## ----include = FALSE---------------------------------------------------------- library(historicalborrow) library(dplyr) library(posterior) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, fig.width = 7, fig.height = 5 ) set.seed(0) ## ----paged.print = FALSE------------------------------------------------------ library(historicalborrow) library(dplyr) set.seed(0) data <- hb_sim_independent( n_continuous = 1, n_study = 3, n_group = 2, alpha = rep(1, 3), delta = 0.5, sigma = rep(1, 3), n_patient = 100 )$data %>% rename( outcome = response, trial = study, arm = group, subject = patient, factor1 = covariate_study1_continuous1, factor2 = covariate_study2_continuous1 ) %>% mutate( trial = paste0("trial", trial), arm = paste0("arm", arm), subject = paste0("subject", subject) ) data ## ----------------------------------------------------------------------------- library(dplyr) standardized_data <- hb_data( data = data, response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject", covariates = c("factor1", "factor2") ) standardized_data ## ----------------------------------------------------------------------------- distinct( standardized_data, study, study_label, group, group_label ) %>% select( study, study_label, group, group_label ) ## ----------------------------------------------------------------------------- mcmc_pool <- hb_mcmc_pool( data = data, response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject", # Can be continuous, categorical, or binary columns: covariates = c("factor1", "factor2"), # Raise these arguments for serious analyses: n_chains = 4, n_adapt = 2e3, n_warmup = 2e3, n_iterations = 4e3 ) mcmc_pool ## ----------------------------------------------------------------------------- mcmc_independent <- hb_mcmc_independent( data = data, response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject", # Can be continuous, categorical, or binary columns: covariates = c("factor1", "factor2"), # Raise these arguments for serious analyses: n_chains = 4, n_adapt = 2e3, n_warmup = 2e3, n_iterations = 4e3 ) ## ----------------------------------------------------------------------------- mcmc_hierarchical <- hb_mcmc_hierarchical( data = data, response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject", # Can be continuous, categorical, or binary columns: covariates = c("factor1", "factor2"), # Raise these arguments for serious analyses: n_chains = 4, n_adapt = 2e3, n_warmup = 2e3, n_iterations = 4e3 ) ## ----------------------------------------------------------------------------- hyperparameters <- hb_mcmc_mixture_hyperparameters( data = data, response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject" ) hyperparameters ## ----------------------------------------------------------------------------- data_mixture <- dplyr::filter(data, trial == "trial3") mcmc_mixture <- hb_mcmc_mixture( data = data_mixture, # only analyze current study response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject", # Can be continuous, categorical, or binary columns: covariates = c("factor1", "factor2"), # Prior mixture components: m_omega = hyperparameters$m_omega, s_omega = hyperparameters$s_omega, p_omega = rep(1 / nrow(hyperparameters), nrow(hyperparameters)), # Raise these arguments for serious analyses: n_chains = 4, n_adapt = 2e3, n_warmup = 2e3, n_iterations = 4e3 ) ## ----------------------------------------------------------------------------- hb_convergence(mcmc_hierarchical) ## ----------------------------------------------------------------------------- summary_hierarchical <- hb_summary( mcmc = mcmc_hierarchical, data = data, response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject", covariates = c("factor1", "factor2"), eoi = c(0, 1), direction = c(">", "<") ) summary_hierarchical ## ----------------------------------------------------------------------------- hb_ess( mcmc_pool = mcmc_pool, mcmc_hierarchical = mcmc_hierarchical, data = data, response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject" ) ## ----------------------------------------------------------------------------- summary_pool <- hb_summary( mcmc = mcmc_pool, data = data, response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject", covariates = c("factor1", "factor2") ) summary_independent <- hb_summary( mcmc = mcmc_independent, data = data, response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject", covariates = c("factor1", "factor2") ) hb_metrics( borrow = summary_hierarchical, pool = summary_pool, independent = summary_independent ) ## ----------------------------------------------------------------------------- summary_mixture <- hb_summary( mcmc = mcmc_mixture, data = data_mixture, response = "outcome", study = "trial", study_reference = "trial3", group = "arm", group_reference = "arm1", patient = "subject", covariates = c("factor1", "factor2") ) hb_metrics( borrow = summary_mixture, pool = summary_pool, independent = summary_independent ) ## ----borrow1------------------------------------------------------------------ hb_plot_borrow( borrow = summary_hierarchical, pool = summary_pool, independent = summary_independent ) ## ----borrow2------------------------------------------------------------------ hb_plot_borrow( borrow = summary_mixture, pool = summary_pool, independent = summary_independent ) ## ----group-------------------------------------------------------------------- hb_plot_group( borrow = summary_mixture, pool = summary_pool, independent = summary_independent ) ## ----tau---------------------------------------------------------------------- hb_plot_tau(mcmc_hierarchical)