical clustering tree: $tree->scale

To display a hierarchical clustering solution with Java TreeView, it is better to scale all
node distances such that they are between zero and one. This can be accomplished by
calling the scale method on an existing Tree object.

$tree->scale

scales the distances in the hierarchical clustering tree such that they are all between zero
and one. This function takes no arguments.

9.4.4 Sorting a hierarchical clustering tree: $tree->sort

my @indices = $tree->sort($order)

sorts the hierarchical clustering tree such that the elements tend to increase in the order
value from left to right in the dendrogram, where the order value of each element is specified
by the user. This is accomplished by visting each node in the hierarchical clustering tree,
verifying if the average order value of the left node is less than or equal to the average
order value of the right node, and switching the left and right node otherwise. The method
returns the indices of the elements in the left-to-right order after sorting.

Arguments

• $tree

The Tree object $tree contains the hierarchical clustering result generated by
treecluster.

• $order

The order values of the elements. If $order is not specified, the tree is not reordered,
and the @indices of the current tree are calculated.

Return values

This function returns the array @indices.

• @indices

An array indicating the order of the elements in the dendogram after sorting, with ele-
ment $indices[$i] occurring at position i in the left-to-right order in the dendogram.

9.4.5 Cutting a hierarchical clustering tree: $tree->cut

my @clusterid = $tree->cut($nclusters)

groups the items into $nclusters clusters based on the tree structure generated by the
hierarchical clustering routine treecluster.

Arguments

• $tree

The Tree object $tree contains the hierarchical clustering result generated by
treecluster.

• $nclusters

The desired number of clusters; $nclusters should be positive, and less than or equal
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to the number of elements. If $nclusters is not specified, the number of elements is
used as the default value.

Return values

This function returns the array @clusterid.

• @clusterid

Array containing the number of the cluster to which each gene/microarray is assigned.
Clusters are numbered from 0 through $nclusters-1 in the left-to-right order in which
they appear in the hierarchical clustering tree.

Example

use Algorithm::Cluster;

my $node1 = Algorithm::Cluster::Node->new(0,1,0.3);

my $node2 = Algorithm::Cluster::Node->new(2,3,0.7);

my $node3 = Algorithm::Cluster::Node->new(-1,-2,0.9);

my $nodes = [$node1, $node2, $node3];

my $tree = Algorithm::Cluster::Tree->new($nodes);

my @a = $tree->cut(3);

my $i = 0;

foreach (@a) {

print "Element $i: Cluster $_\n";

$i++;

}

prints
Element 0: Cluster 0

Element 1: Cluster 0

Element 2: Cluster 1

Element 3: Cluster 2

9.5 Self-Organizing Maps: somcluster

The somcluster() function implements a Self-Organizing Map on a rectangular grid.

my %param = (

data => [[]],

mask => ’’,

weight => ’’,

transpose => 0,

nxgrid => 10,

nygrid => 10,

niter => 100,

dist => ’e’,

);

my ($clusterid) = Algorithm::Cluster::somcluster(%param);
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Arguments

• data

A reference to a two-dimensional matrix containing the gene expression data, where
genes are stored row-wise and microarray experiments column-wise.

• mask

A reference to a two-dimensional matrix of integers showing which data are missing. If
$param{mask}->[i]->[j]==0, then $param{data}->[i]->[j] is missing. If mask is
’’ (i.e., the null string, and not a reference at all), then there are no missing data.

• weight

A reference to an array containing the weights to be used when calculating distances. If
weight equals ’’ (i.e., the null string, and not a reference at all), then equal weights are
assumed. If transpose==0, the length of this array must equal the number of columns
in the data matrix. If transpose==1, the length of the weight array should equal the
number of rows in the data matrix. If weight has a different length, the entire array
will be ignored.

• transpose

Determines if genes or microarrays are being clustered. If $param{transpose}==0,
genes (rows) are being clustered. If $param{transpose}==1, microarrays (columns)
are clustered.

• nxgrid, nygrid

Both parameters are integers, indicating the number of cells horizontally and vertically
in the rectangular grid, on which the Self-Organizing Map is calculated.

• inittau

The initial value for the neighborhood function, as given by the parameter τ . The
default value for inittau is 0.02, which was used in Michael Eisen’s Cluster/TreeView
program.

• niter

The number of iterations to be performed.

• dist

A one-character flag, defining the distance function to be used:

• ’c’: correlation

• ’a’: absolute value of the correlation

• ’u’: uncentered correlation

• ’x’: absolute uncentered correlation

• ’s’: Spearman’s rank correlation

• ’k’: Kendall’s τ ;

• ’e’: Euclidean distance

• ’b’: City-block distance

Return values

This function returns one value, $clusterid, which is a reference to a two-dimensional matrix.
If $param{transpose}==0, then the number of rows in $clusterid equals the number of rows
(genes) in the original data array; if $param{transpose}==1, then then the number of rows
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in $clusterid equals the number of columns (microarrays) in the original data array. Each
row in the array clusterid contains the x and y coordinates of the cell in the rectangular
SOM grid to which the gene or microarray was assigned.

9.6 Finding the cluster centroids: clustercentroids

my %param = (

data => [[]],

mask => ’’,

clusterid => undef,

method => ’a’,

transpose => 0,

);

my ($cdata, $cmask) = clustercentroids(%param)

calculates the cluster centroids.

Arguments

• data

Array containing the gene expression data, where genes are stored row-wise and mi-
croarray experiments column-wise.

• mask

Array of integers showing which data are missing. If $param{mask}->[$i]->[$j]==0,
then $param{data}->[$i]->[$j] is missing. If mask is ’’, then there are no missing
data.

• clusterid

Vector of integers showing to which cluster each element belongs. If clusterid is not
given, then all elements are assumed to belong to the same cluster.

• method

Specifies whether the arithmetic mean (method=>’a’) or the median (method=>’m’) is
used to calculate the cluster center.

• transpose

Determines if gene or microarray clusters are being considered. If transpose==0, then
we are considering clusters of genes (rows). If transpose==1, then we are considering
clusters of microarrays (columns).

Return values

This function returns the list cdata, cmask.

• $cdata

A 2D array containing the centroid data. The dimensions of this array are (number

of clusters, number of microarrays) if genes were clustered, or (number of genes,

number of clusters) if microarrays were clustered. Each row (if genes were clustered)
or column (if microarrays were clustered) contains the averaged gene expression data
for corresponding to the centroid of one cluster that was found.

• $cmask

This matrix stores which values in $cdata are missing. If $cmask[$i][$j]==0, then
$cdata[$i][$j] is missing. The dimensions of this array are (number of clusters,
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number of microarrays) if genes were clustered, or (number of genes, number of

clusters) if microarrays were clustered.

9.7 The distance between two clusters: clusterdistance

The clusterdistance routine calculates the distance between two clusters, between a
cluster and an item, or between two items.

my %param = (

data => [[]],

mask => ’’,

weight => ’’,

cluster1 => [],

cluster2 => [],

dist => ’e’,

method => ’a’,

transpose => 0,

);

my ($distance) = Algorithm::Cluster::clusterdistance(%param);

Arguments

• data

A reference to a two-dimensional matrix containing the gene expression data, where
genes are stored row-wise and microarray experiments column-wise.

• mask

A reference to a two-dimensional matrix of integers showing which data are missing. If
$param{mask}->[i]->[j]==0, then $param{data}->[i]->[j] is missing. If mask is
’’ (i.e., the null string, and not a reference at all), then there are no missing data.

• weight

A reference to an array containing the weights to be used when calculating distances. If
weight equals ’’ (i.e., the null string, and not a reference at all), then equal weights are
assumed. If transpose==0, the length of this array must equal the number of columns
in the data matrix. If transpose==1, the length of the weight array should equal the
number of rows in the data matrix. If weight has a different length, the entire array
will be ignored.

• cluster1

contains the indices of the elements belonging to the first cluster, or alternatively an
integer to refer to a single item.

• cluster2

contains the indices of the elements belonging to the second cluster, or alternatively an
integer to refer to a single item.

• dist

A one-character flag, defining the distance function to be used:

• ’c’: correlation

• ’a’: absolute value of the correlation
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• ’u’: uncentered correlation

• ’x’: absolute uncentered correlation

• ’s’: Spearman’s rank correlation

• ’k’: Kendall’s τ ;

• ’e’: Euclidean distance

• ’b’: City-block distance

• method

A one-character flag, indicating how the center of a cluster is found:

• ’a’: Distance between the two cluster centroids (arithmetic mean)

• ’m’: Distance between the two cluster centroids (median)

• ’s’: Shortest distance between elements in the two clusters

• ’x’: Longest pairwise distance between elements in the two clusters

• ’v’: Average over the pairwise distances between elements in the two clusters.

For any other values of method, the arithmetic mean is used.

• transpose

Determines if the distance between genes or between microarrays should be
calculated. If $param{transpose}==0, the function calculates the distance between
the genes (rows) specified by $param{cluster1} and $param{cluster2}. If
$param{transpose}==1, the function calculates the distance between the microarrays
(columns) specified by $param{cluster1} and $param{cluster2}.

Return values

The distance between the clusters indicated by cluster1 and cluster2.

9.8 Calculating the distance matrix: distancematrix

The function distancematrix() calculates the distance matrix between the gene expression
data and returns it as a ragged array.
my %param = (

data => [[]],

mask => ’’,

weight => ’’,

transpose => 0,

dist => ’e’,

);

my $distancematrix = distancematrix(%param);

Arguments

• data

A reference to a two-dimensional matrix containing the gene expression data, where
genes are stored row-wise and microarray experiments column-wise.

• mask

A reference to a two-dimensional matrix of integers showing which data are missing. If
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$param{mask}->[i]->[j]==0, then $param{data}->[i]->[j] is missing. If mask is
’’ (i.e., the null string, and not a reference at all), then there are no missing data.

• weight

A reference to an array containing the weights to be used when calculating distances. If
weight equals ’’ (i.e., the null string, and not a reference at all), then equal weights are
assumed. If transpose==0, the length of this array must equal the number of columns
in the data matrix. If transpose==1, the length of the weight array should equal the
number of rows in the data matrix. If weight has a different length, the entire array
will be ignored.

• transpose

Determines if the distances between genes or microarrays should be calculated.
If $param{transpose}==0, the distances between genes (rows) are calculated. If
$param{transpose}==1, the distances are calculated between microarrays (columns).

• dist

A one-character flag, defining the distance function to be used:

• ’c’: correlation

• ’a’: absolute value of the correlation

• ’u’: uncentered correlation

• ’x’: absolute uncentered correlation

• ’s’: Spearman’s rank correlation

• ’k’: Kendall’s τ ;

• ’e’: Euclidean distance

• ’b’: City-block distance For other values of dist, the default (Euclidean distance)
is used.

Return values

This function returns the $distancematrix, an array of rows containing the distance matrix
between the gene expression data. The number of columns in each row is equal to the row
number. Hence, the first row has zero elements.

9.9 Principal Component Analysis: pca

my ($columnmean, $coordinates, $components, $eigenvalues) = pca($data);

applies Principal Component Analysis to the rectangular matrix data.

Arguments

• $data

A reference to a two-dimensional matrix containing the gene expression data, where
genes are stored row-wise and microarray experiments column-wise.

Return values

This function returns a list of four items: $columnmean, $coordinates, $components,
$eigenvalues.

• $columnmean

A reference to an array containing the mean over each column in $data.
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• $coordinates

A reference to an array containing the coordinates of each row in $data with respect
to the principal components.

• $components

A reference to an array containing the principal components.

• $eigenvalues

A reference to an array containing the eigenvalues corresponding to each of the principal
components.

9.10 Auxiliary functions

median($data)

Returns the median of the data. $data is a reference to a (one-dimensional) array of
numbers.

mean($data)

Returns the mean of the data. $data is a reference to a (one-dimensional) array of numbers.

version()

Returns the version number of the C Clustering Library as a string.

9.11 Handling Cluster/TreeView-type files

Cluster/TreeView are GUI-based codes for clustering gene expression data. They were
originlly written by Michael Eisen (http://rana.lbl.gov) while at Stanford University.
Algorithm::Cluster contains functions for reading and writing data files in the format spec-
ifies for Cluster/TreeView. In particular, by saving a clustering result in that format, we
can use TreeView to visualize the clustering results. We recommend using Alok Saldanha’s
Java TreeView program (http://jtreeview.sourceforget.net), which can display hier-
archical as well as k -means clustering clustering results.

9.11.1 The Record class

An object of the class Record contains all information stored in a Cluster/TreeView-type
data file. To store the information contained in the data file in a Record object, we create
a Record object, open the file, and then read the file contents into the Record object:

use Algorithm::Cluster::Record;

my $record = Algorithm::Cluster::Record->new();

open INPUT, "mydatafile.txt";

$record->read(*INPUT);

The read command reads the tab-delimited text file mydatafile.txt containing gene
expression data in the format specified for Michael Eisen’s Cluster/TreeView program. For
a description of this file format, see the manual to Cluster/TreeView. It is available at
Michael Eisen’s lab website (http://rana.lbl.gov/manuals/ClusterTreeView.pdf) and
at our website (http://bonsai.hgc.jp/~mdehoon/software/cluster/cluster3.pdf).

A Record object stores the following information:
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• data

The data array containing the gene expression data. Genes are stored row-wise, while
microarrays are stored column-wise.

• mask

This array shows which elements in the data array, if any, are missing. If
$record{mask}[$i][$j]==0, then $record{data}[$i][$j] is missing. If no data
were found to be missing, $record{mask} remains undef.

• geneid

This is a list containing a unique description for each gene (i.e., ORF numbers).

• genename

This is a list containing a description for each gene (i.e., gene name). If not present in
the data file, $record{genename} remains undef.

• gweight

The weights that are to be used to calculate the distance in expression profile between
genes. If not present in the data file, $record{gweight} remains undef.

• gorder

The preferred order in which genes should be stored in an output file. If not present
in the data file, $record{gorder} remains undef.

• expid

This is a list containing a description of each microarray, e.g. experimental condition.

• eweight

The weights that are to be used to calculate the distance in expression profile between
microarrays. If not present in the data file, $record{eweight} remains undef.

• eorder

The preferred order in which microarrays should be stored in an output file. If not
present in the data file, $record{eorder} remains undef.

• uniqid

The string that was used instead of UNIQID in the data file.

After loading a Record object, each of these attributes can be accessed and modi-
fied directly. For example, the data can be log-transformed by taking the logarithm of
record->data.

9.11.2 Performing hierarchical clustering

my %param = (

transpose => 0,

method => ’a’,

dist => ’e’,

);

my $tree = $record->treecluster(%param);
applies hierachical clustering to the data contained in the Record object.

Arguments

• transpose

Determines if genes or microarrays are being clustered. If transpose==0, genes (rows)
are being clustered. If transpose==1, microarrays (columns) are clustered.
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• method

defines the linkage method to be used:

• method==’s’: pairwise single-linkage clustering

• method==’m’: pairwise maximum- (or complete-) linkage clustering

• method==’c’: pairwise centroid-linkage clustering

• method==’a’: pairwise average-linkage clustering

• dist

defines the distance function to be used:

• dist==’c’: correlation;

• dist==’a’: absolute value of the correlation;

• dist==’u’: uncentered correlation;

• dist==’x’: absolute uncentered correlation;

• dist==’s’: Spearman’s rank correlation;

• dist==’k’: Kendall’s τ ;

• dist==’e’: Euclidean distance;

• dist==’b’: City-block distance.

Return values

This function returns a Tree object. This object contains number of items - 1 nodes,
where the number of items is the number of genes if genes were clustered, or the number
of microarrays if microarrays were clustered. Each node describes a pairwise linking event,
where the node attributes left and right each contain the number of one gene/microarray
or subnode, and distance the distance between them. Genes/microarrays are numbered
from 0 to (number of items - 1), while clusters are numbered -1 to -(number of items-

1).

9.11.3 Performing k-means or k-medians clustering

my %param = (

nclusters => 2,

transpose => 0,

npass => 1,

method => ’a’,

dist => ’e’,

initialid => undef,

);

my ($clusterid, $error, $nfound) = $record->kcluster(%param);

applies k -means or k -medians clustering to the data contained in the Record object.

Arguments

• nclusters

The number of clusters k.

• transpose

Determines if genes or microarrays are being clustered. If transpose==0, genes (rows)
are being clustered. If transpose==1, microarrays (columns) are clustered.
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• npass

The number of times the k -means clustering algorithm is performed, each time with
a different (random) initial condition. If initialid is given, the value of npass is
ignored and the clustering algorithm is run only once, as it behaves deterministically
in that case.

• method

describes how the center of a cluster is found:

• method==’a’: arithmetic mean;

• method==’m’: median.

For other values of method, the arithmetic mean is used.

• dist

defines the distance function to be used:

• dist==’c’: correlation;

• dist==’a’: absolute value of the correlation;

• dist==’u’: uncentered correlation;

• dist==’x’: absolute uncentered correlation;

• dist==’s’: Spearman’s rank correlation;

• dist==’k’: Kendall’s τ ;

• dist==’e’: Euclidean distance;

• dist==’b’: City-block distance.

• initialid

Specifies the initial clustering to be used for the EM algorithm. If initialid is None,
then a different random initial clustering is used for each of the npass runs of the EM
algorithm. If initialid is not None, then it should be equal to a 1D array containing
the cluster number (between 0 and nclusters-1) for each item. Each cluster should
contain at least one item. With the initial clustering specified, the EM algorithm is
deterministic.

Return values

This function returns three variables ($clusterid, $error, $nfound).

• $clusterid

An array containing the number of the cluster to which each gene/microarray was
assigned.

• $error

The within-cluster sum of distances for the optimal clustering solution.

• $nfound

The number of times the optimal solution was found.

9.11.4 Calculating a Self-Organizing Map

my %param = (

transpose => 0,

nxgrid => 2,
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nygrid => 1,

inittau => 0.02,

niter => 1,

dist => ’e’,

);

my @clusterid = $record->somcluster(%param);

calculates a Self-Organizing Map on a rectangular grid, using the gene expression data in
the Record object $record.

Arguments

• transpose

Determines if genes or microarrays are being clustered. If transpose==0, genes (rows)
are being clustered. If transpose==1, microarrays (columns) are clustered.

• nxgrid, nygrid

The number of cells horizontally and vertically in the rectangular grid, on which the
Self-Organizing Map is calculated.

• inittau

The initial value for the parameter τ that is used in the SOM algorithm. The default
value for inittau is 0.02, which was used in Michael Eisen’s Cluster/TreeView program.

• niter

The number of iterations to be performed.

• dist

defines the distance function to be used:

• dist==’c’: correlation;

• dist==’a’: absolute value of the correlation;

• dist==’u’: uncentered correlation;

• dist==’x’: absolute uncentered correlation;

• dist==’s’: Spearman’s rank correlation;

• dist==’k’: Kendall’s τ ;

• dist==’e’: Euclidean distance;

• dist==’b’: City-block distance.

Return values

This function returns an array with two columns, where the number of rows is equal to the
number of genes or the number of microarrays depending on whether genes or microarrays
are being clustered. Each row contains the x and y coordinates of the cell in the rectangular
SOM grid to which the gene or microarray was assigned.

9.11.5 Finding the cluster centroid

my %param = (

clusterid => undef,

method => ’a’,

transpose => 0,

);
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my ($cdata, $cmask) = record->clustercentroids(%param);

calculates the cluster centroids.

Arguments

• clusterid

Vector of integers showing to which cluster each element belongs. If clusterid is not
given, then all elements are assumed to belong to the same cluster.

• method

Specifies whether the arithmetic mean (method==’a’) or the median (method==’m’) is
used to calculate the cluster center.

• transpose

Determines if gene or microarray clusters are being considered. If transpose==0, then
we are considering clusters of genes (rows). If transpose==1, then we are considering
clusters of microarrays (columns).

Return values

This function returns the list $cdata, $cmask.

• $cdata

A 2D array containing the centroid data. The dimensions of this array are (number

of clusters, number of microarrays) if genes were clustered, or (number of genes,

number of clusters) if microarrays were clustered. Each row (if genes were clustered)
or column (if microarrays were clustered) contains the averaged gene expression data
for corresponding to the centroid of one cluster that was found.

• $cmask

This matrix stores which values in cdata are missing. If $cmask[$i][$j]==0, then
$cdata[$i][$j] is missing. The dimensions of this array are (number of clusters,

number of microarrays) if genes were clustered, or (number of genes, number of

clusters) if microarrays were clustered.

9.11.6 Calculating the distance between two clusters

my %param = (

index1 => [],

index2 => [],

method => ’a’,

dist => ’e’,

transpose => 0,

);

my $distance = record->clusterdistance(%param);

calculates the distance between two clusters.

Arguments

• index1

is a list containing the indices of the elements belonging to the first cluster, or alterna-
tively an integer to refer to a single item.
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• index2

is a list containing the indices of the elements belonging to the second cluster, or
alternatively an integer to refer to a single item.

• method

Specifies how the distance between clusters is defined:

• method==’a’: Distance between the two cluster centroids (arithmetic mean);

• method==’m’: Distance between the two cluster centroids (median);

• method==’s’: Shortest pairwise distance between elements in the two clusters;

• method==’x’: Longest pairwise distance between elements in the two clusters;

• method==’v’: Average over the pairwise distances between elements in the two
clusters.

• dist

defines the distance function to be used:

• dist==’c’: correlation;

• dist==’a’: absolute value of the correlation;

• dist==’u’: uncentered correlation;

• dist==’x’: absolute uncentered correlation;

• dist==’s’: Spearman’s rank correlation;

• dist==’k’: Kendall’s τ ;

• dist==’e’: Euclidean distance;

• dist==’b’: City-block distance.

• transpose

Determines if gene or microarray clusters are being considered. If transpose==0, then
we are considering clusters of genes (rows). If transpose==1, then we are considering
clusters of microarrays (columns).

Return values

This function returns the distance between the two clusters.

9.11.7 Calculating the distance matrix

my %param = (

transpose => 0,

dist => ’e’,

);

my $matrix = record->distancematrix(%param);

returns the distance matrix between gene expression data.

Arguments

• transpose

Determines if genes or microarrays are being clustered. If transpose==0, genes (rows)
are being clustered. If transpose==1, microarrays (columns) are clustered.

• dist

defines the distance function to be used:

• dist==’c’: correlation;
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• dist==’a’: absolute value of the correlation;

• dist==’u’: uncentered correlation;

• dist==’x’: absolute uncentered correlation;

• dist==’s’: Spearman’s rank correlation;

• dist==’k’: Kendall’s τ ;

• dist==’e’: Euclidean distance;

• dist==’b’: City-block distance.

Return values

This function returns the $distancematrix, an array of rows containing the distance matrix
between the gene expression data. The number of columns in each row is equal to the row
number. Hence, the first row has zero elements.

9.11.8 Saving the clustering result

my %param = (

jobname => ’’,

geneclusters => [],

expclusters => [],

);

$record->save(%param);

writes the text file jobname.cdt, jobname.gtr, jobname.atr, jobname*.kgg, and/or job-
name*.kag for subsequent reading by the Java TreeView program. If geneclusters and
expclusters are both None, this method only writes the text file jobname.cdt; this file
can subsequently be read into a new Record object.

Arguments

• jobname

The string jobname is used as the base name for names of the files that are to be saved.

• geneclusters

This argument describes the gene clustering result. In case of k -means clustering, this
is a 1D array containing the number of the cluster each gene belongs to. It can be
calculated using kcluster. In case of hierarchical clustering, geneclusters is a Tree

object.

• expclusters

This argument describes the clustering result for the experimental conditions. In case
of k -means clustering, this is a 1D array containing the number of the cluster each
experimental condition belongs to. It can be calculated using kcluster. In case of
hierarchical clustering, expclusters is a Tree object.

9.11.9 Example calculation

This is an example of a hierarchical clustering calculation, using single linkage clustering
for genes and maximum linkage clustering for experimental conditions. As the Euclidean
distance is being used for gene clustering, it is necessary to scale the node distances genetree
such that they are all between zero and one. This is needed for the Java TreeView code to
display the tree diagram correctly. To cluster the experimental conditions, the uncentered
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correlation is being used. No scaling is needed in this case, as the distances in exptree

are already between zero and two. The example data cyano.txt can be found in the data
subdirectory.

use Algorithm::Cluster::Record;

my $record = Algorithm::Cluster::Record->new();

open INPUT, "cyano.txt";

$record->read(*INPUT);

my $genetree = $record->treecluster(method=>’s’);

my $exptree = $record->treecluster(dist=>’u’, transpose=>1);

$record->save(jobname=>"cyano_result", geneclusters=>$genetree,

expclusters=>$exptree);

This will create the files cyano_result.cdt, cyano_result.gtr, and cyano_result.atr.

Similarly, we can save a k -means clustering solution:

use Algorithm::Cluster::Record;

my $record = Algorithm::Cluster::Record->new();

open INPUT, "cyano.txt";

$record->read(*INPUT);

my ($geneclusters, $error, $ifound) = $record->kcluster(nclusters=>5,

npass=>1000);

my ($expclusters, $error, $ifound) = $record->kcluster(nclusters=>2,

npass=>100, transpose=>1);

$record->save(jobname=>"cyano_result", geneclusters=>$geneclusters,

expclusters=>$expclusters);

This will create the files cyano_result_K_G2_A2.cdt, cyano_result_K_G2.kgg, and
cyano_result_K_A2.kag.
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10 Compiling and linking

In the instructions below, <version> refers to the version number. The C Clustering Library
complies with the ANSI-C standard since version 1.04. As of version 1.06, the C Clustering
Library makes use of autoconf/automake to make the installation process easier. To install
the library for use with Python, use the setup.py script instead, as described below. To
install the library for use with Perl, use the Makefile.PL script.

10.1 Installing the C Clustering Library for Python

Pycluster is available as part of the Biopython distribution and as a separate package. As
of version 1.41, Pycluster uses the “new” Numerical Python (version 1.1.1 or later).

To install Pycluster as a separate package, download Pycluster-<version>.tar.gz

from http://bonsai.hgc.jp/~mdehoon/software/cluster. Unpack this file:
gunzip Pycluster-<version>.tar.gz

tar -xvf Pycluster-<version>.tar

and change to the directory Pycluster-<version>. Type
python setup.py install

from this directory. This will compile the library and install it for use with Python. To test
your installation, you can run python setup.py test

If the installation was successful, you can remove the directory Pycluster-<version>.
For Python on Windows (run from a DOS command window, or with a graphical user
interface such as IDLE, PyCrust, PyShell, or PythonWin), a binary installer is available
from http://bonsai.hgc.jp/~mdehoon/software/cluster.

Installation instructions for Biopython are available from the Biopython website
(http://www.biopython.org).

10.2 Installing the C Clustering Library for Perl

To install the C Clustering Library for Perl, download Algorithm-Cluster-

<version>.tar.gz from http://bonsai.hgc.jp/~mdehoon/software/cluster or from
CPAN. Next, unpack this file with
gunzip Algorithm-Cluster-<version>.tar.gz

tar -xvf Algorithm-Cluster-<version>.tar

and change to the directory Algorithm-Cluster-<version>. Type
perl Makefile.PL

which will create a Makefile. To compile and install, type
make

make install

from this directory. You can execute
make test

to run some scripts that test the Algorithm::Cluster module. Some example Perl scripts
can be found in the perl/examples subdirectory. If the installation was successful, you
can remove the directory Algorithm-Cluster-<version>.
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10.3 Accessing the C Clustering Library from C/C++

To call the routines in the C Clustering Library from your own C or C++ program, simply
collect the relevant source files and compile them together with your program. The figure
below shows the dependency structure for the source files in the C Clustering Library.

windows/gui.c

Cluster 3.0 for Windows

mac/main.m

Cluster 3.0 for Mac OS X

X11/gui.c

Cluster 3.0 for Unix/Linux

src/command.c

Cluster 3.0,

command line version

perl/Cluster.pm

Algorithm::Cluster

Perl extension module

python/__init__.py

Pycluster/Bio.Cluster

Python extension module

src/data.h

src/data.c

Data management,

file parsing, and

command interface

perl/Cluster.xs

Perl / C interface

python/clustermodule.c

Python / C interface

src/cluster.h

src/cluster.c

C Clustering Library

To use the routines in the C Clustering Library, put
#include <cluster.h>

in your source code. If your program is written in C++, use
extern "C" {

#include <cluster.h>

}

instead. To compile a C or C++ program with the C Clustering Library, add the relevant
source files to the compile command. For example, a C program myprogram.c can be
compiled and linked by
gcc -o myprogram myprogram.c cluster.c

An example C program that makes use of the C Clustering Library can be found in the
example subdirectory.

10.4 Installing Cluster 3.0 for Windows

The easiest way to install Cluster 3.0 for Windows is to use the Windows installer (http://
bonsai.hgc.jp/~mdehoon/software/cluster). The executable cluster.com can be
used both as a GUI and as a command line program. To start Cluster 3.0 as a GUI
program, simply double-click on cluster.com. If you want to use Cluster 3.0 from the
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command prompt as a command line program, you may need to give the full path to the ex-
ecutable (e.g., C:\Program Files\Stanford University\Cluster 3.0\cluster.com; the
exact path may be different on your computer). Type cluster.com --help for an overview
of all command line options.

If you want to compile Cluster 3.0 from the source, change to the windows directory, and
type make. This will compile the C Clustering Library, the Cluster 3.0 GUI, the Windows
help files and the documentation. To compile the GUI, you need an ANSI C compiler
such as GNU gcc. To compile the resources needed for the GUI, you will need the GNU
program windres. To generate the help files, you need the HTML Help SDK, which can
be downloaded from Microsoft. You will also need GNU makeinfo.

To generate the Windows installer, type
make clustersetup.exe

For this, you will need the Inno Setup Compiler, which can be downloaded from http://

www.jrsoftware.org.

10.5 Installing Cluster 3.0 for Mac OS X

Cluster 3.0 for Mac OS X can be installed most easily by using the prebuilt package that is
available at http://bonsai.hgc.jp/~mdehoon/software/cluster. After installing, you
can start Cluster 3.0 as a GUI program by double-clicking on its icon. To run Cluster 3.0 as
a command line program (e.g., from the Terminal), most likely you will need to give the full
path to the executable (e.g., /Applications/Cluster.app/Contents/MacOS/Cluster). If
you want to recompile Cluster 3.0, it is easiest to use the Project Builder and Interface
Builder that are part of Mac OS X. The directory mac contains the project file that was
used.

10.6 Installing Cluster 3.0 for Linux/Unix

Cluster 3.0 was ported to Linux/Unix using the Motif libraries. Motif is installed on most
Linux/Unix computers. You will need a version compliant with Motif 2.1, such as Open
Motif (http://www.opengroup.org), which is available at http://www.motifzone.net.
Currently, LessTif (http://www.lesstif.org) does not work correctly with Cluster 3.0.

To install Cluster 3.0 on Linux/Unix, type
./configure

make

make install

This will create the executable cluster and install it in /usr/local/bin. Some auxiliary
files will be installed in /usr/local/cluster. The executable can be used both as a GUI
program and as a command line program. Type
cluster --help

for more information about running Cluster 3.0 as a command line program.

10.7 Installing Cluster 3.0 as a command line program

Cluster 3.0 can also be installed without GUI support. In this case, Cluster 3.0 can only
be run as a command line program, in which the action taken by the program depends on
the command line parameters. To install Cluster 3.0 as a command line program, the Motif
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libraries are not needed. Simply download the source code for the C Clustering Library from
our website http://bonsai.hgc.jp/~mdehoon/software/cluster, unpack and untar the
file, and change to the directory cluster-<version>. Then type
./configure --without-x

make

make install

For the last step, you may need superuser privileges. For more information about the
command line options, check the Cluster 3.0 manual.
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