## ----include = FALSE---------------------------------------------------------- use_saved_results <- TRUE knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo = TRUE, eval = !use_saved_results, message = FALSE, warning = FALSE ) if (use_saved_results) { results <- readRDS("vignette_mc.rds") pred <- results$pred } ## ----eval=TRUE---------------------------------------------------------------- library(dplyr); library(tidyr); library(purrr) # Data wrangling library(ggplot2); library(stringr) # Plotting library(tidyfit) # Auto-ML modeling ## ----eval=TRUE---------------------------------------------------------------- data("iris") # For reproducibility set.seed(42) ix_tst <- sample(1:nrow(iris), round(nrow(iris)*0.2)) data_trn <- iris[-ix_tst,] data_tst <- iris[ix_tst,] as_tibble(iris) ## ----------------------------------------------------------------------------- # fit <- data_trn %>% # classify(Species ~ ., # LASSO = m("lasso"), # Ridge = m("ridge"), # ElasticNet = m("enet"), # AdaLASSO = m("adalasso"), # SVM = m("svm"), # `Random Forest` = m("rf"), # `Least Squares` = m("ridge", lambda = 1e-5), # .cv = "vfold_cv") # # pred <- fit %>% # predict(data_tst) ## ----fig.width=7, fig.height=3, fig.align="center", eval=TRUE----------------- metrics <- pred %>% group_by(model, class) %>% mutate(row_n = row_number()) %>% spread(class, prediction) %>% group_by(model) %>% yardstick::mn_log_loss(truth, setosa:virginica) metrics %>% mutate(model = str_wrap(model, 11)) %>% ggplot(aes(model, .estimate)) + geom_col(fill = "darkblue") + theme_bw() + theme(axis.title.x = element_blank())