---
title: "Working with lfproQC package"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{user_guide}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
options(rmarkdown.html_vignette.check_title = FALSE)
```
**To attach the package in R studio**
```{r}
library(lfproQC)
```
**To find the best combination of normalization and imputation method for the dataset**
```{r, results='markup'}
yeast <- best_combination(yeast_data, yeast_groups, data_type = "Protein")
```
**PCV values result**
```{r}
yeast$`PCV Result`
```
**PEV values result**
```{r}
yeast$`PEV Result`
```
**PMAD values result**
```{r}
yeast$`PMAD Result`
```
**Best combinations**
```{r}
yeast$`Best combinations`
```
**To visualize the normality by different exploratory plots **
---
*1. By boxplot*
```{r, echo=TRUE, fig.show='hide', results='hide', warning=FALSE, message=FALSE}
Boxplot_data(yeast$`rlr_knn_data`)
```
*2. By density plot*
```{r, echo=TRUE, fig.show='hide', results='hide', warning=FALSE, message=FALSE}
Densityplot_data(yeast$`rlr_knn_data`)
```
*3. By correlation heatmap*
```{r, echo=TRUE, fig.show='hide', results='hide', warning=FALSE, message=FALSE}
Corrplot_data(yeast$`rlr_knn_data`)
```
*4. By MDS plot*
```{r, echo=TRUE, fig.show='hide', results='hide', warning=FALSE, message=FALSE}
MDSplot_data(yeast$`rlr_knn_data`)
```
*5. By QQ-plot*
```{r, echo=TRUE, fig.show='hide', results='hide', warning=FALSE, message=FALSE}
QQplot_data(yeast$`rlr_knn_data`)
```
**Differential expression analysis**
---
*To Calculate the top-table values*
```{r, echo=TRUE, fig.show='hide', results='hide', warning=FALSE, message=FALSE}
top_table_yeast <- top_table_fn(yeast$`rlr_knn_data`, yeast_groups, 2, 1)
```
**To visualize the different kinds of differentially abundant proteins, such as up-regulated, down-regulated, significant and non-significant proteins**
*By MA plot*
```{r, echo=TRUE, fig.show='hide', results='hide', warning=FALSE, message=FALSE}
de_yeast_MA <- MAplot_DE_fn(top_table_yeast,-1,1,0.05)
de_yeast_MA$`MA Plot`
```
*By volcano plot*
```{r, echo=TRUE, fig.show='hide', results='hide', warning=FALSE, message=FALSE}
de_yeast_volcano <- volcanoplot_DE_fn (top_table_yeast,-1,1,0.05)
de_yeast_volcano$`Volcano Plot`
```
Both of the above plots give same result.
*To obtain the overall differentially abundant proteins result*
```{r, results= 'hide'}
de_yeast_MA$`Result `
```
*To find the up-regulated proteins*
```{r, results='hide'}
de_yeast_MA$`Up-regulated`
```
*To find the down-regulated proteins*
```{r, results='hide'}
de_yeast_MA$`Down-regulated`
```
*To find the other significant proteins*
```{r, results='hide'}
de_yeast_MA$`Significant`
```
*To find the non-significant proteins*
```{r, results='hide'}
de_yeast_MA$`Non-significant`
```
**The overall workflow of working with the 'lfproQC' package**
```{r setup, include=FALSE}
library(knitr)
```
```{r, echo=FALSE, out.width = "800px"}
knitr::include_graphics("images/flow1.png", dpi = 72)
```
**Session Information**
```{r}
sessionInfo()
```