## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = TRUE, warning = FALSE ) options(knitr.kable.NA = ".") load("mmiss_limit.rda") ## ----eval = FALSE------------------------------------------------------------- # install.packages(c("meta", "metasens")) ## ----------------------------------------------------------------------------- library(meta) ## ----eval = FALSE------------------------------------------------------------- # library(metasens) ## ----------------------------------------------------------------------------- settings.meta(digits = 2, method.tau = "PM") ## ----------------------------------------------------------------------------- joy = read.csv("Joy2006.txt") # Add new variable: miss joy$miss = ifelse((joy$drop.h + joy$drop.p) == 0, "Without missing data", "With missing data") head(joy) str(joy) ## ----------------------------------------------------------------------------- m.publ = metabin(resp.h, resp.h + fail.h, resp.p, resp.p + fail.p, data = joy, studlab = paste0(author, " (", year, ")"), label.e = "Haloperidol", label.c = "Placebo", label.left = "Favours placebo", label.right = "Favours haloperidol") ## ----------------------------------------------------------------------------- summary(m.publ) ## ----eval = FALSE------------------------------------------------------------- # print(summary(m.publ)) ## ----------------------------------------------------------------------------- forest(m.publ, sortvar = year, prediction = TRUE, file = "figure2.pdf", width = 10) ## ----echo = FALSE, out.width = "95%"------------------------------------------ knitr::include_graphics("figure2.pdf") ## ----------------------------------------------------------------------------- m.publ.sub = update(m.publ, subgroup = miss, print.subgroup.name = FALSE) m.publ.sub ## ----------------------------------------------------------------------------- forest(m.publ.sub, sortvar = year, xlim = c(0.1, 100), at = c(0.1, 0.3, 1, 3, 10, 30, 100), test.subgroup.common = FALSE, label.test.subgroup.random = "Test for subgroup differences:", file = "figure3.pdf", width = 10) ## ----echo = FALSE, out.width = "95%"------------------------------------------ knitr::include_graphics("figure3.pdf") ## ----eval = FALSE------------------------------------------------------------- # # Impute as no events (ICA-0) - default # mmiss.0 = metamiss(m.publ, drop.h, drop.p) # # Impute as events (ICA-1) # mmiss.1 = metamiss(m.publ, drop.h, drop.p, method = "1") # # Observed risk in control group (ICA-pc) # mmiss.pc = metamiss(m.publ, drop.h, drop.p, method = "pc") # # Observed risk in experimental group (ICA-pe) # mmiss.pe = metamiss(m.publ, drop.h, drop.p, method = "pe") # # Observed group-specific risks (ICA-p) # mmiss.p = metamiss(m.publ, drop.h, drop.p, method = "p") # # Best-case scenario (ICA-b) # mmiss.b = metamiss(m.publ, drop.h, drop.p, method = "b", small.values = "bad") # # Worst-case scenario (ICA-w) # mmiss.w = metamiss(m.publ, drop.h, drop.p, method = "w", small.values = "bad") # # Gamble-Hollis method # mmiss.gh = metamiss(m.publ, drop.h, drop.p, method = "GH") # # IMOR.e = 2 and IMOR.c = 2 (same as available case analysis) # mmiss.imor2 = metamiss(m.publ, drop.h, drop.p, method = "IMOR", IMOR.e = 2) # # IMOR.e = 0.5 and IMOR.c = 0.5 # mmiss.imor0.5 = metamiss(m.publ, drop.h, drop.p, method = "IMOR", IMOR.e = 0.5) ## ----------------------------------------------------------------------------- meths = c("Available case analysis (ACA)", "Impute no events (ICA-0)", "Impute events (ICA-1)", "Observed risk in control group (ICA-pc)", "Observed risk in experimental group (ICA-pe)", "Observed group-specific risks (ICA-p)", "Best-case scenario (ICA-b)", "Worst-case scenario (ICA-w)", "Gamble-Hollis analysis", "IMOR.e = 2, IMOR.c = 2", "IMOR.e = 0.5, IMOR.c = 0.5") # Use inverse-variance method for pooling (which is used for # imputation methods) m.publ.iv = update(m.publ, method = "Inverse") # Combine results (random effects) mbr = metabind(m.publ.iv, mmiss.0, mmiss.1, mmiss.pc, mmiss.pe, mmiss.p, mmiss.b, mmiss.w, mmiss.gh, mmiss.imor2, mmiss.imor0.5, name = meths, pooled = "random") ## ----------------------------------------------------------------------------- forest(mbr, xlim = c(0.5, 4), leftcols = c("studlab", "I2", "tau2", "Q", "pval.Q"), leftlab = c("Meta-Analysis Method", "I2", "Tau2", "Q", "P-value"), type = "diamond", digits.addcols = c(4, 2, 2, 2), just.addcols = "right", file = "figure4.pdf", width = 10) ## ----echo = FALSE, out.width = "95%"------------------------------------------ knitr::include_graphics("figure4.pdf") ## ----eval = FALSE------------------------------------------------------------- # funnel(m.publ) ## ----------------------------------------------------------------------------- metabias(m.publ, method.bias = "score") ## ----------------------------------------------------------------------------- tf.publ = trimfill(m.publ) tf.publ ## ----------------------------------------------------------------------------- summary(tf.publ) ## ----eval = FALSE------------------------------------------------------------- # funnel(tf.publ) ## ----eval = FALSE------------------------------------------------------------- # l1.publ = limitmeta(m.publ) ## ----eval = FALSE------------------------------------------------------------- # l1.publ ## ----eval = FALSE------------------------------------------------------------- # pdf("figure5.pdf", width = 10, height = 10) # # # par(mfrow = c(2, 2), pty = "s", # oma = c(0, 0, 0, 0), mar = c(4.1, 3.1, 2.1, 1.1)) # # # funnel(m.publ, xlim = c(0.05, 50), axes = FALSE) # axis(1, at = c(0.1, 0.2, 0.5, 1, 2, 5, 10, 50)) # axis(2, at = c(0, 0.5, 1, 1.5)) # box() # title(main = "Panel A: Funnel plot", adj = 0) # # # funnel(m.publ, xlim = c(0.05, 50), axes = FALSE, # contour.levels = c(0.9, 0.95, 0.99), # col.contour = c("darkgray", "gray", "lightgray")) # legend("topright", # c("p < 1%", "1% < p < 5%", "5% < p < 10%", "p > 10%"), # fill = c("lightgray", "gray", "darkgray", "white"), # border = "white", bg = "white") # axis(1, at = c(0.1, 0.2, 0.5, 1, 2, 5, 10, 50)) # axis(2, at = c(0, 0.5, 1, 1.5)) # box() # title(main = "Panel B: Contour-enhanced funnel plot", adj = 0) # # # funnel(tf.publ, xlim = c(0.05, 50), axes = FALSE) # axis(1, at = c(0.1, 0.2, 0.5, 1, 2, 5, 10, 50)) # axis(2, at = c(0, 0.5, 1, 1.5)) # box() # title(main = "Panel C: Trim-and-fill method", adj = 0) # # # funnel(l1.publ, xlim = c(0.05, 50), axes = FALSE, # col.line = 8, lwd.line = 3) # axis(1, at = c(0.1, 0.2, 0.5, 1, 2, 5, 10, 50)) # axis(2, at = c(0, 0.5, 1, 1.5)) # box() # title(main = "Panel D: Limit meta-analysis", adj = 0) # # # dev.off() ## ----echo = FALSE, out.width = "95%"------------------------------------------ knitr::include_graphics("figure5.pdf")