## ----include = FALSE---------------------------------------------------------- oldpar <- par(no.readonly = TRUE) # Save current settings knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height=3, fig.width=5, margins=TRUE ) knitr::knit_hooks$set(margins = function(before, options, envir) { if (!before) return() graphics::par(mar = c(1.5 + 0.9, 1.5 + 0.9, 0.2, 0.2), mgp = c(1.45, 0.45, 0), cex = 1.25, bty='n') }) ## ----setup-------------------------------------------------------------------- library(BayesGP) ## ----------------------------------------------------------------------------- data <- as.data.frame(ccData) data$exposure <- data$exposure mod <- model_fit(formula = case ~ f(x = exposure, model = "IWP", order = 2, k = 30, initial_location = median(data$exposure), sd.prior = list(prior = "exp", param = list(u = 1, alpha = 0.5), h = 1)), family = "cc", strata = "subject", weight = NULL, data = data, method = "aghq") ## ----------------------------------------------------------------------------- true_effect <- function(x) {3 *(x^2 - .5^2)} plot(mod) lines(I(true_effect(seq(0,1,by = 0.1)) - true_effect(median(data$exposure))) ~ seq(0,1,by = 0.1), col = "red") ## ----------------------------------------------------------------------------- data <- survival::kidney head(data) mod <- model_fit(formula = time ~ age + sex + f(x = id, model = "IID", sd.prior = list(prior = "exp", param = list(u = 1, alpha = 0.5))), family = "coxph", cens = "status", data = data, method = "aghq") ## ----------------------------------------------------------------------------- samps_age <- sample_fixed_effect(mod, variables = "age") samps_sex <- sample_fixed_effect(mod, variables = "sex") par(mfrow = c(1,2)) hist(samps_age, main = "Samples for effect of age", xlab = "Effect") hist(samps_sex, main = "Samples for effect of sex", xlab = "Effect") par(oldpar)