## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, message=FALSE----------------------------------------------------- library(dplyr) library(tibble) #For printing output library(stringr) library(swfscAirDAS) ## ----data--------------------------------------------------------------------- y <- system.file("airdas_sample.das", package = "swfscAirDAS") head(readLines(y)) ## ----check, eval=FALSE-------------------------------------------------------- # # Code not run # y.check <- airdas_check(y, file.type = "turtle", skip = 0, print.transect = TRUE) ## ----readproc----------------------------------------------------------------- # Read y.read <- airdas_read(y, file.type = "turtle", skip = 0) head(y.read) # Process y.proc <- airdas_process(y.read, trans.upper = TRUE) head(y.proc) ## ----readprocother------------------------------------------------------------ # The number of events per Beaufort value table(y.proc$Bft) # Filter for T/R and O/E events to extract lat/lon points y.proc %>% filter(Event %in% c("T", "R", "E", "O")) %>% select(Event, Lat, Lon, Trans) ## ----sight-------------------------------------------------------------------- y.sight <- airdas_sight(y.proc) y.sight %>% select(Event, SightNo:TurtleTail) %>% head() ## ----eff---------------------------------------------------------------------- # Chop the effort every time a condition changes y.eff <- airdas_effort( y.proc, method = "condition", seg.min.km = 0, dist.method = "greatcircle", conditions = c("Bft", "CCover"), num.cores = 1, angle.min = 12, bft.max = 1 ) y.eff.sight <- airdas_effort_sight(y.eff, sp.codes = c("bm", "dc")) head(y.eff.sight$segdata) head(y.eff.sight$sightinfo) ## ----eff2--------------------------------------------------------------------- # 'Chop' the effort by continuous effort section y.eff.section <- airdas_effort( y.proc, method = "section", dist.method = "greatcircle", conditions = NULL, num.cores = 1 ) y.eff.section$sightinfo <- y.eff.section$sightinfo %>% mutate(included = ifelse(.data$SpCode == "mn" & abs(.data$Angle > 60), FALSE, .data$included)) y.eff.section.sight <- airdas_effort_sight(y.eff.section, sp.codes = c("mn")) y.eff.section.sight[[1]] %>% mutate(transect_id = cumsum(.data$event == "T")) %>% group_by(transect_id) %>% summarise(dist_sum = sum(dist), mn_count = sum(ANI_mn)) %>% as.data.frame() #for printing format ## ----comm--------------------------------------------------------------------- y.comm <- airdas_comments(y.proc) head(y.comm) str_subset(y.comm$comment_str, "record") #Could also use grepl() here ## ----comm2-------------------------------------------------------------------- # comment.format for default CARETTA data comment.format <- list( n = 5, sep = ";", type = c("character", "character", "numeric", "numeric", "character") ) # TURTLE/PHOCOENA comment-data head(airdas_comments_process(y.proc))