/* Copyright (c) Mark J. Kilgard, 1996, 1997. */ /* This program is freely distributable without licensing fees and is provided without guarantee or warrantee expressed or implied. This program is -not- in the public domain. */ #include #include #include #include #if !defined(WIN32) #include #include #include /* for XA_RGB_DEFAULT_MAP atom */ #if defined (__vms) #include /* for XmuLookupStandardColormap */ #else #include /* for XmuLookupStandardColormap */ #endif #endif /* !WIN32 */ #include #include "glutint.h" #include "layerutil.h" static Criterion requiredOverlayCriteria[] = { {LEVEL, EQ, 1}, /* This entry gets poked in determineOverlayVisual. */ {TRANSPARENT, EQ, 1}, {XPSEUDOCOLOR, EQ, 1}, {RGBA, EQ, 0}, {BUFFER_SIZE, GTE, 1} }; static int numRequiredOverlayCriteria = sizeof(requiredOverlayCriteria) / sizeof(Criterion); static int requiredOverlayCriteriaMask = (1 << LEVEL) | (1 << TRANSPARENT) | (1 << XSTATICGRAY) | (1 << RGBA) | (1 << CI_MODE); static int checkOverlayAcceptability(XVisualInfo * vi, unsigned int mode) { int value; /* Must support OpenGL. */ glXGetConfig(__glutDisplay, vi, GLX_USE_GL, &value); if (!value) return 1; /* Must be color index. */ glXGetConfig(__glutDisplay, vi, GLX_RGBA, &value); if (value) return 1; /* Must match single/double buffering request. */ glXGetConfig(__glutDisplay, vi, GLX_DOUBLEBUFFER, &value); if (GLUT_WIND_IS_DOUBLE(mode) != (value != 0)) return 1; /* Must match mono/stereo request. */ glXGetConfig(__glutDisplay, vi, GLX_STEREO, &value); if (GLUT_WIND_IS_STEREO(mode) != (value != 0)) return 1; /* Alpha and accumulation buffers incompatible with color index. */ if (GLUT_WIND_HAS_ALPHA(mode) || GLUT_WIND_HAS_ACCUM(mode)) return 1; /* Look for depth buffer if requested. */ glXGetConfig(__glutDisplay, vi, GLX_DEPTH_SIZE, &value); if (GLUT_WIND_HAS_DEPTH(mode) && (value <= 0)) return 1; /* Look for stencil buffer if requested. */ glXGetConfig(__glutDisplay, vi, GLX_STENCIL_SIZE, &value); if (GLUT_WIND_HAS_STENCIL(mode) && (value <= 0)) return 1; #if defined(GLX_VERSION_1_1) && defined(GLX_SGIS_multisample) /* XXX Multisampled overlay color index?? Pretty unlikely. */ /* Look for multisampling if requested. */ if (__glutIsSupportedByGLX("GLX_SGIS_multisample")) glXGetConfig(__glutDisplay, vi, GLX_SAMPLES_SGIS, &value); else value = 0; if (GLUT_WIND_IS_MULTISAMPLE(mode) && (value <= 0)) return 1; #endif return 0; } static XVisualInfo * getOverlayVisualInfoCI(unsigned int mode) { #if !defined(WIN32) XLayerVisualInfo *vi; XLayerVisualInfo template; XVisualInfo *goodVisual, *returnVisual; int nitems, i, j, bad; /* The GLX 1.0 glXChooseVisual is does not permit queries based on pixel transparency (and GLX_BUFFER_SIZE uses "smallest that meets" its requirement instead of "largest that meets" that GLUT wants. So, GLUT implements its own visual selection routine for color index overlays. */ /* Try three overlay layers. */ for (i = 1; i <= 3; i++) { template.vinfo.screen = __glutScreen; template.vinfo.class = PseudoColor; template.layer = i; template.type = TransparentPixel; vi = __glutXGetLayerVisualInfo(__glutDisplay, VisualTransparentType | VisualScreenMask | VisualClassMask | VisualLayerMask, &template, &nitems); if (vi) { /* Check list for acceptable visual meeting requirements of requested display mode. */ for (j = 0; j < nitems; j++) { bad = checkOverlayAcceptability(&vi[j].vinfo, mode); if (bad) { /* Set vi[j].vinfo.visual to mark it unacceptable. */ vi[j].vinfo.visual = NULL; } } /* Look through list to find deepest acceptable visual. */ goodVisual = NULL; for (j = 0; j < nitems; j++) { if (vi[j].vinfo.visual) { if (goodVisual == NULL) { goodVisual = &vi[j].vinfo; } else { if (goodVisual->depth < vi[j].vinfo.depth) { goodVisual = &vi[j].vinfo; } } } } /* If a visual is found, clean up and return the visual. */ if (goodVisual) { returnVisual = (XVisualInfo *) malloc(sizeof(XVisualInfo)); if (returnVisual) { *returnVisual = *goodVisual; } XFree(vi); return returnVisual; } XFree(vi); } } #endif /* !WIN32 */ return NULL; } /* ARGSUSED */ static XVisualInfo * getOverlayVisualInfoRGB(unsigned int mode) { /* XXX For now, transparent RGBA overlays are not supported by GLUT. RGBA overlays raise difficult questions about what the transparent pixel (really color) value should be. Color index overlay transparency is "easy" because the transparent pixel value does not affect displayable colors (except for stealing one color cell) since colors are determined by indirection through a colormap, and because it is uncommon for arbitrary pixel values in color index to be "calculated" (as can occur with a host of RGBA operations like lighting, blending, etc) so it is easy to avoid the transparent pixel value. Since it is typically easy to avoid the transparent pixel value in color index mode, if GLUT tells the programmer what pixel is transparent, then most program can easily avoid generating that pixel value except when they intend transparency. GLUT returns whatever transparent pixel value is provided by the system through glutGet( GLUT_TRANSPARENT_INDEX). Theory versus practice for RGBA overlay transparency: In theory, the reasonable thing is enabling overlay transparency when an overlay pixel's destination alpha is 0 because this allows overlay transparency to be controlled via alpha and all visibile colors are permited, but no hardware I am aware of supports this practice (and it requires destination alpha which is typically optional and quite uncommon for overlay windows!). In practice, the choice of transparent pixel value is typically "hardwired" into most graphics hardware to a single pixel value. SGI hardware uses true black (0,0,0) without regard for the destination alpha. This is far from ideal because true black (a common color that is easy to accidently generate) can not be generated in an RGBA overlay. I am not sure what other vendors do. Pragmatically, most of the typical things you want to do in the overlays can be done in color index (rubber banding, pop-up menus, etc.). One solution for GLUT would be to simply "advertise" what RGB triple (or possibly RGBA quadruple or simply A alone) generates transparency. The problem with this approach is that it forces programmers to avoid whatever arbitrary color various systems decide is transparent. This is a difficult burden to place on programmers that want to portably make use of overlays. To actually support transparent RGBA overlays, there are really two reaonsable options. ONE: Simply mandate that true black is the RGBA overlay transparent color (what IRIS GL did). This is nice for programmers since only one option, nice for existing SGI hardware, bad for anyone (including SGI) who wants to improve upon "true black" RGB transparency. Or TWO: Provide a set of queriable "transparency types" (like "true black" or "alpha == 0" or "true white" or even a queriable transparent color). This is harder for programmers, OK for existing SGI hardware, and it leaves open the issue of what other modes are reasonable. Option TWO seems the more general approach, but since hardware designers will likely only implement a single mode (this is a scan out issue where bandwidth is pressing issue), codifying multiple speculative approaches nobody may ever implement seems silly. And option ONE fiats a suboptimal solution. Therefore, I defer any decision of how GLUT should support RGBA overlay transparency and leave support for it unimplemented. Nobody has been pressing me for RGBA overlay transparency (though people have requested color index overlay transparency repeatedly). Geez, if you read this far you are either really bored or maybe actually interested in this topic. Anyway, if you have ideas (particularly if you plan on implementing a hardware scheme for RGBA overlay transparency), I'd be interested. For the record, SGI's expiremental Framebufer Configuration experimental GLX extension uses option TWO. Transparency modes for "none" and "RGB" are defined (others could be defined later). What RGB value is the transparent one must be queried. I was hoping GLUT could have something that required less work from the programmer to use portably. -mjk */ __glutWarning("RGBA overlays are not supported by GLUT (for now)."); return NULL; } static XVisualInfo * getOverlayVisualInfo(unsigned int mode) { /* XXX GLUT_LUMINANCE not implemented for GLUT 3.0. */ if (GLUT_WIND_IS_LUMINANCE(mode)) return NULL; if (GLUT_WIND_IS_RGB(mode)) return getOverlayVisualInfoRGB(mode); else return getOverlayVisualInfoCI(mode); } static void addStaleWindow(GLUTwindow * window, Window win) { GLUTstale *entry; entry = (GLUTstale *) malloc(sizeof(GLUTstale)); if (!entry) __glutFatalError("out of memory"); entry->window = window; entry->win = win; entry->next = __glutStaleWindowList; __glutStaleWindowList = entry; } void __glutFreeOverlay(GLUToverlay * overlay) { if (overlay->visAlloced) XFree(overlay->vis); XDestroyWindow(__glutDisplay, overlay->win); glXDestroyContext(__glutDisplay, overlay->ctx); if (overlay->colormap) { /* Only color index overlays have colormap data structure. */ __glutFreeColormap(overlay->colormap); } free(overlay); } static XVisualInfo * determineOverlayVisual(int *treatAsSingle, Bool * visAlloced) { if (__glutDisplayString) { XVisualInfo *vi; int i; /* __glutDisplayString should be NULL except if glutInitDisplayString has been called to register a different display string. Calling glutInitDisplayString means using a string instead of an integer mask determine the visual to use. Using the function pointer variable __glutDetermineVisualFromString below avoids linking in the code for implementing glutInitDisplayString (ie, glut_dstr.o) unless glutInitDisplayString gets called by the application. */ assert(__glutDetermineVisualFromString); /* Try three overlay layers. */ *visAlloced = False; for (i = 1; i <= 3; i++) { requiredOverlayCriteria[0].value = i; vi = __glutDetermineVisualFromString(__glutDisplayString, treatAsSingle, requiredOverlayCriteria, numRequiredOverlayCriteria, requiredOverlayCriteriaMask); if (vi) { return vi; } } return NULL; } else { *visAlloced = True; return __glutDetermineVisual(__glutDisplayMode, treatAsSingle, getOverlayVisualInfo); } } /* CENTRY */ void APIENTRY glutEstablishOverlay(void) { GLUToverlay *overlay; GLUTwindow *window; XSetWindowAttributes wa; /* Register a routine to free an overlay with glut_win.c; this keeps glut_win.c from pulling in all of glut_overlay.c when no overlay functionality is used by the application. */ __glutFreeOverlayFunc = __glutFreeOverlay; window = __glutCurrentWindow; /* Allow for an existant overlay to be re-established perhaps if you wanted a different display mode. */ if (window->overlay) { addStaleWindow(window, window->overlay->win); __glutFreeOverlay(window->overlay); } overlay = (GLUToverlay *) malloc(sizeof(GLUToverlay)); if (!overlay) __glutFatalError("out of memory."); overlay->vis = determineOverlayVisual(&overlay->treatAsSingle, &overlay->visAlloced); if (!overlay->vis) { __glutFatalError("lacks overlay support."); } overlay->ctx = glXCreateContext(__glutDisplay, overlay->vis, None, __glutTryDirect); if (!overlay->ctx) { __glutFatalError( "failed to create overlay OpenGL rendering context."); } #if !defined(WIN32) overlay->isDirect = glXIsDirect(__glutDisplay, overlay->ctx); if (__glutForceDirect) { if (!overlay->isDirect) { __glutFatalError("direct rendering not possible."); } } #endif __glutSetupColormap(overlay->vis, &overlay->colormap, &overlay->cmap); overlay->transparentPixel = __glutGetTransparentPixel(__glutDisplay, overlay->vis); wa.colormap = overlay->cmap; wa.background_pixel = overlay->transparentPixel; wa.event_mask = window->eventMask & GLUT_OVERLAY_EVENT_FILTER_MASK; wa.border_pixel = 0; overlay->win = XCreateWindow(__glutDisplay, window->win, 0, 0, window->width, window->height, 0, #if defined(WIN32) 0, InputOutput, 0, #else overlay->vis->depth, InputOutput, overlay->vis->visual, #endif CWBackPixel | CWBorderPixel | CWEventMask | CWColormap, &wa); if (window->children) { /* Overlay window must be lowered below any GLUT subwindows. */ XLowerWindow(__glutDisplay, overlay->win); } XMapWindow(__glutDisplay, overlay->win); overlay->shownState = 1; overlay->display = NULL; /* Make sure a reshape gets delivered. */ window->forceReshape = True; #if !defined(WIN32) __glutPutOnWorkList(__glutToplevelOf(window), GLUT_COLORMAP_WORK); #endif window->overlay = overlay; glutUseLayer(GLUT_OVERLAY); if (overlay->treatAsSingle) { glDrawBuffer(GL_FRONT); glReadBuffer(GL_FRONT); } } void APIENTRY glutRemoveOverlay(void) { GLUTwindow *window = __glutCurrentWindow; GLUToverlay *overlay = __glutCurrentWindow->overlay; if (!window->overlay) return; /* If using overlay, switch to the normal layer. */ if (window->renderWin == overlay->win) { glutUseLayer(GLUT_NORMAL); } addStaleWindow(window, overlay->win); __glutFreeOverlay(overlay); window->overlay = NULL; #if !defined(WIN32) __glutPutOnWorkList(__glutToplevelOf(window), GLUT_COLORMAP_WORK); #endif } void APIENTRY glutUseLayer(GLenum layer) { GLUTwindow *window = __glutCurrentWindow; switch (layer) { case GLUT_NORMAL: window->renderWin = window->win; window->renderCtx = window->ctx; break; case GLUT_OVERLAY: /* Did you crash here? Calling glutUseLayer(GLUT_OVERLAY) without an overlay established is erroneous. Fix your code. */ window->renderWin = window->overlay->win; window->renderCtx = window->overlay->ctx; break; default: __glutWarning("glutUseLayer: unknown layer, %d.", layer); break; } __glutSetWindow(window); } void APIENTRY glutPostOverlayRedisplay(void) { __glutPostRedisplay(__glutCurrentWindow, GLUT_OVERLAY_REDISPLAY_WORK); } /* The advantage of this routine is that it saves the cost of a glutSetWindow call (entailing an expensive OpenGL context switch), particularly useful when multiple windows need redisplays posted at the same times. */ void APIENTRY glutPostWindowOverlayRedisplay(int win) { __glutPostRedisplay(__glutWindowList[win - 1], GLUT_OVERLAY_REDISPLAY_WORK); } void APIENTRY glutOverlayDisplayFunc(GLUTdisplayCB displayFunc) { if (!__glutCurrentWindow->overlay) { __glutWarning("glutOverlayDisplayFunc: window has no overlay established"); return; } __glutCurrentWindow->overlay->display = displayFunc; } void APIENTRY glutHideOverlay(void) { if (!__glutCurrentWindow->overlay) { __glutWarning("glutHideOverlay: window has no overlay established"); return; } XUnmapWindow(__glutDisplay, __glutCurrentWindow->overlay->win); __glutCurrentWindow->overlay->shownState = 0; } void APIENTRY glutShowOverlay(void) { if (!__glutCurrentWindow->overlay) { __glutWarning("glutShowOverlay: window has no overlay established"); return; } XMapWindow(__glutDisplay, __glutCurrentWindow->overlay->win); __glutCurrentWindow->overlay->shownState = 1; } int APIENTRY glutLayerGet(GLenum param) { switch (param) { case GLUT_OVERLAY_POSSIBLE: { XVisualInfo *vi; Bool dummy, visAlloced; vi = determineOverlayVisual(&dummy, &visAlloced); if (vi) { if (visAlloced) XFree(vi); return 1; } return 0; } case GLUT_LAYER_IN_USE: return __glutCurrentWindow->renderWin != __glutCurrentWindow->win; case GLUT_HAS_OVERLAY: return __glutCurrentWindow->overlay != NULL; case GLUT_TRANSPARENT_INDEX: if (__glutCurrentWindow->overlay) { return __glutCurrentWindow->overlay->transparentPixel; } else { return -1; } case GLUT_NORMAL_DAMAGED: /* __glutWindowDamaged is used so the damage state within the window (or overlay belwo) can be cleared before calling a display callback so on return, the state does not have to be cleared (since upon return from the callback the window could be destroyed (or layer removed). */ return (__glutCurrentWindow->workMask & GLUT_REPAIR_WORK) || __glutWindowDamaged; case GLUT_OVERLAY_DAMAGED: if (__glutCurrentWindow->overlay) { return (__glutCurrentWindow->workMask & GLUT_OVERLAY_REPAIR_WORK) || __glutWindowDamaged; } else { return -1; } default: __glutWarning("invalid glutLayerGet param: %d", param); return -1; } } /* ENDCENTRY */