--- title: "aLBI - A Simple R Package for Estimating Length-Based Indicators and Fish Stock Assessment from Length Frequency Data" author: "Ataher Ali" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{aLBI - A Simple R Package for Estimating Length-Based Indicators and Fish Stock Assessment from Length Frequency Data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Simple R Package for Fish Stock Assessment ```{r setup, include=FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", cache = TRUE # Ensure caching is appropriately set ) options(repos = c(CRAN = "https://cran.rstudio.com")) ``` ## Introduction The `aLBI` package provides tools for estimating length-based indicators and assessing fish stock using methods outlined by Cope and Punt (2009) and Froese (2004). These methods are particularly useful in data-limited situations and for providing simple indicators to address over-fishing. This simple package facilitates the estimation of life history parameters of fish only from the length frequency data. ## Function Overview The aLBI package offers three primary functions: - **FrequencyTable**: Creates frequency tables from length data. - **FishPar**: Estimates biological parameters using bootstrapping. - **FishSS**: Evaluates stock status based on estimated parameters. ### Methods The package includes functions to calculate various length-based indicators and visualize fish stock data. The approaches from Cope and Punt (2009) are used to establish reference points, while Froese (2004)'s indicators help to evaluate over-fishing status. ### Installation To install the aLBI package from GitHub, follow these steps. Note that devtools is required to install packages from GitHub. ```{r installing_package } # You can install the package using the following commands in your R session: # Install devtools if you haven't already # install.packages("devtools") # # Install dplyr if you haven't already # install.packages("dplyr") # # Install readxl if you haven't already # install.packages("readxl") # install aLBI package from CRAN # install.packages("aLBI") # Install the most updated version of aLBI package from GitHub # devtools::install_github("Ataher76/aLBI") ``` ### Package Management Ensure the required packages are loaded in your R session. The following code checks for package availability and stops execution with a message if a package is missing. ```{r package_management } # Check if required packages are installed and load them # Check if required packages are installed and load them required_packages <- c("aLBI", "readxl", "dplyr", "devtools") for (pkg in required_packages) { if (!requireNamespace(pkg, quietly = TRUE)) { warning(paste("Package", pkg, "is required but not installed.")) } else { library(pkg, character.only = TRUE) } } # Load the aLBI package library(aLBI) library(readxl) library(dplyr) library(devtools) ``` ### Data Preparation for Functions Prepare your collected data in a specific format (.xlsx or .csv) before using the functions. Here's an example of how to load and prepare your data using the readxl package: ## Function (i): FrequencyTable This function will calculate the frequency table from the collected and also the extract the length frequency data from the frequency table with the upper length_range. ### Arguments - **data**: A numeric vector or data frame of fish lengths. If a data frame is used, the first numeric column is selected. - **bin_width**: Optional. A numeric value specifying the bin width for class intervals, if left NULL or if not provided, the bin width is automatically calculated using Wang et al. (2020) optimum bin size (OBS) formula formula. -**Lmax**: Optional. The maximum observed length of fish. Required only if default method ("wang") is used and bin_width is not provided. If not provided or left NULL then automatically calculate the frequency table with the observed maximum length of the provided data. ### Example with provided data ```{r data_preparation} library(readxl) # Load your length data from the system file lenfreq_path <- system.file("exdata", "ExData.xlsx", package = "aLBI") print(lenfreq_path) # Check the generated path if (lenfreq_path == "") { stop("The required file ExData.xlsx is missing. Please check the inst/extdata directory.") } # load the lenght frequency data lenght_data <- readxl::read_excel(lenfreq_path) print(lenght_data) # check the # replace with your data directory ``` ```{r FrequencyTable_Output} # Running the FrequencyTable function freqTable <- FrequencyTable(data = lenght_data, bin_width = NULL, Lmax = NULL) # Viewing the results freqTable$lfqTable # Display the frequency table freqTable$lfreq # Display the summarized frequencies with upper length ranges ``` ## Function (ii): FishPar The FishPar function estimates biological parameters such as Lmax, Linf, Lmat, and Lopt using bootstrapping resampling method. ### Arguments - **data**: A data frame containing Length and Frequency columns. - **resample**: Number of bootstrap resamples. Default is 1000. - **progress**: Logical value indicating whether to show progress. Default is FALSE. ### Example with existing data ```{r data_example} library(readxl) # Load your length-frequency data from the system file lenfreq_path <- system.file("exdata", "LC.xlsx", package = "aLBI") print(lenfreq_path) # Check the generated path if (lenfreq_path == "") { stop("The required file LC.xlsx is missing. Please check the inst/extdata directory.") } # load the lenght frequency data lenfreq_data <- readxl::read_excel(lenfreq_path) print(lenfreq_data) # check the data # replace with your data directory ``` ```{r FishPar_Output} # Running the FishPar function results <- FishPar(data = lenfreq_data, resample = 1000, progress = FALSE) # Viewing the results results$estimated_length_par results$estimated_froese_par results$estimated_freq_par results$forese_ind_vs_target results$LM_ratio results$Pobj ``` ### Explaination of Output The function returns a list with the following components: estimated_length_par: Data frame of estimated length parameters with confidence intervals. estimated_froese_par: Data frame of estimated Froese indicators. estimated_freq_par: Data frame of frequency parameters. forese_ind_vs_target: Data frame comparing Froese indicators with targets. LM_ratio: Length at maturity ratio. Pobj: Objective percentage combining Pmat, Popt, and Pmega. ## Function (iii): FishSS The FishSS function evaluates stock status using criteria based on the estimated parameters. ### Arguments - **data**: A data frame of the stock status according to Cope and Punt (2009). - **LM_ratio**: Length at maturity ratio from FishPar function. - **Pobj**: Objective percentage from FishPar function. - **Pmat**: Percentage of mature fish. - **Popt**: Percentage of optimal fish. ### Example with CPdata ```{r FishSS_Example} # Load the stock status criteria data cpdata_path <- system.file("exdata", "cpdata.xlsx", package = "aLBI") print(cpdata_path) #check if the path exist if (cpdata_path == "") { stop("The required file cpdata.xlsx is missing. Please check the inst/extdata directory.") } # loading the cope and punt table cpdata <- readxl::read_excel(cpdata_path) print(cpdata) # Running the FishSS function stock_status <- FishSS(data = cpdata, LM_ratio = results$LM_ratio, Pobj = results$Pobj, Pmat = results$estimated_froese_par[1, 2], Popt = results$estimated_froese_par[2, 2]) # Viewing the stock status stock_status ``` ### Output The function returns a named vector with TSB40 and LSB25 values indicating stock status. ## Conclusion The Fish Stock Assessment package provides a robust framework for estimating biological parameters and assessing fish stock status. By following the steps outlined in this vignette, you can effectively utilize this package for your fish stock assessment needs. ## Additional Information ### Contact For any questions or issues, please contact the package maintainer: Name: Ataher Ali Email: ataher.cu.ms@gmail.com ## Acknowledgements I would like to express my heartfelt gratitude to my supervisor, Dr. Mohammed Shahidul Alam, for his unwavering guidance, support, and encouragement. I am also sincerely thankful to the contributors and community members for their valuable feedback and support. This vignette provides a comprehensive guide to using the Assessment package. By following these instructions, users can effectively conduct fish stock assessments and contribute to sustainable fishery management practices. ## References - Wang, K., Zhang, C., Xu, B., Xue, Y., & Ren, Y. (2020). Selecting optimal bin size to account for growth variability in Electronic LEngth Frequency ANalysis (ELEFAN). *Fisheries Research*, 225, 105474. https://doi.org/10.1016/j.fishres.2019.105474 - Cope, J. M., & Punt, A. E. (2009). Length‐Based Reference Points for Data‐Limited Situations: Applications and Restrictions. *Marine and Coastal Fisheries, 1*(1), 169–186. https://doi.org/10.1577/C08-025.1 - Froese, R. (2004). Keep it simple: Three indicators to deal with overfishing. *Fish and Fisheries, 5*(1), 86–91. https://doi.org/10.1111/j.1467-2979.2004.00144.x