## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, eval = greta:::check_tf_version("message"), cache = TRUE, comment = "#>" ) knitr::opts_knit$set(global.par = TRUE) set.seed(1) ## ----library------------------------------------------------------------------ library(greta.gp) ## ----simulate, message = FALSE------------------------------------------------ # simulate data x <- runif(20, 0, 10) y <- sin(x) + rnorm(20, 0, 0.5) x_plot <- seq(-1, 11, length.out = 200) ## ----model, message = FALSE--------------------------------------------------- library(greta) library(greta.gp) # hyperparameters rbf_var <- lognormal(0, 1) rbf_len <- lognormal(0, 1) obs_sd <- lognormal(0, 1) # kernel & GP kernel <- rbf(rbf_len, rbf_var) + bias(1) f <- gp(x, kernel) # likelihood distribution(y) <- normal(f, obs_sd) # prediction f_plot <- project(f, x_plot) ## ----fit, message = FALSE----------------------------------------------------- # fit the model by Hamiltonian Monte Carlo m <- model(f_plot) draws <- mcmc(m) ## ----plotting, fig.width = 10, fig.height = 6, dpi = 200---------------------- # plot 200 posterior samples plot( y ~ x, pch = 16, col = grey(0.4), xlim = c(0, 10), ylim = c(-2.5, 2.5), las = 1, fg = grey(0.7), ) for (i in 1:200) { lines( draws[[1]][i, ] ~ x_plot, lwd = 2, col = rgb(0.7, 0.1, 0.4, 0.1) ) }