|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectit.unimi.dsi.fastutil.bytes.AbstractByte2DoubleFunction
it.unimi.dsi.fastutil.bytes.AbstractByte2DoubleMap
it.unimi.dsi.fastutil.bytes.Byte2DoubleOpenHashMap
public class Byte2DoubleOpenHashMap
A type-specific hash map with a fast, small-footprint implementation.
Instances of this class use a hash table to represent a map. The table is
enlarged as needed when new entries are created, but it is never made
smaller (even on a clear()
). A family of trimming
methods lets you control the size of the table; this is particularly useful
if you reuse instances of this class.
The enlargement speed is controlled by the growth factor, a
positive number. If the growth factor is p, then the table is
enlarged each time roughly by a factor 2p/16. By default, p is
Hash.DEFAULT_GROWTH_FACTOR
, which means that the table is doubled at
each enlargement, but one can easily set more or less aggressive policies by
calling growthFactor(int)
(note that the growth factor is not serialized:
deserialized tables gets the default growth factor).
Hash
,
HashCommon
,
Serialized FormNested Class Summary |
---|
Nested classes/interfaces inherited from class it.unimi.dsi.fastutil.bytes.AbstractByte2DoubleMap |
---|
AbstractByte2DoubleMap.BasicEntry |
Nested classes/interfaces inherited from interface it.unimi.dsi.fastutil.Hash |
---|
Hash.Strategy<K> |
Nested classes/interfaces inherited from interface it.unimi.dsi.fastutil.bytes.Byte2DoubleMap |
---|
Byte2DoubleMap.Entry, Byte2DoubleMap.FastEntrySet |
Field Summary | |
---|---|
static long |
serialVersionUID
|
Fields inherited from interface it.unimi.dsi.fastutil.Hash |
---|
DEFAULT_GROWTH_FACTOR, DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR, FAST_LOAD_FACTOR, FREE, OCCUPIED, PRIMES, REMOVED, VERY_FAST_LOAD_FACTOR |
Constructor Summary | |
---|---|
Byte2DoubleOpenHashMap()
Creates a new hash map with Hash.DEFAULT_INITIAL_SIZE entries
and Hash.DEFAULT_LOAD_FACTOR as load factor. |
|
Byte2DoubleOpenHashMap(byte[] k,
double[] v)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor using the elements of two parallel arrays. |
|
Byte2DoubleOpenHashMap(byte[] k,
double[] v,
float f)
Creates a new hash map using the elements of two parallel arrays. |
|
Byte2DoubleOpenHashMap(Byte2DoubleMap m)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific one. |
|
Byte2DoubleOpenHashMap(Byte2DoubleMap m,
float f)
Creates a new hash map copying a given type-specific one. |
|
Byte2DoubleOpenHashMap(int n)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor. |
|
Byte2DoubleOpenHashMap(int n,
float f)
Creates a new hash map. |
|
Byte2DoubleOpenHashMap(java.util.Map<? extends java.lang.Byte,? extends java.lang.Double> m)
Creates a new hash map with Hash.DEFAULT_LOAD_FACTOR as load factor copying a given one. |
|
Byte2DoubleOpenHashMap(java.util.Map<? extends java.lang.Byte,? extends java.lang.Double> m,
float f)
Creates a new hash map copying a given one. |
Method Summary | |
---|---|
Byte2DoubleMap.FastEntrySet |
byte2DoubleEntrySet()
Returns a type-specific set view of the mappings contained in this map. |
void |
clear()
Removes all associations from this function (optional operation). |
java.lang.Object |
clone()
Returns a deep copy of this map. |
boolean |
containsKey(byte k)
Checks whether the given value is contained in AbstractByte2DoubleMap.keySet() . |
boolean |
containsValue(double v)
Checks whether the given value is contained in AbstractByte2DoubleMap.values() . |
double |
get(byte k)
Returns the value to which the given key is mapped. |
java.lang.Double |
get(java.lang.Byte ok)
|
int |
growthFactor()
Gets the growth factor. |
void |
growthFactor(int growthFactor)
Sets the growth factor. |
int |
hashCode()
Returns a hash code for this map. |
boolean |
isEmpty()
|
ByteSet |
keySet()
Returns a type-specific-set view of the keys of this map. |
double |
put(byte k,
double v)
Adds a pair to the map. |
java.lang.Double |
put(java.lang.Byte ok,
java.lang.Double ov)
Delegates to the corresponding type-specific method, taking care of returning null on a missing key. |
boolean |
rehash()
Rehashes this map without changing the table size. |
double |
remove(byte k)
Removes the mapping with the given key. |
java.lang.Double |
remove(java.lang.Object ok)
Delegates to the corresponding type-specific method, taking care of returning null on a missing key. |
int |
size()
Returns the intended number of keys in this function, or -1 if no such number exists. |
boolean |
trim()
Rehashes the map, making the table as small as possible. |
boolean |
trim(int n)
Rehashes this map if the table is too large. |
DoubleCollection |
values()
Returns a type-specific-set view of the values of this map. |
Methods inherited from class it.unimi.dsi.fastutil.bytes.AbstractByte2DoubleMap |
---|
containsValue, entrySet, equals, putAll, toString |
Methods inherited from class it.unimi.dsi.fastutil.bytes.AbstractByte2DoubleFunction |
---|
containsKey, defaultReturnValue, defaultReturnValue, get |
Methods inherited from class java.lang.Object |
---|
getClass, notify, notifyAll, wait, wait, wait |
Methods inherited from interface it.unimi.dsi.fastutil.bytes.Byte2DoubleFunction |
---|
defaultReturnValue, defaultReturnValue |
Methods inherited from interface it.unimi.dsi.fastutil.Function |
---|
containsKey, get |
Methods inherited from interface java.util.Map |
---|
containsKey, get |
Field Detail |
---|
public static final long serialVersionUID
Constructor Detail |
---|
public Byte2DoubleOpenHashMap(int n, float f)
n
/f
.
n
- the expected number of elements in the hash map.f
- the load factor.Hash.PRIMES
public Byte2DoubleOpenHashMap(int n)
Hash.DEFAULT_LOAD_FACTOR
as load factor.
n
- the expected number of elements in the hash map.public Byte2DoubleOpenHashMap()
Hash.DEFAULT_INITIAL_SIZE
entries
and Hash.DEFAULT_LOAD_FACTOR
as load factor.
public Byte2DoubleOpenHashMap(java.util.Map<? extends java.lang.Byte,? extends java.lang.Double> m, float f)
m
- a Map
to be copied into the new hash map.f
- the load factor.public Byte2DoubleOpenHashMap(java.util.Map<? extends java.lang.Byte,? extends java.lang.Double> m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given one.
m
- a Map
to be copied into the new hash map.public Byte2DoubleOpenHashMap(Byte2DoubleMap m, float f)
m
- a type-specific map to be copied into the new hash map.f
- the load factor.public Byte2DoubleOpenHashMap(Byte2DoubleMap m)
Hash.DEFAULT_LOAD_FACTOR
as load factor copying a given type-specific one.
m
- a type-specific map to be copied into the new hash map.public Byte2DoubleOpenHashMap(byte[] k, double[] v, float f)
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.f
- the load factor.
java.lang.IllegalArgumentException
- if k
and v
have different lengths.public Byte2DoubleOpenHashMap(byte[] k, double[] v)
Hash.DEFAULT_LOAD_FACTOR
as load factor using the elements of two parallel arrays.
k
- the array of keys of the new hash map.v
- the array of corresponding values in the new hash map.
java.lang.IllegalArgumentException
- if k
and v
have different lengths.Method Detail |
---|
public void growthFactor(int growthFactor)
growthFactor
- the new growth factor; it must be positive.public int growthFactor()
growthFactor(int)
public double put(byte k, double v)
Byte2DoubleFunction
put
in interface Byte2DoubleFunction
put
in class AbstractByte2DoubleFunction
k
- the key.v
- the value.
Function.put(Object,Object)
public java.lang.Double put(java.lang.Byte ok, java.lang.Double ov)
AbstractByte2DoubleFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
put
in interface Function<java.lang.Byte,java.lang.Double>
put
in interface java.util.Map<java.lang.Byte,java.lang.Double>
put
in class AbstractByte2DoubleFunction
ok
- the key.ov
- the value.
null
if no value was present for the given key.Map.put(Object,Object)
public boolean containsValue(double v)
AbstractByte2DoubleMap
AbstractByte2DoubleMap.values()
.
containsValue
in interface Byte2DoubleMap
containsValue
in class AbstractByte2DoubleMap
Map.containsValue(Object)
public void clear()
Function
clear
in interface Function<java.lang.Byte,java.lang.Double>
clear
in interface java.util.Map<java.lang.Byte,java.lang.Double>
clear
in class AbstractByte2DoubleFunction
Map.clear()
public boolean containsKey(byte k)
AbstractByte2DoubleMap
AbstractByte2DoubleMap.keySet()
.
containsKey
in interface Byte2DoubleFunction
containsKey
in class AbstractByte2DoubleMap
Function.containsKey(Object)
public int size()
Function
Most function implementations will have some knowledge of the intended number of keys in their domain. In some cases, however, this might not be possible.
size
in interface Function<java.lang.Byte,java.lang.Double>
size
in interface java.util.Map<java.lang.Byte,java.lang.Double>
public boolean isEmpty()
isEmpty
in interface java.util.Map<java.lang.Byte,java.lang.Double>
isEmpty
in class AbstractByte2DoubleMap
public double get(byte k)
Byte2DoubleFunction
get
in interface Byte2DoubleFunction
k
- the key.
Function.get(Object)
public double remove(byte k)
Byte2DoubleFunction
remove
in interface Byte2DoubleFunction
remove
in class AbstractByte2DoubleFunction
Function.remove(Object)
public java.lang.Double get(java.lang.Byte ok)
public java.lang.Double remove(java.lang.Object ok)
AbstractByte2DoubleFunction
null
on a missing key.
This method must check whether the provided key is in the map using containsKey()
. Thus,
it probes the map twice. Implementors of subclasses should override it with a more efficient method.
remove
in interface Function<java.lang.Byte,java.lang.Double>
remove
in interface java.util.Map<java.lang.Byte,java.lang.Double>
remove
in class AbstractByte2DoubleFunction
null
if no value was present for the given key.Map.remove(Object)
public Byte2DoubleMap.FastEntrySet byte2DoubleEntrySet()
Byte2DoubleMap
This method is necessary because there is no inheritance along
type parameters: it is thus impossible to strengthen Byte2DoubleMap.entrySet()
so that it returns an ObjectSet
of objects of type Byte2DoubleMap.Entry
(the latter makes it possible to
access keys and values with type-specific methods).
byte2DoubleEntrySet
in interface Byte2DoubleMap
Byte2DoubleMap.entrySet()
public ByteSet keySet()
AbstractByte2DoubleMap
The view is backed by the set returned by AbstractByte2DoubleMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
keySet
in interface Byte2DoubleMap
keySet
in interface java.util.Map<java.lang.Byte,java.lang.Double>
keySet
in class AbstractByte2DoubleMap
Map.keySet()
public DoubleCollection values()
AbstractByte2DoubleMap
The view is backed by the set returned by AbstractByte2DoubleMap.entrySet()
. Note that
no attempt is made at caching the result of this method, as this would
require adding some attributes that lightweight implementations would
not need. Subclasses may easily override this policy by calling
this method and caching the result, but implementors are encouraged to
write more efficient ad-hoc implementations.
values
in interface Byte2DoubleMap
values
in interface java.util.Map<java.lang.Byte,java.lang.Double>
values
in class AbstractByte2DoubleMap
Map.values()
public boolean rehash()
This method should be called when the map underwent numerous deletions and insertions. In this case, free entries become rare, and unsuccessful searches require probing all entries. For reasonable load factors this method is linear in the number of entries. You will need as much additional free memory as that occupied by the table.
If you need to reduce the table siza to fit exactly
this map, you must use trim()
.
true
if there was enough memory to rehash the map, false
otherwise.trim()
public boolean trim()
This method rehashes to the smallest size satisfying the load factor. It can be used when the map will not be changed anymore, so to optimize access speed (by collecting deleted entries) and size.
If the table size is already the minimum possible, this method
does nothing. If you want to guarantee rehashing, use rehash()
.
trim(int)
,
rehash()
public boolean trim(int n)
Let N be the smallest table size that can hold
max(n,
entries, still satisfying the load factor. If the current
table size is smaller than or equal to N, this method does
nothing. Otherwise, it rehashes this map in a table of size
N.
size()
)
This method is useful when reusing maps. Clearing a map leaves the table size untouched. If you are reusing a map many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient maps.
n
- the threshold for the trimming.
trim()
,
rehash()
public java.lang.Object clone()
This method performs a deep copy of this hash map; the data stored in the map, however, is not cloned. Note that this makes a difference only for object keys.
clone
in class java.lang.Object
public int hashCode()
equals()
is not overriden, it is important
that the value returned by this method is the same value as
the one returned by the overriden method.
hashCode
in interface java.util.Map<java.lang.Byte,java.lang.Double>
hashCode
in class AbstractByte2DoubleMap
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |