__c99_cabs __c99_cabsf __c99_cabsl __divdc3 __divsc3 __exp__D __log__D __muldc3 __mulsc3 _acos _acosf _asin _asinf _atan _atan2 _atan2f _atan2l _atanf _casin _casinf _casinl _catan _catanf _catanl _cchsh _cchshf _cchshl _copysignl _cos _cosf _cosh _coshf _coshl _cosl _ctans _ctansf _ctansl _exp _expf _expl _finite _finitef _hypot _hypotf _hypotl _log _log10 _log10f _log10l _log1p _log1pf _log1pl _log2 _log2f _log2l _logf _logl _powl _redupi _redupif _redupil _scalbn _scalbnf _scalbnl _sin _sincosl _sinf _sinh _sinhf _sinhl _sinl _sqrtl _tan _tanf _tanl acos acosf acosh asin asinf asinh atan atan2 atan2f atan2l atanf atanh atanhf cacos cacosf cacosh cacoshf cacoshl cacosl carg cargf cargl casin casinf casinh casinhf casinhl casinl catan catanf catanh catanhf catanhl catanl cbrt cbrtf cbrtl ccos ccosf ccosh ccoshf ccoshl ccosl ceil ceilf ceill cexp cexpf cexpl cimag cimagf cimagl clog clogf clogl conj conjf conjl copysign copysignf copysignl cos cosf cosh coshf cosl cpow cpowf cpowl cproj cprojf cprojl creal crealf creall csin csinf csinh csinhf csinhl csinl csqrt csqrtf csqrtl ctan ctanf ctanh ctanhf ctanhl ctanl drem erf erfc erfcf erff exp exp2 exp2f expf expm1 expm1f finite finitef floor floorf floorl fmax fmaxf fmaxl fmin fminf fmod fmodf fmodl frexpf frexpl gamma hypot hypotf hypotl ilogb ilogbf ilogbl isnanf j0 j1 jn ldexp ldexpf ldexpl lgamma lgamma_r lgammal lgammal_r llrint llrintf log log10 log10f log10l log1p log1pf log1pl log2 log2f log2l logb logbf logbl logf logl lrint lrintf lround lroundf modfl nan nanf nanl pow powf powl rint rintf rintl round roundf roundl scalb scalbn scalbnf scalbnl signgam sin sincos sincosf sincosl sinf sinh sinhf sinl sqrt sqrtf sqrtl tan tanf tanh tanhf tanl trunc truncf truncl y0 y1 yn