## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----warning=FALSE, eval=FALSE------------------------------------------------ # library(CRE) # # # Generate sample data # set.seed(1358) # dataset <- generate_cre_dataset(n = 1000, # rho = 0, # n_rules = 2, # p = 10, # effect_size = 2, # binary_covariates = TRUE, # binary_outcome = FALSE, # confounding = "no") # y <- dataset[["y"]] # z <- dataset[["z"]] # X <- dataset[["X"]] # # method_params <- list(ratio_dis = 0.5, # ite_method = "aipw", # learner_ps = "SL.xgboost", # learner_y = "SL.xgboost", # offset = NULL) # # hyper_params <- list(intervention_vars = NULL, # ntrees = 20, # node_size = 20, # max_rules = 50, # max_depth = 3, # t_decay = 0.025, # t_ext = 0.01, # t_corr = 1, # t_pvalue = 0.05, # stability_selection = "vanilla", # cutoff = 0.6, # pfer = 1, # B = 10, # subsample = 0.5) # # # linreg CATE estimation with aipw ITE estimation # cre_results <- cre(y, z, X, method_params, hyper_params) # summary(cre_results) # plot(cre_results) # ite_pred <- predict(cre_results, X)