## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, message=FALSE----------------------------------------------------- library(tectonicr) library(ggplot2) # load ggplot library ## ----load_data---------------------------------------------------------------- data("san_andreas") data("cpm_models") por <- cpm_models |> subset(model == "NNR-MORVEL56") |> equivalent_rotation("na", "pa") ## ----interpolation------------------------------------------------------------ mean_SH <- stress2grid(san_andreas, gridsize = 1, R_range = seq(50, 350, 100)) ## ----plot, warning=FALSE, message=FALSE--------------------------------------- trajectories <- eulerpole_loxodromes(x = por, n = 40, cw = FALSE) ggplot(mean_SH) + geom_sf(data = trajectories, lty = 2) + geom_spoke(data = san_andreas, aes(lon, lat, angle = deg2rad(90 - azi)), radius = .5, color = "grey30", position = "center_spoke") + geom_spoke(aes(lon, lat, angle = deg2rad(90 - azi), alpha = sd, color = mdr), radius = 1, position = "center_spoke", lwd = 1) + coord_sf(xlim = range(san_andreas$lon), ylim = range(san_andreas$lat)) + scale_alpha(name = "Standard deviation", range = c(1, .25)) + scale_color_viridis_c( "Wavelength\n(R-normalized mean distance)", limits = c(0, 1), breaks = seq(0, 1, .25) ) + facet_wrap(~R) ## ----interpolation_PoR-------------------------------------------------------- mean_SH_PoR <- PoR_stress2grid(san_andreas, PoR = por, gridsize = 1, R_range = seq(50, 350, 100)) ## ----plot2, warning=FALSE, message=FALSE-------------------------------------- ggplot(mean_SH_PoR) + geom_sf(data = trajectories, lty = 2) + geom_spoke(data = san_andreas, aes(lon, lat, angle = deg2rad(90 - azi)), radius = .5, color = "grey30", position = "center_spoke") + geom_spoke(aes(lon, lat, angle = deg2rad(90 - azi), alpha = sd, color = mdr), radius = 1, position = "center_spoke", lwd = 1) + coord_sf(xlim = range(san_andreas$lon), ylim = range(san_andreas$lat)) + scale_alpha(name = "Standard deviation", range = c(1, .25)) + scale_color_viridis_c( "Wavelength\n(R-normalized mean distance)", limits = c(0, 1), breaks = seq(0, 1, .25) ) + facet_wrap(~R) ## ----compact------------------------------------------------------------------ mean_SH_PoR_reduced <- mean_SH_PoR |> compact_grid() |> dplyr::mutate(cdist = circular_distance(azi.PoR, 135)) ## ----voronoi, warning=FALSE, message=FALSE------------------------------------ ggplot(mean_SH_PoR_reduced) + ggforce::geom_voronoi_tile( aes(lon, lat, fill = cdist), max.radius = .7, normalize = FALSE ) + scale_fill_viridis_c("Angular distance", limits = c(0, 1)) + geom_sf(data = trajectories, lty = 2) + geom_spoke( aes(lon, lat, angle = deg2rad(90 - azi), alpha = sd), radius = .5, position = "center_spoke", lwd = .2, colour = "white" ) + scale_alpha("Standard deviation", range = c(1, .25)) + coord_sf(xlim = range(san_andreas$lon), ylim = range(san_andreas$lat)) ## ----kernel_disp-------------------------------------------------------------- san_andreas_por <- san_andreas san_andreas_por$azi <- PoR_shmax(san_andreas, por, "right")$azi.PoR # transform to PoR azimuth san_andreas_por$prd <- 135 # test direction san_andreas_kdisp <- kernel_dispersion(san_andreas_por, gridsize = 1, R_range = seq(50, 350, 100)) san_andreas_kdisp <- compact_grid(san_andreas_kdisp, "dispersion") ggplot(san_andreas_kdisp) + ggforce::geom_voronoi_tile( aes(lon, lat, fill = stat), max.radius = .7, normalize = FALSE ) + scale_fill_viridis_c("Dispersion", limits = c(0, 1)) + geom_sf(data = trajectories, lty = 2) + geom_spoke( data = san_andreas, aes(lon, lat, angle = deg2rad(90 - azi), alpha = unc), radius = .5, position = "center_spoke", lwd = .2, colour = "white" ) + scale_alpha("Standard deviation", range = c(1, .25)) + coord_sf(xlim = range(san_andreas$lon), ylim = range(san_andreas$lat))