
CLooG
A Loop Generator For Scanning Polyhedra

Edition 2.1, for CLooG 0.16.1
October 15th 2007

Cédric Bastoul

(September 2001)

Cédric Bastoul

SCHEDULES GENERATE !!! I just need to apply them now, where can I find
a good code generator ?!

Paul Feautrier

Hmmm. I fear that if you want something powerful enough, you’ll have to write
it yourself !

This manual is for CLooG version 0.16.1, a software which generates loops for scanning
Z-polyhedra. That is, CLooG produces a code visiting each integral point of a union of
parametrized polyhedra. CLooG is designed to avoid control overhead and to produce a
very efficient code.

It would be quite kind to refer the following paper in any publication that results from the
use of the CLooG software or its library:

@InProceedings{Bas04,

author = {C. Bastoul},

title = {Code Generation in the Polyhedral Model

Is Easier Than You Think},

booktitle = {PACT’13 IEEE International Conference on

Parallel Architecture and Compilation Techniques},

year = 2004,

pages = {7--16},

month = {september},

address = {Juan-les-Pins}

}

Copyright c© 2002-2005 Cédric Bastoul.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 published by the Free Software Founda-
tion. To receive a copy of the GNU Free Documentation License, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

i

Table of Contents

1 Introduction . 1
1.1 Basically, what’s the point ? . 1
1.2 Defining a Scanning Order: Scattering Functions 2

2 Using the CLooG Software . 5
2.1 A First Example . 5
2.2 Writing The Input File . 6

2.2.1 Domain Representation . 7
2.2.2 Scattering Function Representation . 8

2.3 Calling CLooG . 10
2.4 CLooG Options . 11

2.4.1 Last Depth to Optimize Control -l <depth> 11
2.4.2 First Depth to Optimize Control -f <depth> 11
2.4.3 Simplify Convex Hull -sh <boolean> . 12
2.4.4 Once Time Loop Elimination -otl <boolean> 13
2.4.5 Equality Spreading -esp <boolean> . 13
2.4.6 First Level for Spreading -fsp <level> 13
2.4.7 Statement Block -block <boolean> . 14
2.4.8 Loop Strides -strides <boolean> . 14
2.4.9 Compilable Code -compilable <value> 15
2.4.10 Callable Code -callable <boolean> . 16
2.4.11 Output -o <output> . 17
2.4.12 Help --help or -h . 17
2.4.13 Version --version or -v . 17
2.4.14 Quiet --quiet or -q . 17

2.5 A Full Example . 17

3 Using the CLooG Library . 21
3.1 CLooG Data Structures Description . 21

3.1.1 CloogState . 21
3.1.2 CloogMatrix . 21
3.1.3 CloogDomain . 22

3.1.3.1 PolyLib . 22
3.1.3.2 isl . 22

3.1.4 CloogScattering . 23
3.1.4.1 PolyLib . 23
3.1.4.2 isl . 23

3.1.5 CloogUnionDomain . 24
3.1.5.1 isl . 24

3.1.6 CloogStatement . 25
3.1.7 CloogOptions . 25
3.1.8 CloogInput . 26

ii CLooG - a loop generator for scanning polyhedra

3.1.9 Dump CLooG Input File Function . 26
3.2 CLooG Output . 26
3.3 Retrieving version information . 30
3.4 Example of Library Utilization . 30

4 Installing CLooG . 33
4.1 License . 33
4.2 Requirements . 33

4.2.1 PolyLib (optional) . 33
4.2.2 GMP Library (optional) . 34

4.3 CLooG Basic Installation . 34
4.4 Optional Features . 35
4.5 Uninstallation . 36

5 Documentation . 37

6 References . 39

Chapter 1: Introduction 1

1 Introduction

CLooG is a free software and library generating loops for scanning Z-polyhedra. That is,
it finds a code (e.g. in C, FORTRAN...) that reaches each integral point of one or more
parameterized polyhedra. CLooG has been originally written to solve the code generation
problem for optimizing compilers based on the polytope model. Nevertheless it is used now
in various area, e.g., to build control automata for high-level synthesis or to find the best
polynomial approximation of a function. CLooG may help in any situation where scanning
polyhedra matters. It uses the best state-of-the-art code generation algorithm known as the
Quilleré et al. algorithm (see [Qui00], page 39) with our own improvements and extensions
(see [Bas04], page 39). The user has full control on generated code quality. On one hand,
generated code size has to be tuned for sake of readability or instruction cache use. On the
other hand, we must ensure that a bad control management does not hamper performance
of the generated code, for instance by producing redundant guards or complex loop bounds.
CLooG is specially designed to avoid control overhead and to produce a very efficient code.

CLooG stands for Chunky Loop Generator : it is a part of the Chunky project, a research
tool for data locality improvement (see [Bas03a], page 39). It is designed also to be the back-
end of automatic parallelizers like LooPo (see [Gri04], page 39). Thus it is very compilable
code oriented and provides powerful program transformation facilities. Mainly, it allows
the user to specify very general schedules where, e.g., unimodularity or invertibility of the
transformation doesn’t matter.

The current version is still under evaluation, and there is no guarantee that the upward
compatibility will be respected (but the previous API has been stable for two years, we
hope this one will be as successful -and we believe it-). A lot of reports are necessary to
freeze the library API and the input file shape. Most API changes from 0.12.x to 0.14.x
have been requested by the users themselves. Thus you are very welcome and encouraged
to post reports on bugs, wishes, critics, comments, suggestions or successful experiences in
the forum of http://www.CLooG.org or to send them to cedric.bastoul@inria.fr directly.

1.1 Basically, what’s the point ?

If you want to use CLooG, this is because you want to scan or to find something inside the
integral points of a set of polyhedra. There are many reasons for that. Maybe you need the
generated code itself because it actually implements a very smart program transformation
you found. Maybe you want to use the generated code because you know that the solution of
your problem belongs to the integral points of those damned polyhedra and you don’t know
which one. Maybe you just want to know if a polyhedron has integral points depending on
some parameters, which is the lexicographic minimum, maximum, the third on the basis of
the left etc. Probably you have your own reasons to use CLooG.

Let us illustrate a basic use of CLooG. Suppose we have a set of affine constraints
that describes a part of a whatever-dimensional space, called a domain, and we want to
scan it. Let us consider for instance the following set of constraints where ‘i’ and ‘j’ are
the unknown (the two dimensions of the space) and ‘m’ and ‘n’ are the parameters (some
symbolic constants):

2<=i<=n

2<=j<=m

j<=n+2-i

2 CLooG - a loop generator for scanning polyhedra

Let us also consider that we have a partial knowledge of the parameter values, called the
context, expressed as affine constraints as well, for instance:

m>=2

n>=2

Note that using parameters is optional, if you are not comfortable with parameter ma-
nipulation, just replace them with any scalar value that fits m>=2 and n>=2. A graphical
representation of this part of the 2-dimensional space, where the integral points are repre-
sented using heavy dots would be for instance:

The affine constraints of both the domain and the context are what we will provide to
CLooG as input (in a particular shape that will be described later). The output of CLooG
is a pseudo-code to scan the integral points of the input domain according to the context:

for (i=2;i<=n;i++) {

for (j=2;j<=min(m,-i+n+2);j++) {

S1(i,j) ;

}

}

If you felt such a basic example is yet interesting, there is a good chance that CLooG
is appropriate for you. CLooG can do much more: scanning several polyhedra or unions
of polyhedra at the same time, applying general affine transformations to the polyhedra,
generate compilable code etc. Welcome to the CLooG’s user’s guide !

1.2 Defining a Scanning Order: Scattering Functions

In CLooG, domains only define the set of integral points to scan and their coordinates.
In particular, CLooG is free to choose the scanning order for generating the most efficient
code. This means, for optimizing/parallelizing compiler people, that CLooG doesn’t make
any speculation on dependences on and between statements (by the way, it’s not its job !).
For instance, if an user give to CLooG only two domains S1:1<=i<=n, S2:1<=i<=n and the
context n>=1, the following pseudo-codes are considered to be equivalent:

/* A convenient target pseudo-code. */

for (i=1;i<=N;i++) {

S1(i) ;

}

for (i=1;i<=N;i++) {

S2(i) ;

}

Chapter 1: Introduction 3

/* Another convenient target pseudo-code. */

for (i=1;i<=N;i++) {

S1(i) ;

S2(i) ;

}

The default behaviour of CLooG is to generate the second one, since it is optimized in
control. It is right if there are no data dependences between S1 and S2, but wrong otherwise.

Thus it is often useful to force scanning to respect a given order. This can be done in
CLooG by using scattering functions. Scattering is a shortcut for scheduling, allocation,
chunking functions and the like we can find in the restructuring compilation literature.
There are a lot of reasons to scatter the integral points of the domains (i.e. the statement
instances of a program, for compilation people), parallelization or optimization are good
examples. For instance, if the user wants for any reason to set some precedence constraints
between the statements of our example above in order to force the generation of the first
code, he can do it easily by setting (for example) the following scheduling functions:

θS1(i) = (1)

θS2(j) = (2)

This scattering means that each integral point of the domain S1 is scanned at logical
date 1 while each integral point of the domain S2 is scanned at logical date 2. As a result,
the whole domain S1 is scanned before domain S2 and the first code in our example is
generated.

The user can set every kind of affine scanning order thanks to the scattering func-
tions. Each domain has its own scattering function and each scattering function may
be multi-dimensional. A multi-dimensional logical date may be seen as classical date
(year,month,day,hour,minute,etc.) where the first dimensions are the most significant. Each
scattering dimension may depend linearly on the original dimensions (e.g., i), the parame-
ters (e.g., n) ans scalars (e.g., 2).

A very useful example of multi-dimensional scattering functions is, for compilation peo-
ple, the scheduling of the original program. The basic data to use for code generation are
statement iteration domains. As we saw, these data are not sufficient to rebuild the original
program (what is the ordering between instances of different statements ?). The missing
data can be put in the scattering functions as the original scheduling. The method to com-
pute it is quite simple (see [Fea92], page 39). The idea is to build an abstract syntax tree
of the program and to read the scheduling for each statement. For instance, let us consider
the following implementation of a Cholesky factorization:

4 CLooG - a loop generator for scanning polyhedra

/* A Cholesky factorization kernel. */

for (i=1;i<=N;i++) {

for (j=1;j<=i-1;j++) {

a[i][i] -= a[i][j] ; /* S1 */

}

a[i][i] = sqrt(a[i][i]) ; /* S2 */

for (j=i+1;j<=N;j++) {

for (k=1;k<=i-1;k++) {

a[j][i] -= a[j][k]*a[i][k] ; /* S3 */

}

a[j][i] /= a[i][i] ; /* S4 */

}

}

}

The corresponding abstract syntax tree is given in the following figure. It directly gives
the scattering functions (schedules) for all the statements of the program.

θS1(i, j)

T = (0, i, 0, j, 0)T

θS2(i) = (0, i, 1)T

θS3(i, j, k)
T = (0, i, 2, j, 0, k, 0)T

θS4(i, j)
T = (0, i, 2, j, 1)T

These schedules depend on the iterators and give for each instance of each statement
a unique execution date. Using such scattering functions allow CLooG to re-generate the
input code.

Chapter 2: Using the CLooG Software 5

2 Using the CLooG Software

2.1 A First Example

CLooG takes as input a file that must be written accordingly to a grammar described in
depth in a further section (see Section 2.2 [Writing The Input File], page 6). Moreover
it supports many options to tune the target code presentation or quality as discussed in a
dedicated section (see Section 2.3 [Calling CLooG], page 10). However, a basic use of CLooG
is not very complex and we present in this section how to generate the code corresponding
to a basic example discussed earlier (see Section 1.1 [Basics], page 1).

The problem is to find the code that scans a 2-dimensional polyhedron where ‘i’ and ‘j’
are the unknown (the two dimensions of the space) and ‘m’ and ‘n’ are the parameters (the
symbolic constants), defined by the following set of constraints:

2<=i<=n

2<=j<=m

j<=n+2-i

We also consider a partial knowledge of the parameter values, expressed thanks to the
following affine constraints:

m>=2

n>=2

An input file that corresponds to this problem, and asks for a generated code in C,
may be the following. Note that we do not describe here precisely the structure and the
components of this file (see Section 2.2 [Writing The Input File], page 6 for such information,
if you feel it necessary):

---------------------- CONTEXT ----------------------

c # language is C

Context (constraints on two parameters)

2 4 # 2 lines and 4 columns

eq/in m n 1 eq/in: 1 for inequality >=0, 0 for equality =0

1 1 0 -2 # 1*m + 0*n -2*1 >= 0, i.e. m>=2

1 0 1 -2 # 0*m + 1*n -2*1 >= 0, i.e. n>=2

1 # We want to set manually the parameter names

m n # parameter names

--------------------- STATEMENTS --------------------

1 # Number of statements

1 # First statement: one domain

First domain

5 6 # 5 lines and 6 columns

eq/in i j m n 1

1 1 0 0 0 -2 # i >= 2

1 -1 0 0 1 0 # i <= n

6 CLooG - a loop generator for scanning polyhedra

1 0 1 0 0 -2 # j >= 2

1 0 -1 1 0 0 # j <= m

1 -1 -1 0 1 2 # n+2-i>=j

0 0 0 # for future options

1 # We want to set manually the iterator names

i j # iterator names

--------------------- SCATTERING --------------------

0 # No scattering functions

This file may be called ‘basic.cloog’ (this example is provided in the CLooG distribu-
tion as test/manual_basic.cloog) and we can ask CLooG to process it and to generate
the code by a simple calling to CLooG with this file as input: ‘cloog basic.cloog’. By
default, CLooG will print the generated code in the standard output:

/* Generated by CLooG v0.16.1 in 0.00s. */

for (i=2;i<=n;i++) {

for (j=2;j<=min(m,-i+n+2);j++) {

S1(i,j) ;

}

}

2.2 Writing The Input File

The input text file contains a problem description, i.e. the context, the domains and the
scattering functions. Because CLooG is very ’compilable code generation oriented’, we can
associate some additional informations to each domain. We call this association a statement.
The set of all informations is called a program. The input file respects the grammar below
(terminals are preceded by " "):

File ::= Program

Program ::= Context Statements Scattering

Context ::= Language Domain_union Naming

Statements ::= Nb_statements Statement_list Naming

Scatterings ::= Nb_functions Scattering_list Naming

Naming ::= Option Name_list

Name_list ::= _String Name_list | (void)

Statement_list ::= Statement Statement_list | (void)

Domain_list ::= _Domain Domain_list | (void)

Scattering_list ::= Domain_union Scattering_list | (void)

Statement ::= Iteration_domain 0 0 0

Iteration_domain ::= Domain_union

Domain_union ::= Nb_domains Domain_list

Option ::= 0 | 1

Language ::= c | f

Nb_statements ::= _Integer

Nb_domains ::= _Integer

Nb_functions ::= _Integer

Chapter 2: Using the CLooG Software 7

Note: if there is only one domain in a ‘Domain_union’, i.e., if ‘Nb_domains’ is 1, then
this 1 may be omitted.

• ‘Context’ represents the informations that are shared by all the statements. It consists
on the language used (which can be ‘c’ for C or ‘f’ for FORTRAN 90) and the global
constraints on parameters. These constraints are essential since they give to CLooG
the number of parameters. If there is no parameter or no constraints on parameters,
just give a constraint always satisfied like 1 ≥ 0. ‘Naming’ sets the parameter names. If
the naming option ‘Option’ is 1, parameter names will be read on the next line. There
must be exactly as many names as parameters. If the naming option ‘Option’ is 0,
parameter names are automatically generated. The name of the first parameter will
be ‘M’, and the name of the (n + 1)th parameter directly follows the name of the nth

parameter in ASCII code. It is the user responsibility to ensure that parameter names,
iterators and scattering dimension names are different.

• ‘Statements’ represents the informations on the statements. ‘Nb_statements’ is
the number of statements in the program, i.e. the number of ‘Statement’ items
in the ‘Statement_list’. ‘Statement’ represents the informations on a given
statement. To each statement is associated a domain (the statement iteration domain:
‘Iteration_domain’) and three zeroes that represents future options. ‘Naming’ sets
the iterator names. If the naming option ‘Option’ is 1, the iterator names will be read
on the next line. There must be exactly as many names as nesting level in the deepest
iteration domain. If the naming option ‘Option’ is 0, iterator names are automatically
generated. The iterator name of the outermost loop will be ‘i’, and the iterator name
of the loop at level n + 1 directly follows the iterator name of the loop at level n in
ASCII code.

• ‘Scatterings’ represents the informations on scattering functions. ‘Nb_functions’
is the number of functions (it must be equal to the number of statements or 0 if
there is no scattering function). The functions themselves are represented through
‘Scattering_list’. ‘Naming’ sets the scattering dimension names. If the naming
option ‘Option’ is 1, the scattering dimension names will be read on the next line.
There must be exactly as many names as scattering dimensions. If the naming option
‘Option’ is 0, scattering dimension names are automatically generated. The name of
the nth scattering dimension will be ‘cn’.

2.2.1 Domain Representation

As shown by the grammar, the input file describes the various informations thanks to
characters, integers and domains. Each domain is defined by a set of constraints in the
PolyLib format (see [Wil93], page 39). They have the following syntax:

1. some optional comment lines beginning with ‘#’,

2. the row and column numbers, possibly followed by comments,

3. the constraint rows, each row corresponds to a constraint the domain have to satisfy.
Each row must be on a single line and is possibly followed by comments. The constraint
is an equality p(x) = 0 if the first element is 0, an inequality p(x) ≥ 0 if the first
element is 1. The next elements are the unknown coefficients, followed by the parameter
coefficients. The last element is the constant factor.

8 CLooG - a loop generator for scanning polyhedra

For instance, assuming that ‘i’, ‘j’ and ‘k’ are iterators and ‘m’ and ‘n’ are parameters,
the domain defined by the following constraints :

−i+m ≥ 0
−j + n ≥ 0
i+ j − k ≥ 0

can be written in the input file as follows :

This is the domain

3 7 # 3 lines and 7 columns

eq/in i j k m n 1

1 -1 0 0 1 0 0 # -i + m >= 0

1 0 -1 0 0 1 0 # -j + n >= 0

1 1 1 -1 0 0 0 # i + j - k >= 0

Each iteration domain ‘Iteration_domain’ of a given statement is a union of polyhe-
dra ‘Domain_union’. A union is defined by its number of elements ‘Nb_domains’ and the
elements themselves ‘Domain_list’. For instance, let us consider the following pseudo-code:

for (i=1;i<=n;i++) {

if ((i >= m) || (i <= 2*m))

S1 ;

for (j=i+1;j<=m;j++)

S2 ;

}

The iteration domain of ‘S1’ can be divided into two polyhedra and written in the input
file as follows:

2 # Number of polyhedra in the union

First domain

3 5 # 3 lines and 5 columns

eq/in i m n 1

1 1 0 0 -1 # i >= 1

1 -1 0 1 0 # i <= n

1 1 -1 0 0 # i >= m

Second domain

3 5 # 3 lines and 5 columns

eq/in i m n 1

1 1 0 0 -1 # i >= 1

1 -1 0 1 0 # i <= n

1 -1 2 0 0 # i <= 2*m

2.2.2 Scattering Function Representation

Scattering functions are depicted in the input file thanks a representation very close to the
domain one. An integer gives the number of functions ‘Nb_functions’ and each function
is represented by a domain. Each line of the domain corresponds to an equality defining a
dimension of the function. Note that at present (CLooG 0.16.1) all functions must have the
same scattering dimension number. If a user wants to set scattering functions with different
dimensionality, he has to complete the smaller one with zeroes to reach the maximum
dimensionality. For instance, let us consider the following code and scheduling functions:

Chapter 2: Using the CLooG Software 9

for (i=1;i<=n;i++) {

if ((i >= m) || (i <= 2*m))

S1 ;

for (j=i+1;j<=m;j++)

S2 ;

} {
θS1(i) = (i, 0)T

θS2(i, j)
T = (n, i+ j)T

This scheduling can be written in the input file as follows:

2 # Number of scattering functions

First function

2 7 # 2 lines and 7 columns

eq/in c1 c2 i m n 1

0 1 0 -1 0 0 0 # c1 = i

0 0 1 0 0 0 0 # c2 = 0

Second function

2 8 # 2 lines and 8 columns

eq/in c1 c2 i j m n 1

0 1 0 0 0 0 -1 0 # c1 = n

0 0 1 -1 -1 0 0 0 # c2 = i+j

The complete input file for the user who wants to generate the code for this example
with the preceding scheduling would be (this file is provided in the CLooG distribution as
test/manual_scattering.cloog:

---------------------- CONTEXT ----------------------

c # language is C

Context (no constraints on two parameters)

1 4 # 1 lines and 4 columns

eq/in m n 1

1 0 0 0 # 0 >= 0, always true

1 # We want to set manually the parameter names

m n # parameter names

--------------------- STATEMENTS --------------------

2 # Number of statements

2 # First statement: two domains

First domain

3 5 # 3 lines and 5 columns

eq/in i m n 1

1 1 0 0 -1 # i >= 1

1 -1 0 1 0 # i <= n

1 1 -1 0 0 # i >= m

Second domain

10 CLooG - a loop generator for scanning polyhedra

3 5 # 3 lines and 5 columns

eq/in i m n 1

1 1 0 0 -1 # i >= 1

1 -1 0 1 0 # i <= n

1 -1 2 0 0 # i <= 2*m

0 0 0 # for future options

1 # Second statement: one domain

4 6 # 4 lines and 6 columns

eq/in i j m n 1

1 1 0 0 0 -1 # i >= 1

1 -1 0 0 1 0 # i <= n

1 -1 1 0 0 -1 # j >= i+1

1 0 -1 1 0 0 # j <= m

0 0 0 # for future options

1 # We want to set manually the iterator names

i j # iterator names

--------------------- SCATTERING --------------------

2 # Scattering functions

First function

2 7 # 2 lines and 7 columns

eq/in p1 p2 i m n 1

0 1 0 -1 0 0 0 # p1 = i

0 0 1 0 0 0 0 # p2 = 0

Second function

2 8 # 2 lines and 8 columns

eq/in p1 p2 i j m n 1

0 1 0 0 0 0 -1 0 # p1 = n

0 0 1 -1 -1 0 0 0 # p2 = i+j

1 # We want to set manually the scattering dimension names

p1 p2 # scattering dimension names

2.3 Calling CLooG

CLooG is called by the following command:

cloog [options | file]

The default behavior of CLooG is to read the input informations from a file and to print
the generated code or pseudo-code on the standard output. CLooG’s behavior and the
output code shape is under the user control thanks to many options which are detailed a
further section (see Section 2.4 [CLooG Options], page 11). file is the input file. stdin

is a special value: when used, input is standard input. For instance, we can call CLooG
to treat the input file basic.cloog with default options by typing: cloog basic.cloog or
more basic.cloog | cloog stdin.

Chapter 2: Using the CLooG Software 11

2.4 CLooG Options

2.4.1 Last Depth to Optimize Control -l <depth>

-l <depth>: this option sets the last loop depth to be optimized in control. The higher this
depth, the less control overhead. For instance, with some input file, a user can generate
different pseudo-codes with different depth values as shown below.

/* Generated using a given input file and option -l 1 */

for (i=0;i<=M;i++) {

S1 ;

for (j=0;j<=N;j++) {

S2 ;

}

for (j=0;j<=N;j++) {

S3 ;

}

S4 ;

}

/* Generated using the same input file but option -l 2 */

for (i=0;i<=M;i++) {

S1 ;

for (j=0;j<=N;j++) {

S2 ;

S3 ;

}

S4 ;

}

In this example we can see that this option can change the operation execution order
between statements. Let us remind that CLooG does not make any speculation on de-
pendences between statements (see Section 1.2 [Scattering], page 2). Thus if nothing (i.e.
scattering functions) forbids this, CLooG considers the above codes to be equivalent. If
there is no scattering functions, the minimum value for depth is 1 (in the case of 0, the user
doesn’t really need a loop generator !), and the number of scattering dimensions otherwise
(CLooG will warn the user if he doesn’t respect such constraint). The maximum value for
depth is -1 (infinity). Default value is infinity.

2.4.2 First Depth to Optimize Control -f <depth>

-f <depth>: this option sets the first loop depth to be optimized in control. The lower this
depth, the less control overhead (and the longer the generated code). For instance, with
some input file, a user can generate different pseudo-codes with different depth values as
shown below. The minimum value for depth is 1, and the maximum value is -1 (infinity).
Default value is 1.

12 CLooG - a loop generator for scanning polyhedra

/* Generated using a given input file and option -f 3 */

for (i=1;i<=N;i++) {

for (j=1;j<=M;j++) {

S1 ;

if (j >= 10) {

S2 ;

}

}

}

/* Generated using the same input file but option -f 2 */

for (i=1;i<=N;i++) {

for (j=1;j<=9;j++) {

S1 ;

}

for (j=10;j<=M;j++) {

S1 ;

S2 ;

}

}

2.4.3 Simplify Convex Hull -sh <boolean>

-sh <boolean>: this option enables (boolean=1) or forbids (boolean=0) a simplification
step that may simplify some constraints. This option works only for generated code without
code duplication (it means, you have to tune -f and -l options first to generate only a loop
nest with internal guards). For instance, with the input file test/union.cloog, a user can
generate different pseudo-codes as shown below. Default value is 0.

/* Generated using test/union.cloog and option -f -1 -l 2 -override */

for (i=0;i<=11;i++) {

for (j=max(0,5*i-50);j<=min(15,5*i+10);j++) {

if ((i <= 10) && (j <= 10)) {

S1 ;

}

if ((i >= 1) && (j >= 5)) {

S2 ;

}

}

}

Chapter 2: Using the CLooG Software 13

/* Generated using the same input file but option -sh 1 -f -1 -l 2 -override */

for (i=0;i<=11;i++) {

for (j=0;j<=15;j++) {

if ((i <= 10) && (j <= 10)) {

S1 ;

}

if ((i >= 1) && (j >= 5)) {

S2 ;

}

}

}

2.4.4 Once Time Loop Elimination -otl <boolean>

-otl <boolean>: this option allows (boolean=1) or forbids (boolean=0) the simplification
of loops running once. Default value is 1.

/* Generated using a given input file and option -otl 0 */

for (j=i+1;j<=i+1;j++) {

S1 ;

}

/* Generated using the same input file but option -otl 1 */

j = i+1 ;

S1 ;

2.4.5 Equality Spreading -esp <boolean>

-esp <boolean>: this option allows (boolean=1) or forbids (boolean=0) values spreading
when there are equalities. Default value is 1.

/* Generated using a given input file and option -esp 0 */

i = M+2 ;

j = N ;

for (k=i;k<=j+M;k++) {

S1 ;

}

/* Generated using the same input file but option -esp 1 */

for (k=M+2;k<=N+M;k++) {

S1(i = M+2, j = N) ;

}

2.4.6 First Level for Spreading -fsp <level>

-fsp <level>: it can be useful to set a first level to begin equality spreading. Particularly
when using scattering functions, the user may want to see the scattering dimension values
instead of spreading or hiding them. If user has set a spreading, level is the first level to
start it. Default value is 1.

14 CLooG - a loop generator for scanning polyhedra

/* Generated using a given input file and option -fsp 1 */

for (j=0;j<=N+M;j++) {

S1(i = N) ;

}

for (j=0;j<=N+M;j++) {

S1(i = M) ;

}

/* Generated using the same input file but option -fsp 2 */

c1 = N ;

for (j=0;j<=c1+M;j++) {

S1(i = c1) ;

}

c1 = M ;

for (j=0;j<=N+c1;j++) {

S1(i = c1) ;

}

2.4.7 Statement Block -block <boolean>

-block <boolean>: this option allows (boolean=1) to create a statement block for each new
iterator, even if there is only an equality. This can be useful in order to parse the generated
pseudo-code. When boolean is set to 0 or when the generation language is FORTRAN,
this feature is disabled. Default value is 0.

/* Generated using a given input file and option -block 0 */

i = M+2 ;

j = N ;

S1 ;

/* Generated using the same input file but option -block 1 */

{ i = M+2 ;

{ j = N ;

S1 ;

}

}

2.4.8 Loop Strides -strides <boolean>

-strides <boolean>: this options allows (boolean=1) to handle non-unit strides for loop
increments. This can remove a lot of guards and make the generated code more efficient.
Default value is 0.

/* Generated using a given input file and option -strides 0 */

for (i=1;i<=n;i++) {

if (i%2 == 0) {

S1(j = i/2) ;

}

if (i%4 == 0) {

S2(j = i/4) ;

}

}

Chapter 2: Using the CLooG Software 15

/* Generated using the same input file but option -strides 1 */

for (i=2;i<=n;i+=2) {

S1(j = i/2) ;

if (i%4 == 0) {

S2(j = i/4) ;

}

}

2.4.9 Compilable Code -compilable <value>

-compilable <value>: this options allows (value is not 0) to generate a compilable code
where all parameters have the integral value value. This option creates a macro for each
statement. Since CLooG do not know anything about the statement sources, it fills the
macros with a basic increment that computes the total number of scanned integral points.
The user may change easily the macros according to his own needs. This option is possible
only if the generated code is in C. Default value is 0.

/* Generated using a given input file and option -compilable 0 */

for (i=0;i<=n;i++) {

for (j=0;j<=n;j++) {

S1 ;

S2 ;

}

S3 ;

}

/* Generated using the same input file but option -compilable 10 */

/* DON’T FORGET TO USE -lm OPTION TO COMPILE. */

/* Useful headers. */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* Parameter value. */

#define PARVAL 10

/* Statement macros (please set). */

#define S1(i,j) {total++;}

#define S2(i,j) {total++;}

#define S3(i) {total++;}

int main() {

/* Original iterators. */

int i, j ;

/* Parameters. */

int n=PARVAL, total=0 ;

for (i=0;i<=n;i++) {

16 CLooG - a loop generator for scanning polyhedra

for (j=0;j<=n;j++) {

S1(i,j) ;

S2(i,j) ;

}

S3(i) ;

}

printf("Number of integral points: %d.\n",total) ;

return 0 ;

}

2.4.10 Callable Code -callable <boolean>

-callable <boolean>: if boolean=1, then a test function will be generated that has the
parameters as arguments. Similarly to the -compilable option, a macro for each statement
is generated. The generated definitions of these macros are as used during the correctness
testing, but they can easily be changed by the user to suit her own needs. This option is
only available if the target language is C. The default value is 0.

/* Generated from double.cloog with option -callable 0 */

for (i=0;i<=M;i++) {

S1 ;

for (j=0;j<=N;j++) {

S2 ;

S3 ;

}

S4 ;

}

/* Generated from double.cloog with option -callable 1 */

extern void hash(int);

/* Useful macros. */

#define floord(n,d) (((n)<0) ? ((n)-(d)+1)/(d) : (n)/(d))

#define ceild(n,d) (((n)<0) ? (n)/(d) : ((n)+(d)+1)/(d))

#define max(x,y) ((x) > (y) ? (x) : (y))

#define min(x,y) ((x) < (y) ? (x) : (y))

#define S1(i) { hash(1); hash(i); }

#define S2(i,j) { hash(2); hash(i); hash(j); }

#define S3(i,j) { hash(3); hash(i); hash(j); }

#define S4(i) { hash(4); hash(i); }

void test(int M, int N)

{

/* Original iterators. */

int i, j;

for (i=0;i<=M;i++) {

S1(i) ;

Chapter 2: Using the CLooG Software 17

for (j=0;j<=N;j++) {

S2(i,j) ;

S3(i,j) ;

}

S4(i) ;

}

}

2.4.11 Output -o <output>

-o <output>: this option sets the output file. stdout is a special value: when used, output
is standard output. Default value is stdout.

2.4.12 Help --help or -h

--help or -h: this option ask CLooG to print a short help.

2.4.13 Version --version or -v

--version or -v: this option ask CLooG to print some version informations.

2.4.14 Quiet --quiet or -q

--quiet or -q: this option tells CLooG not to print any informational messages.

2.5 A Full Example

Let us consider the allocation problem of a Gaussian elimination, i.e. we want to distribute
the various statement instances of the compute kernel onto different processors. The original
code is the following:

for (i=1;j<=N-1;i++) {

for (j=i+1;j<=N;j++) {

c[i][j] = a[j][i]/a[i][i] ; /* S1 */

for (k=i+1;k<=N;k++) {

a[j][k] -= c[i][j]*a[i][k] ; /* S2 */

}

}

}

The best affine allocation functions can be found by any good automatic parallelizer like
LooPo (see [Gri04], page 39):

{
θS1(i, j)

T = (i)
θS2(i, j, k)

T = (k)

To ensure that on each processor, the set of statement instances is executed according to
the original ordering, we add as minor scattering dimensions the original scheduling (see
Section 1.2 [Scattering], page 2):

{
θS1(i, j)

T = (i, 0, i, 0, j, 0)T

θS2(i, j, k)
T = (k, 0, i, 0, j, 1, k, 0)T

18 CLooG - a loop generator for scanning polyhedra

To ensure that the scattering functions have the same dimensionality, we complete the first
function with zeroes (this is a CLooG 0.16.1 and previous versions requirement, it should
be removed in a future version, don’t worry it’s absolutely legal !):

{
θS1(i, j)

T = (i, 0, i, 0, j, 0, 0, 0)T

θS2(i, j, k)
T = (k, 0, i, 0, j, 1, k, 0)T

The input file corresponding to this code generation problem could be (this file is provided
in the CLooG distribution as test/manual_gauss.cloog:

---------------------- CONTEXT ----------------------

c # language is C

Context (no constraints on one parameter)

1 3 # 1 line and 3 columns

eq/in n 1

1 0 0 # 0 >= 0, always true

1 # We want to set manually the parameter name

n # parameter name

--------------------- STATEMENTS --------------------

2 # Number of statements

1 # First statement: one domain

4 5 # 4 lines and 3 columns

eq/in i j n 1

1 1 0 0 -1 # i >= 1

1 -1 0 1 -1 # i <= n-1

1 -1 1 0 -1 # j >= i+1

1 0 -1 1 0 # j <= n

0 0 0 # for future options

1

Second statement: one domain

6 6 # 6 lines and 3 columns

eq/in i j k n 1

1 1 0 0 0 -1 # i >= 1

1 -1 0 0 1 -1 # i <= n-1

1 -1 1 0 0 -1 # j >= i+1

1 0 -1 0 1 0 # j <= n

1 -1 0 1 0 -1 # k >= i+1

1 0 0 -1 1 0 # k <= n

0 0 0 # for future options

0 # We let CLooG set the iterator names

--------------------- SCATTERING --------------------

Chapter 2: Using the CLooG Software 19

2 # Scattering functions

First function

8 13 # 3 lines and 3 columns

eq/in p1 p2 p3 p4 p5 p6 p7 p8 i j n 1

0 1 0 0 0 0 0 0 0 -1 0 0 0 # p1 = i

0 0 1 0 0 0 0 0 0 0 0 0 0 # p2 = 0

0 0 0 1 0 0 0 0 0 -1 0 0 0 # p3 = i

0 0 0 0 1 0 0 0 0 0 0 0 0 # p4 = 0

0 0 0 0 0 1 0 0 0 0 -1 0 0 # p5 = j

0 0 0 0 0 0 1 0 0 0 0 0 0 # p6 = 0

0 0 0 0 0 0 0 1 0 0 0 0 0 # p7 = 0

0 0 0 0 0 0 0 0 1 0 0 0 0 # p8 = 0

Second function

8 14 # 3 lines and 3 columns

eq/in p1 p2 p3 p4 p5 p6 p7 p8 i j k n 1

0 1 0 0 0 0 0 0 0 0 0 -1 0 0 # p1 = k

0 0 1 0 0 0 0 0 0 0 0 0 0 0 # p2 = 0

0 0 0 1 0 0 0 0 0 -1 0 0 0 0 # p3 = i

0 0 0 0 1 0 0 0 0 0 0 0 0 0 # p4 = 0

0 0 0 0 0 1 0 0 0 0 -1 0 0 0 # p5 = j

0 0 0 0 0 0 1 0 0 0 0 0 0 -1 # p6 = 1

0 0 0 0 0 0 0 1 0 0 0 -1 0 0 # p7 = k

0 0 0 0 0 0 0 0 1 0 0 0 0 0 # p8 = 0

1 # We want to set manually the scattering dimension names

p1 p2 p3 p4 p5 p6 p7 p8 # scattering dimension names

Calling CLooG, with for instance the command line cloog -fsp 2 gauss.cloog for a
better view of the allocation (the processor number is given by p1), will result on the
following target code that actually implements the transformation. A minor processing on
the dimension p1 to implement, e.g., MPI calls, which is not shown here may result in
dramatic speedups !

if (n >= 2) {

p1 = 1 ;

for (p5=2;p5<=n;p5++) {

S1(i = 1,j = p5) ;

}

}

for (p1=2;p1<=n-1;p1++) {

for (p3=1;p3<=p1-1;p3++) {

for (p5=p3+1;p5<=n;p5++) {

S2(i = p3,j = p5,k = p1) ;

}

}

for (p5=p1+1;p5<=n;p5++) {

S1(i = p1,j = p5) ;

}

20 CLooG - a loop generator for scanning polyhedra

}

if (n >= 2) {

p1 = n ;

for (p3=1;p3<=n-1;p3++) {

for (p5=p3+1;p5<=n;p5++) {

S2(i = p3,j = p5,k = n) ;

}

}

}

Chapter 3: Using the CLooG Library 21

3 Using the CLooG Library

The CLooG Library was implemented to allow the user to call CLooG directly from his
programs, without file accesses or system calls. The user only needs to link his programs
with C libraries. The CLooG library mainly provides one function (cloog_clast_create_
from_input) which takes as input the problem description with some options, and returns
the data structure corresponding to the generated code (a struct clast_stmt structure)
which is more or less an abstract syntax tree. The user can work with this data structure
and/or use our pretty printing function to write the final code in either C or FORTRAN.
Some other functions are provided for convenience reasons. These functions as well as the
data structures are described in this section.

3.1 CLooG Data Structures Description

In this section, we describe the data structures used by the loop generator to represent and
to process a code generation problem.

3.1.1 CloogState

CloogState *cloog_state_malloc(void);

void cloog_state_free(CloogState *state);

The CloogState structure is (implicitly) needed to perform any CLooG operation. It
should be created using cloog_state_malloc before any other CLooG objects are created
and destroyed using cloog_state_free after all objects have been freed. It is allowed to
use more than one CloogState structure at the same time, but an object created within
the state of a one CloogState structure is not allowed to interact with an object created
within the state of an other CloogState structure.

3.1.2 CloogMatrix

The CloogMatrix structure is equivalent to the PolyLib Matrix data structure (see [Wil93],
page 39). This structure is devoted to represent a set of constraints.

struct cloogmatrix

{ unsigned NbRows ; /* Number of rows. */

unsigned NbColumns ; /* Number of columns. */

cloog_int_t **p; /* Array of pointers to the matrix rows. */

cloog_int_t *p_Init; /* Matrix rows contiguously in memory. */

};

typedef struct cloogmatrix CloogMatrix;

CloogMatrix *cloog_matrix_alloc(unsigned NbRows, unsigned NbColumns);

void cloog_matrix_print(FILE *foo, CloogMatrix *m);

void cloog_matrix_free(CloogMatrix *matrix);

The whole matrix is stored in memory row after row at the p_Init address. p is an array
of pointers where p[i] points to the first element of the ith row. NbRows and NbColumns

are respectively the number of rows and columns of the matrix. Each row corresponds to a
constraint. The first element of each row is an equality/inequality tag. The constraint is an
equality p(x) = 0 if the first element is 0, but it is an inequality p(x) ≥ 0 if the first element

22 CLooG - a loop generator for scanning polyhedra

is 1. The next elements are the coefficients of the unknowns, followed by the coefficients of
the parameters, and finally the constant term. For instance, the following three constraints:

−i+m = 0
−j + n ≥ 0
j + i− k ≥ 0

would be represented by the following rows:

eq/in i j k m n cst

0 0 -1 0 1 0 0

1 -1 0 0 0 1 0

1 1 1 -1 0 0 0

To be able to provide different precision version (CLooG supports 32 bits, 64 bits and
arbitrary precision through the GMP library), the cloog_int_t type depends on the con-
figuration options (it may be long int for 32 bits version, long long int for 64 bits version,
and mpz_t for multiple precision version).

3.1.3 CloogDomain

CloogDomain *cloog_domain_union_read(CloogState *state,

FILE *input, int nb_parameters);

CloogDomain *cloog_domain_from_cloog_matrix(CloogState *state,

CloogMatrix *matrix, int nb_par);

void cloog_domain_free(CloogDomain *domain);

CloogDomain is an opaque type representing a polyhedral domain (a union of polyhedra).
A CloogDomain can be read from a file using cloog_domain_union_read or converted from
a CloogMatrix. The input format for cloog_domain_union_read is that of Section 2.2.1
[Domain Representation], page 7. The function cloog_domain_from_cloog_matrix takes
a CloogState, a CloogMatrix and int as input and returns a pointer to a CloogDomain.
matrix describes the domain and nb_par is the number of parameters in this domain.
The input data structures are neither modified nor freed. The CloogDomain can be freed
using cloog_domain_free. There are also some backend dependent functions for creating
CloogDomains.

3.1.3.1 PolyLib

#include <cloog/polylib/cloog.h>

CloogDomain *cloog_domain_from_polylib_polyhedron(CloogState *state,

Polyhedron *, int nb_par);

The function cloog_domain_from_polylib_polyhedron takes a PolyLib Polyhedron as
input and returns a pointer to a CloogDomain. The nb_par parameter indicates the number
of parameters in the domain. The input data structure if neither modified nor freed.

3.1.3.2 isl

#include <cloog/isl/cloog.h>

CloogDomain *cloog_domain_from_isl_set(struct isl_set *set);

__isl_give isl_set *isl_set_from_cloog_domain(CloogDomain *domain);

Chapter 3: Using the CLooG Library 23

The function cloog_domain_from_isl_set takes a struct isl_set as input and returns
a pointer to a CloogDomain. The function consumes a reference to the given struct isl_

set. Similarly, isl_set_from_cloog_domain consumes a reference to a CloogDomain and
returns an isl_set.

3.1.4 CloogScattering

CloogScattering *cloog_domain_read_scattering(CloogDomain *domain,

FILE *foo);

CloogScattering *cloog_scattering_from_cloog_matrix(CloogState *state,

CloogMatrix *matrix, int nb_scat, int nb_par);

void cloog_scattering_free(CloogScattering *);

The CloogScattering type represents a scattering function. A CloogScattering for a
given CloogDomain can be read from a file using cloog_scattering_read or converted
from a CloogMatrix using cloog_scattering_from_cloog_matrix. The function cloog_

scattering_from_cloog_matrix takes a CloogState, a CloogMatrix and two ints as
input and returns a pointer to a CloogScattering. matrix describes the scattering, while
nb_scat and nb_par are the number of scattering dimensions and the number of parameters,
respectively. The input data structures are neither modified nor freed. A CloogScattering

can be freed using cloog_scattering_free. There are also some backend dependent func-
tions for creating CloogScatterings.

3.1.4.1 PolyLib

#include <cloog/polylib/cloog.h>

CloogScattering *cloog_scattering_from_polylib_polyhedron(

CloogState *state, Polyhedron *polyhedron, int nb_par);

The function cloog_scattering_from_polylib_polyhedron takes a PolyLib Polyhedron

as input and returns a pointer to a CloogScattering. The nb_par parameter indicates
the number of parameters in the domain. The input data structure if neither modified nor
freed.

3.1.4.2 isl

#include <cloog/isl/cloog.h>

CloogScattering *cloog_scattering_from_isl_map(struct isl_map *map);

The function cloog_scattering_from_isl_map takes a struct isl_map as input and re-
turns a pointer to a CloogScattering. The output dimensions of the struct isl_map

correspond to the scattering dimensions, while the input dimensions correspond to the
domain dimensions. The function consumes a reference to the given struct isl_map.

24 CLooG - a loop generator for scanning polyhedra

3.1.5 CloogUnionDomain

enum cloog_dim_type { CLOOG_PARAM, CLOOG_ITER, CLOOG_SCAT };

CloogUnionDomain *cloog_union_domain_alloc(int nb_par);

CloogUnionDomain *cloog_union_domain_add_domain(CloogUnionDomain *ud,

const char *name, CloogDomain *domain,

CloogScattering *scattering, void *usr);

CloogUnionDomain *cloog_union_domain_set_name(CloogUnionDomain *ud,

enum cloog_dim_type type, int index, const char *name);

void cloog_union_domain_free(CloogUnionDomain *ud);

A CloogUnionDomain structure represents a union of scattered named domains. A
CloogUnionDomain is initialized by a call to cloog_union_domain_alloc, after which
domains can be added using cloog_union_domain_add_domain.

cloog_union_domain_alloc takes the number of parameters as input. cloog_union_

domain_add_domain takes a previously created CloogUnionDomain as input along with an
optional name, a domain, an optional scattering function and a user pointer. The name may
be NULL and is duplicated if it is not. If no name is specified, then the statements will be
named according to the order in which they were added. domain and scattering are taken
over by the CloogUnionDomain. scattering may be NULL, but it must be consistently NULL

or not over all calls to cloog_union_domain_add_domain. cloog_union_domain_set_name
can be used to set the names of parameters, iterators and scattering dimensions. The names
of iterators and scattering dimensions can only be set after all domains have been added.

There is also a backend dependent function for creating CloogUnionDomains.

3.1.5.1 isl

#include <cloog/isl/cloog.h>

CloogUnionDomain *cloog_union_domain_from_isl_union_map(

__isl_take isl_union_map *umap);

CloogUnionDomain *cloog_union_domain_from_isl_union_set(

__isl_take isl_union_set *uset);

The function cloog_union_domain_from_isl_union_map takes a isl_union_map as input
and returns a pointer to a CloogUnionDomain. The input is a mapping from different spaces
(different tuple names and possibly different dimensions) to a common space. The iteration
domains are set to the domains in each space. The statement names are set to the names of
the spaces. The parameter names of the result are set to those of the input, but the iterator
and scattering dimension names are left unspecified. The function consumes a reference
to the given isl_union_map. The function cloog_union_domain_from_isl_union_set is
similar, but takes unscattered domains as input.

Chapter 3: Using the CLooG Library 25

3.1.6 CloogStatement

struct cloogstatement

{ int number ; /* The statement unique number. */

char *name; /* Name of the statement. */

void * usr ; /* Pointer for user’s convenience. */

struct cloogstatement * next ;/* Next element of the linked list. */

} ;

typedef struct cloogstatement CloogStatement ;

CloogStatement *cloog_statement_malloc(CloogState *state);

void cloog_statement_print(FILE *, CloogStatement *);

void cloog_statement_free(CloogStatement *);

The CloogStatement structure represents a NULL terminated linked list of statements. In
CLooG, a statement is only defined by its unique number (number). The user can use
the pointer usr for his own convenience to link his own statement representation to the
corresponding CloogStatement structure. The whole management of the usr pointer is
under the responsibility of the user, in particular, CLooG never tries to print, to allocate
or to free a memory block pointed by usr.

3.1.7 CloogOptions

struct cloogoptions

{ int l ; /* -l option. */

int f ; /* -f option. */

int strides ; /* -strides option. */

int sh ; /* -sh option. */

int esp ; /* -esp option. */

int fsp ; /* -fsp option. */

int otl ; /* -otl option. */

int block ; /* -block option. */

int cpp ; /* -cpp option. */

int compilable ; /* -compilable option. */

int language; /* LANGUAGE_C or LANGUAGE_FORTRAN */

int save_domains; /* Save unsimplified copy of domain. */

} ;

typedef struct cloogoptions CloogOptions ;

CloogOptions *cloog_options_malloc(CloogState *state);

void cloog_options_print(FILE *foo, CloogOptions *options);

void cloog_options_free(CloogOptions *options);

The CloogOptions structure contains all the possible options to rule CLooG’s behaviour
(see Section 2.3 [Calling CLooG], page 10). As a reminder, the default values are:

• l = −1 (optimize control until the innermost loops),

• f = 1 (optimize control from the outermost loops),

• strides = 0 (use only unit strides),

• sh = 0 (do not simplify convex hulls),

26 CLooG - a loop generator for scanning polyhedra

• esp = 1 (do not spread complex equalities),

• fsp = 1 (start to spread from the first iterators),

• otl = 1 (simplify loops running only once).

• block = 0 (do not make statement blocks when not necessary).

• cpp = 0 (do not generate a compilable part of code using preprocessor).

• compilable = 0 (do not generate a compilable code).

The save_domains option is only useful for users of the CLooG library. This option
defaults to 0, but when it is set, the domain field of each clast_user_stmt will be set to
the set of values for the scattering dimensions for which this instance of the user statement
is executed. The domain field of each clast_for contains the set of values for the scattering
dimensions for which an instance of a user statement is executed inside the clast_for. It
is only available if the clast_for enumerates a scattering dimension.

3.1.8 CloogInput

CloogInput *cloog_input_read(FILE *file, CloogOptions *options);

CloogInput *cloog_input_alloc(CloogDomain *context,

CloogUnionDomain *ud);

void cloog_input_free(CloogInput *input);

void cloog_input_dump_cloog(FILE *, CloogInput *, CloogOptions *);

A CloogInput structure represents the input to CLooG. It is essentially a
CloogUnionDomain along with a context CloogDomain. A CloogInput can be created from
a CloogDomain and a CloogUnionDomains using cloog_input_alloc, or it can be read
from a CLooG input file using cloog_input_read. The latter also modifies the language

field of the CloogOptions structure. The constructed CloogInput can be used as input to
a cloog_clast_create_from_input call.

A CloogInput data structure and a CloogOptions contain the same information as a
.cloog file. This function dumps the .cloog description of the given data structures into a
file.

3.1.9 Dump CLooG Input File Function

3.2 CLooG Output

Given a description of the input, an AST corresponding to the CloogInput can be con-
structed using cloog_clast_create_from_input and destroyed using free_clast_stmt.

struct clast_stmt *cloog_clast_create_from_input(CloogInput *input,

CloogOptions *options);

void free_clast_stmt(struct clast_stmt *s);

clast_stmt represents a linked list of “statements”.

struct clast_stmt {

const struct clast_stmt_op *op;

struct clast_stmt *next;

};

Chapter 3: Using the CLooG Library 27

The entries in the list are not of type clast_stmt itself, but of some larger type. The
following statement types are defined by CLooG.

struct clast_root {

struct clast_stmt stmt;

CloogNames * names;

};

struct clast_root *new_clast_root(CloogNames *names);

struct clast_assignment {

struct clast_stmt stmt;

const char * LHS;

struct clast_expr * RHS;

};

struct clast_assignment *new_clast_assignment(const char *lhs,

struct clast_expr *rhs);

struct clast_block {

struct clast_stmt stmt;

struct clast_stmt * body;

};

struct clast_block *new_clast_block(void);

struct clast_user_stmt {

struct clast_stmt stmt;

CloogDomain * domain;

CloogStatement * statement;

struct clast_stmt * substitutions;

};

struct clast_user_stmt *new_clast_user_stmt(CloogDomain *domain,

CloogStatement *stmt, struct clast_stmt *subs);

struct clast_for {

struct clast_stmt stmt;

CloogDomain * domain;

const char * iterator;

struct clast_expr * LB;

struct clast_expr * UB;

cloog_int_t stride;

struct clast_stmt * body;

};

struct clast_for *new_clast_for(CloogDomain *domain, const char *it,

struct clast_expr *LB, struct clast_expr *UB,

cloog_int_t stride);

struct clast_guard {

struct clast_stmt stmt;

28 CLooG - a loop generator for scanning polyhedra

struct clast_stmt * then;

int n;

struct clast_equation eq[1];

};

struct clast_guard *new_clast_guard(int n);

The clast_stmt returned by cloog_clast_create is a clast_root. It contains a place-
holder for all the variable names that appear in the AST and a (list of) nested statement(s).

A clast_assignment assigns the value given by the clast_expr RHS to a variable named
LHS.

A clast_block groups a list of statements into one statement. These statements are only
generated if the block option is set, see Section 2.4.7 [Statement Block], page 14 and
Section 3.1.7 [CloogOptions], page 25.

A clast_user_stmt represents a call to a statement specified by the user, see Section 3.1.6
[CloogStatement], page 25. substitutions is a list of clast_assignment statements as-
signing an expression in terms of the scattering dimensions to each of the original iterators
in the original order. The LHSs of these assignments are left blank (NULL). The domain is
set to NULL if the save_domains option is not set. Otherwise, it is set to the set of values for
the scattering dimensions for which this instance of the user statement is executed. Note
that unless the noscalars option has been set, the constant scattering dimensions may
have been removed from this set.

A clast_for represents a for loop, iterating body for each value of iterator between LB

and UB in steps of size stride. The domain is set to NULL if the save_domains option is
not set. Otherwise, it is set to the set of values for the scattering dimensions for which a
user statement is executed inside this clast_for. Note that unless the noscalars option
has been set, the constant scattering dimensions may have been removed from this set.

A clast_guard represents the guarded execution of the then (list of) statement(s) by a
conjunction of n (in)equalities. Each (in)equality is represented by a clast_equation.

struct clast_equation {

struct clast_expr * LHS;

struct clast_expr * RHS;

int sign;

};

The condition expressed by a clast_equation is LHS <= RHS, LHS == RHS or LHS >= RHS

depending on whether sign is less than zero, equal to zero, or greater than zero.

The dynamic type of a clast_stmt can be determined using the macro CLAST_STMT_

IS_A(stmt,type), where stmt is a pointer to a clast_stmt and type is one of stmt_root,
stmt_ass, stmt_user, stmt_block, stmt_for or stmt_guard. Users are allowed to define
their own statement types by assigning the op field of the statements a pointer to a clast_

stmt_op structure.

struct clast_stmt_op {

void (*free)(struct clast_stmt *);

};

The free field of this structure should point to a function that frees the user defined
statement.

A clast_expr can be an identifier, a term, a binary expression or a reduction.

Chapter 3: Using the CLooG Library 29

enum clast_expr_type {

clast_expr_name,

clast_expr_term,

clast_expr_bin,

clast_expr_red

};

struct clast_expr {

enum clast_expr_type type;

};

void free_clast_expr(struct clast_expr *e);

Identifiers are of subtype clast_name.

struct clast_name {

struct clast_expr expr;

const char * name;

};

struct clast_name *new_clast_name(const char *name);

void free_clast_name(struct clast_name *t);

The character string pointed to by name is assumed to be part of the CloogNames structure
in the root of the clast as is therefore not copied.

Terms are of type clast_term.

struct clast_term {

struct clast_expr expr;

cloog_int_t val;

struct clast_expr *var;

};

struct clast_term *new_clast_term(cloog_int_t c, struct clast_expr *v);

void free_clast_term(struct clast_term *t);

If var is set to NULL, then the term represents the integer value val. Otherwise, it represents
the term val * var. new_clast_term simply copies the v pointer without copying the
underlying clast_expr. free_clast_term, on the other hand, recursively frees var.

Binary expressions are of type clast_bin_type and represent either the floor of a division
(fdiv), the ceil of a division (cdiv), an exact division or the remainder of an fdiv.

enum clast_bin_type { clast_bin_fdiv, clast_bin_cdiv,

clast_bin_div, clast_bin_mod };

struct clast_binary {

struct clast_expr expr;

enum clast_bin_type type;

struct clast_expr* LHS;

cloog_int_t RHS;

};

struct clast_binary *new_clast_binary(enum clast_bin_type t,

struct clast_expr *lhs, cloog_int_t rhs);

void free_clast_binary(struct clast_binary *b);

Reductions are of type clast_reduction and can represent either the sum, the minimum
or the maximum of its elements.

30 CLooG - a loop generator for scanning polyhedra

enum clast_red_type { clast_red_sum, clast_red_min, clast_red_max };

struct clast_reduction {

struct clast_expr expr;

enum clast_red_type type;

int n;

struct clast_expr* elts[1];

};

struct clast_reduction *new_clast_reduction(enum clast_red_type t,

int n);

void free_clast_reduction(struct clast_reduction *r);

3.3 Retrieving version information

CLooG provides static and dynamic version checks to assist on including a compatible
version of the library. A static version check at compile time can be achieved by querying
the version constants defined in version.h:

• CLOOG_VERSION_MAJOR

• CLOOG_VERSION_MINOR

• CLOOG_VERSION_REVISION

This way it is possible to ensure the included headers are of the correct version. It is
still possible that the installed CLooG library version differs from the installed headers. In
order to avoid this, a dynamic version check is provided with the functions:

int cloog_version_major(void);

int cloog_version_minor(void);

int cloog_version_revision(void);

By using both the static and the dynamic version check, it is possible to match CLooG’s
header version with the library’s version.

3.4 Example of Library Utilization

Here is a basic example showing how it is possible to use the CLooG library, assuming
that a standard installation has been done. The following C program reads a CLooG input
file on the standard input, then prints the solution on the standard output. Options are
preselected to the default values of the CLooG software. This example is provided in the
example directory of the CLooG distribution.

/* example.c */

include <stdio.h>

include <cloog/cloog.h>

int main()

{

CloogState *state;

CloogInput *input;

CloogOptions * options ;

struct clast_stmt *root;

Chapter 3: Using the CLooG Library 31

/* Setting options and reading program informations. */

state = cloog_state_malloc();

options = cloog_options_malloc(state);

input = cloog_input_read(stdin, options);

/* Generating and printing the code. */

root = cloog_clast_create_from_input(input, options);

clast_pprint(stdout, root, 0, options);

cloog_clast_free(root);

cloog_options_free(options) ;

cloog_state_free(state);

return 0;

}

The compilation command could be:

gcc example.c -lcloog -o example

A calling command with the input file test.cloog could be:

more test.cloog | ./example

Chapter 4: Installing CLooG 33

4 Installing CLooG

4.1 License

First of all, it would be very kind to refer the following paper in any publication that result
from the use of the CLooG software or its library, see [Bas04], page 39 (a bibtex entry
is provided behind the title page of this manual, along with copyright notice, and in the
CLooG home http://www.CLooG.org.

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version. This library
is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
http://www.gnu.org/licenses/lgpl-2.1.html

Note, though, that if you link CLooG against a GPL library such as the PolyLib backend,
then the combination becomes GPL too. In particular, a CLooG library based on the
PolyLib backend is GPL version 2 only. Since the isl backend is LGPL, linking against it
does not affect the license of CLooG.

4.2 Requirements

CLooG can be used with one of two possible backends, one using isl and one using PolyLib.
The isl library is included in the CLooG distribution, while the PolyLib library needs to be
obtained separately. On the other hand, isl requires GMP, while PolyLib can be compiled
with or without the use of GMP. The user therefore needs to install at least one of PolyLib
or GMP.

4.2.1 PolyLib (optional)

To successfully install CLooG with the PolyLib backend, the user first needs to install
PolyLib version 5.22.1 or above (default 64 bits version is satisfying as well as 32 bits or
GMP multiple precision version). Polylib can be downloaded freely at http://icps.u-

strasbg.fr/PolyLib/ or http://www.irisa.fr/polylib/. Once downloaded and un-
packed (e.g. using the ‘tar -zxvf polylib-5.22.3.tar.gz’ command), the user can com-
pile it by typing the following commands on the PolyLib’s root directory:

• ./configure

• make

• And as root: make install

Alternatively, the latest development version can be obtained from the git repository:

• git clone git://repo.or.cz/polylib.git

• cd polylib

• ./autogen.sh

• ./configure

• make

34 CLooG - a loop generator for scanning polyhedra

• And as root: make install

The PolyLib default installation is /usr/local. This directory may not be inside your
library path. To fix the problem, the user should set

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

if your shell is, e.g., bash or

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/usr/local/lib

if your shell is, e.g., tcsh. Add the line to your .bashrc or .tcshrc (or whatever convenient file)
to make this change permanent. Another solution is to ask PolyLib to install in the standard
path by using the prefix option of the configure script: ‘./configure --prefix=/usr’.

CLooG makes intensive calls to polyhedral operations, and PolyLib functions do the
job. Polylib is a free library written in C for the manipulation of polyhedra. The library
is operating on objects like vectors, matrices, lattices, polyhedra, Z-polyhedra, unions of
polyhedra and a lot of other intermediary structures. It provides functions for all the
important operations on these structures.

4.2.2 GMP Library (optional)

To be able to deal with insanely large coefficient, the user will need to install the GNU Mul-
tiple Precision Library (GMP for short) version 4.1.4 or above. It can be freely downloaded
from http://www.swox.com/gmp. Note that the isl backend currently requires GMP. The
user can compile GMP by typing the following commands on the GMP root directory:

• ./configure

• make

• And as root: make install

The GMP default installation is /usr/local, the same method to fix a library path
problem applies as with PolyLib (see Section 4.2.1 [PolyLib], page 33).

If you want to use the PolyLib backend, then PolyLib has to be built using the GMP
library by specifying the option ‘--with-libgmp=PATH_TO_GMP’ to the PolyLib configure
script (where PATH_TO_GMP is /usr/local if you did not change the GMP installation
directory). Then you have to set the convenient CLooG configure script options to build
the GMP version (see Section 4.4 [Optional Features], page 35).

4.3 CLooG Basic Installation

Once downloaded and unpacked (e.g. using the ‘tar -zxvf cloog-0.16.1.tar.gz’ com-
mand), you can compile CLooG by typing the following commands on the CLooG’s root
directory:

• ./configure

• make

• And as root: make install

Alternatively, the latest development version can be obtained from the git repository:

• git clone git://repo.or.cz/cloog.git

• cd cloog

• ./get_submodules.sh

Chapter 4: Installing CLooG 35

• ./autogen.sh

• ./configure

• make

• And as root: make install

Depending on which backend you want to use and where they are located, you may need
to pass some options to the configure script, see Section 4.4 [Optional Features], page 35.

The program binaries and object files can be removed from the source code directory by
typing make clean. To also remove the files that the configure script created (so you can
compile the package for a different kind of computer) type make distclean.

Both the CLooG software and library have been successfully compiled on the following
systems:

• PC’s under Linux, with the gcc compiler,

• PC’s under Windows (Cygwin), with the gcc compiler,

• Sparc and UltraSparc Stations, with the gcc compiler.

4.4 Optional Features

The configure shell script attempts to guess correct values for various system-dependent
variables and user options used during compilation. It uses those values to create the
Makefile. Various user options are provided by the CLooG’s configure script. They are
summarized in the following list and may be printed by typing ./configure --help in the
CLooG top-level directory.

• By default, the installation directory is /usr/local: make install will install the
package’s files in /usr/local/bin, /usr/local/lib and /usr/local/include. The
user can specify an installation prefix other than /usr/local by giving configure the
option --prefix=PATH.

• By default, the isl backend will use the version of isl that is bundled together with
CLooG. Using the --with-isl option of configure the user can specify that no isl,
a previously installed (system) isl or a build isl should be used. In the latter case,
the user should also specify the build location using --with-isl-builddir=PATH. In
case of an installed isl, the installation location can be specified using the --with-isl-
prefix=PATH and --with-isl-exec-prefix=PATH options of configure.

• By default, the PolyLib backend will use an installed (system) PolyLib, if any. The
installation location can be specified using the --with-polylib-prefix=PATH and --

with-polylib-exec-prefix=PATH options of configure. Using the --with-polylib

option of configure the user can specify that no PolyLib or a build PolyLib should
be used. In the latter case, the user should also specify the build location using --

with-polylib-builddir=PATH.

• By default, the PolyLib backend of CLooG is built in 64bits version if such version of
the PolyLib is found by configure. If the only existing version of the PolyLib is the
32bits or if the user give to configure the option --with-bits=32, the 32bits version
of CLooG will be compiled. In the same way, the option --with-bits=gmp have to be
used to build the multiple precision version.

36 CLooG - a loop generator for scanning polyhedra

• By default, configure will look for the GMP library (necessary to build the multiple
precision version) in standard locations. If necessary, the user can specify the GMP
path by giving configure the option --with-gmp-prefix=PATH and/or --with-gmp-
exec-prefix=PATH.

4.5 Uninstallation

The user can easily remove the CLooG software and library from his system by typing (as
root if necessary) from the CLooG top-level directory make uninstall.

Chapter 5: Documentation 37

5 Documentation

The CLooG distribution provides several documentation sources. First, the source code
itself is as documented as possible. The code comments use a Doxygen-compatible presen-
tation (something similar to what JavaDoc does for JAVA). The user may install Doxygen
(see http://www.stack.nl/~dimitri/doxygen) to automatically generate a technical doc-
umentation by typing make doc or doxygen ./autoconf/Doxyfile at the CLooG top-level
directory after running the configure script (see Chapter 4 [Installing], page 33). Doxy-
gen will generate documentation sources (in HTML, LaTeX and man) in the doc/source

directory of the CLooG distribution.

The Texinfo sources of the present document are also provided in the doc directory. You
can build it in either DVI format (by typing texi2dvi cloog.texi) or PDF format (by
typing texi2pdf cloog.texi) or HTML format (by typing makeinfo --html cloog.texi,
using --no-split option to generate a single HTML file) or info format (by typing makeinfo
cloog.texi).

Chapter 6: References 39

6 References

• [Bas03a] C. Bastoul, P. Feautrier. Improving data locality by chunking. CC’12 Inter-
national Conference on Compiler Construction, LNCS 2622, pages 320-335, Warsaw,
april 2003.

• [Bas03b] C. Bastoul. Efficient code generation for automatic parallelization and op-
timization. ISPDC’03 IEEE International Symposium on Parallel and Distributed
Computing, pages 23-30, Ljubljana, october 2003.

• [Bas04] C. Bastoul. Code Generation in the Polyhedral Model Is Easier Than You
Think. PACT’13 IEEE International Conference on Parallel Architecture and Compi-
lation Techniques, pages 7-16, Juan-les-Pins, september 2004.

• [Fea92] P. Feautrier Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. International Journal of Parallel Programming, 21(6):389–420,
December 1992.

• [Gri04] M. Griebl. Automatic parallelization of loop programs for distributed memory
architectures. Habilitation Thesis. Facultät für Mathematik und Informatik, Univer-
sität Passau, 2004. http://www.infosun.fmi.uni-passau.de/cl/loopo/

• [Qui00] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested loops
from polyhedra. International Journal of Parallel Programming, 28(5):469-498, october
2000.

• [Wil93] Doran K. Wilde. A library for doing polyhedral operations. Technical Report
785, IRISA, Rennes, France, 1993.

	Introduction
	Basically, what's the point ?
	Defining a Scanning Order: Scattering Functions

	Using the CLooG Software
	A First Example
	Writing The Input File
	Domain Representation
	Scattering Function Representation

	Calling CLooG
	CLooG Options
	Last Depth to Optimize Control -l <depth>
	First Depth to Optimize Control -f <depth>
	Simplify Convex Hull -sh <boolean>
	Once Time Loop Elimination -otl <boolean>
	Equality Spreading -esp <boolean>
	First Level for Spreading -fsp <level>
	Statement Block -block <boolean>
	Loop Strides -strides <boolean>
	Compilable Code -compilable <value>
	Callable Code -callable <boolean>
	Output -o <output>
	Help --help or -h
	Version --version or -v
	Quiet --quiet or -q

	A Full Example

	Using the CLooG Library
	CLooG Data Structures Description
	CloogState
	CloogMatrix
	CloogDomain
	PolyLib
	isl

	CloogScattering
	PolyLib
	isl

	CloogUnionDomain
	isl

	CloogStatement
	CloogOptions
	CloogInput
	Dump CLooG Input File Function

	CLooG Output
	Retrieving version information
	Example of Library Utilization

	Installing CLooG
	License
	Requirements
	PolyLib (optional)
	GMP Library (optional)

	CLooG Basic Installation
	Optional Features
	Uninstallation

	Documentation
	References

