params <- list(EVAL = TRUE) ## ----SETTINGS-knitr, include=FALSE------------------------------------------------------ stopifnot(require(knitr)) options(width = 90) opts_chunk$set( comment = NA, message = FALSE, warning = FALSE, eval = if (isTRUE(exists("params"))) params$EVAL else FALSE, dev = "jpeg", dpi = 100, fig.asp = 0.8, fig.width = 5, out.width = "60%", fig.align = "center" ) library(brms) ggplot2::theme_set(theme_default()) ## --------------------------------------------------------------------------------------- group <- rep(c("treat", "placebo"), each = 30) symptom_post <- c(rnorm(30, mean = 1, sd = 2), rnorm(30, mean = 0, sd = 1)) dat1 <- data.frame(group, symptom_post) head(dat1) ## ----results='hide'--------------------------------------------------------------------- fit1 <- brm(bf(symptom_post ~ group, sigma ~ group), data = dat1, family = gaussian()) ## ----results='hide'--------------------------------------------------------------------- summary(fit1) plot(fit1, N = 2, ask = FALSE) plot(conditional_effects(fit1), points = TRUE) ## --------------------------------------------------------------------------------------- hyp <- c("exp(sigma_Intercept) = 0", "exp(sigma_Intercept + sigma_grouptreat) = 0") hypothesis(fit1, hyp) ## --------------------------------------------------------------------------------------- hyp <- "exp(sigma_Intercept + sigma_grouptreat) > exp(sigma_Intercept)" (hyp <- hypothesis(fit1, hyp)) plot(hyp, chars = NULL) ## --------------------------------------------------------------------------------------- zinb <- read.csv("https://paul-buerkner.github.io/data/fish.csv") head(zinb) ## ----results='hide'--------------------------------------------------------------------- fit_zinb1 <- brm(count ~ persons + child + camper, data = zinb, family = zero_inflated_poisson()) ## --------------------------------------------------------------------------------------- summary(fit_zinb1) plot(conditional_effects(fit_zinb1), ask = FALSE) ## ----results='hide'--------------------------------------------------------------------- fit_zinb2 <- brm(bf(count ~ persons + child + camper, zi ~ child), data = zinb, family = zero_inflated_poisson()) ## --------------------------------------------------------------------------------------- summary(fit_zinb2) plot(conditional_effects(fit_zinb2), ask = FALSE) ## --------------------------------------------------------------------------------------- dat_smooth <- mgcv::gamSim(eg = 6, n = 200, scale = 2, verbose = FALSE) head(dat_smooth[, 1:6]) ## ----results='hide'--------------------------------------------------------------------- fit_smooth1 <- brm( bf(y ~ s(x1) + s(x2) + (1|fac), sigma ~ s(x0) + (1|fac)), data = dat_smooth, family = gaussian(), chains = 2, control = list(adapt_delta = 0.95) ) ## --------------------------------------------------------------------------------------- summary(fit_smooth1) plot(conditional_effects(fit_smooth1), points = TRUE, ask = FALSE)