PDF TiX

users manual

mailto:hanthethanh@myrealbox.com
mailto:sebastian.rahtz@computing-services.oxford.ac.uk
mailto:pragma@wxs.nl
mailto:hartmut_henkel@gmx.de

Contents

Introduction 9 Character translation

About PDF 10 Limitations of PDFTEX
Getting started

Macro packages supporting PDFTEX Abbreviations

Setting up fonts Examples of HZ and protruding
Formal syntax specification Additional PDF keys

New primitives Colophon

Graphics and color GNU Free Documentation License

o N O Ul AN Wi~

Introduction

The main purpose of the pdfTEX project is to create and maintain an extension of TEX that can produce pdf directly from TEX
source files and improve/enhance the result of TEX typesetting with the help of pdf. When pdf output is not selected, pdf TEX
produces normal dvi output, otherwise it generates pdf output that looks identical to the dvi output. An important aspect of this
project is to investigate alternative justification algorithms (e. g. a font expansion algorithm akin to the hz micro-typography
algorithm by Prof. Hermann Zapf), optionally making use of multiple master fonts.

pdfTEX is based on the original TEX sources and Web2c, and has been successfully compiled on Unix, Win32 and MSDos
systems. Itis under active development, with new features trickling in. Great care is taken to keep new pdfTEX versions
backward compatible with earlier ones.

For some years there has been a ‘moderate’ successor to TEX available, called e-TEX. Because mainstream macro packages such
as I“TEX have started supporting this welcome extension, pdfTEX also is available as pdfe TEX. Although in this document we
will speak of pdfTEX, we advise users to use pdfeTEX when available. That way they get the best of all worlds and are ready for
the future. Starting with TEX Live 2004, that future has arrived: pdfeTEX is now the primary TEX engine.

Other extensions to pdfTEX are MLTEX and encTEX; recent pdfTEX engines have these often included.

pdfTEX is maintained by Han Thé Thanh, Martin Schroder, Hartmut Henkel, Hans Hagen and others. The pdfTEX homepage is
http://www.pdftex.org. Please send pdfTEX comments and bug reports to the mailing list pdftex@tug.org.

content The pdfTgX user manual

http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
mailto:pdftex@tug.org

We thank all readers who send us corrections and suggestions. We also wish to express the hope that pdfTEX will be of as much
use to you as it is to us. Since pdfTEX is still being improved and extended, we suggest you to keep track of updates.

About this manual

This manual revision tries to keep track with the recent pdfTEX development up to version 1.20b. Main text updates were done
regarding the new configuration scheme, font mapping, and new or updated primitives. The primary repository for the manual
and its sourcesisathttp://sarovar.org/projects/pdftex/. Copies in pdf format can also be found at the CTAN
network in directory ctan: systems/pdftex.

Thanks to Karl Berry for proof reading and submitting a long changes list. New errors might have slipped in afterwards by the
editor. Please send questions or suggestions by email to pdftex@tug.org.

Legal Notice

Copyright © 1996-2005 Han Thé Thanh. Permission is granted to copy, distribute and/or modify this document under the terms

of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

About PDF

The cover of this manual lists an almost minimal pdf file generated by pdfTgX, with the corresponding source file on the next
page. Unless compression is enabled, such a pdf file is rather verbose and readable. The first line specifies the version used;
currently pdfTEX produces level 1.4 output. Viewers are supposed to silently skip over all elements they cannot handle.

A pdffile consist of objects. These objects can be recognized by their number and keywords:

8 0 obj << /Type /Catalog /Pages 6 O R >> endobj

content The pdfTgX user manual

http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems/pdftex
mailto:pdftex@tug.org

Here8 0 obj ... endobj isthe object capsule. The first number is the object number. Later we will see that pdfTEX gives
access to this number. One can for instance create an object by using \pdfobj after which \pdflastobj returns the number.
So

\pdfobj{/Type /Catalog /Pages 6 O R}

inserts an object into the file, while \pdflastobj returns the number pdfTEX assigned to this object. The sequence 6 0 Ris
an object reference, a pointer to another object (no. 6). The second number (here a zero) is currently not used in pdfTEX; it is
the version number of the object. It is for instance used by pdf editors, when they replace objects by new ones. The version
numbers permit a roll-back. (An example of a graphic editor that uses pdf as storage format is Adobe’s Illustrator.)

In general this rather direct way of pushing objects in the files is not very useful, and only makes sense when implementing, say,
fill-in field support or annotation content reuse. We will come to that later. Unless such direct objects are part of something
larger, they will end up as isolated entities, not doing any harm but not doing any good either.

When a viewer opens a pdf file, it first goes to the end of the file. There it finds the keyword startxref, the signal where to
look for the so called ‘object cross reference table’. This table provides fast access to the objects that make up the file. The
actual starting point of the file is defined after the trailer. The /Root entry points to the catalog. In this catalog the viewer
can find the page list. In our example we have only one page. The trailer also holds an /Info entry, which tells a bit more about
the document. Just follow the thread:

/Root — object 8 — /Pages — object 6 — /Kids — object 2 — page content

As soon as we add annotations, a fancy word for hyperlinks and the like, some more entries are present in the catalog. We invite
users to take a look at the pdf code of this file to get an impression of that.

The page content is a stream of drawing operations. Such a stream can be compressed, where the level of compression can be
set with \pdf compresslevel. Let’s take a closer look at this stream. First there is a transformation matrix, six numbers
followed by cm. As in PostScript, the operator comes after the operands. Between BT and ET comes the text. A font switch can
be recognized as /F. .. The actual text goes between () so that it creates a PostScript string. When one analyzes a file
produced by a less sophisticated typesetting engine, whole sequences of words can be recognized. In pdf files generated by
pdfTEX however, the words comes out rather fragmented, mainly because a lot of kerning takes place. pdf viewers in search

content The pdfTEX user manual

mode simply ignore the kerning information in these text streams. When a document is searched, the search engine
reconstructs the text from these (string) snippets.

This one page example uses an Adobe Times—Roman font. This is one of the 14 so—called standard fonts that are always present
in the viewer application, and therefore need not be embedded in the pdf file. However, when we use for instance Computer
Modern Roman, we have to make sure that this font is available, and the best way to do this is to embed it. Just let your eyes
follow the object thread and see how a font is described. The only thing removed from this example is the (partially) embedded
glyph description file, which for the 14 standard fonts is not needed.

In this simple file, we don't specify in what way the file should be opened, for instance full screen or clipped. A closer look at the
page object (/Type /Page)shows thata mediabox is part of the page description. A mediabox acts like the bounding box in a
PostScript file. pdfTEX users have access to this object by \pdfpageattr.

Although in most cases macro packages will shield users from these internals, pdf TEX provides access to many of the entries
described here, either automatically by translating the TEX data structures into pdf ones, or manually by pushing entries to the
catalog, page, info or self created objects. Those who, after this introduction, feel unsure how to proceed, are advised to read
on but skip section 7. Before we come to that section, we will describe how to get started with pdfTgX.

Getting started

This section describes the steps needed to get pdfTEX running on a system where pdfTEX is not yet installed. Nowadays virtually
all TEX distributions have pdfTEX as a component, such as TEX Live, teTEX, fpTEX, MikTeX, and CMacTgX. The ready to run
TEX Live distribution comes with pdfTEX versions for many Unix Win32, and Mac OS X systems; more information can be
foundathttp://wuw.tug.org/tex-1ive/. teTEX by Thomas Esser is a source distribution with an automated compilation
process for Unix systems; see http://www.tug.org/teTeX/. For Win32 systems there are also two separate distributions
that contain pdfTEX, both in ctan:systems/win32: fpTEX by Fabrice Popineau and MikTeX by Christian Schenk. So when
you use any of these distributions, you dont need to bother with the pdfTEX installation procedure in the next sections.

If there is no precompiled binary of pdf TEX for your system, or the version coming with a distribution is not the current one and
you would like to try out a fresh pdf TEX immediately, you will need to build pdfTEX from sources; read on. You should already

content The pdfTEX user manual

http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
ctan:systems/win32
ctan:systems/win32
ctan:systems/win32

have a working TEX system, e. g. teTEX, into which the freshly compiled pdfTEX will be integrated. Note that the installation
description in this manual is Web2c-specific.

Getting sources and binaries

The latest sources of pdfTEX are currently distributed for compilation on Unix systems (including Linux), and Win32 systems
(Windows 95, 98, NT, 2000, XP). The primary location where one can fetch the latest released code is at the developers’
homepage http://sarovar.org/projects/pdftex/, where you also find bug tracking information, and the manual
sources. Download the pdfTEX tarball from the directory:

http://pdftex.sarovar.org/current/

The pdf TEX sources can also be found at their canonical place in the CTAN network, ctan:systems/pdftex. Separate
pdfTEX binaries for various systems might also be available, check out the subdirectories below ctan:systems.

Compiling

The compilation is expected to be easy on Unix-like systems and can be described best by example. Assuming that the file
pdftex.tar.bz2is downloaded to some working directory, e. g. $HOME/pd£ftex, on a Unix system the following steps are
needed to compile pdfTEX:

cd $HOME/pdftex

bzip2 -d pdftex-1.20b.tar.bz2 | tar xvf -
cd pdftex-1.20b

./Build

The binaries pdftex and pdfetex are then built in the subdirectory build/texk/web2c.

Apart from the binaries pdf TEX and pdfeTEX the compilation also produces a few other files which are needed for running both
pdfTEX versions:

pdftex.pool, pdfetex.pool The poolfiles, needed for creating formats, located in build/texk/web2c

content The pdfTgX user manual

http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://pdftex.sarovar.org/current/
http://pdftex.sarovar.org/current/
http://pdftex.sarovar.org/current/
http://pdftex.sarovar.org/current/
http://pdftex.sarovar.org/current/
http://pdftex.sarovar.org/current/
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems
ctan:systems

LI Placing files

The next step is to put the freshly compiled binaries and pool files into their proper places within the tds structure of the TEX
system. Put the files pdf tex and pdfetex into the directory (e. g. for a typical teTEX system) /usr/local/teTeX/bin
/1686-pc-linux-gnu, and the pool files into /usr/local/teTeX/share/texmf /web2.

Don't forgetto do a texconfig init afterwards, so that all formats are regenerated with the fresh binaries.

Setting search paths

Web2c—based programs, including pdfTEX, use the Web2c run-time configuration file called texmf . cnf. The location of this
file is the appropriate position within the tds tree relative to the place of the pdfTEX binary; on a teTEX system, file texmf . cnf
typically is located either in directory texmf /web2c or texmf-local/web2c. The path to file texmf . cnf can also be set
up by the environment variable TEXMFCNF.

Next you might need to edit texmf . cnf so that pdfTgX can find all necessary files, but the texmf . cnf files coming with the
major TEX distributions should already be set up for normal use. You might check into the file texmf . cnf to see where the
various bits and pieces are going.

pdfTEX uses the search path variables shown in table 1.

TEXMFOUTPUT Normally, pdfTEX puts its output files in the current directory. If any output file cannot be opened there,
it tries to open it in the directory specified in the environment variable TEXMFOUTPUT. There is no
default value for that variable. For example, if you type pdfetex paper and the current directory is not
writable, if TEXMFOUTPUT has the value /tmp, pdfTEX attempts to create /tmp/paper.log (and
/tmp/paper . pdf, if any output is produced.)

TEXINPUTS This variable specifies where pdfTEX finds its input files. Image files are considered input files and
searched for along this path.

TEXFORMATS Search path for format (. fmt) files.
TEXPOOL Search path for pool (. pool) files.
ENCFONTS Search path for encoding (. enc) files.

content The pdfTgX user manual

used for

texmf.cnf

output files

input files, images
format files

text pool files
encoding files
font map files

tfm files

TEXMFOUTPUT
TEXINPUTS
TEXFORMATS
TEXPOOL
ENCFONTS
TEXFONTMAPS
TFMFONTS

virtual fonts VFFONTS
typel fonts T1FONTS
TrueType fonts TTFONTS
pixel fonts PKFONTS

Table 1 The Web2c variables.
TEXFONTMAPS Search path for font map (. map) files.

TFMFONTS Search path for font metric (. t£m) files.

VFFONTS Search path for virtual font (. v£) files. Virtual fonts are fonts made up of other fonts. Because pdfTEX
produces the final output code, it must consult those files.

T1FONTS Search path for Type 1font files (. pfa and . pfb). These outline (vector) fonts are to be preferred over
bitmap pk fonts. In most cases Type 1 fonts are used and this variable tells pdf TEX where to find them.

TTFFONTS Search path for TrueType font (. tt£) files. Like Type 1 fonts, TrueType fonts are also outlines.

PKFONTS Search path for packed (bitmap) font (. pk) files. Unfortunately bitmap fonts are still displayed poorly by
some pdf viewers, so when possible one should use outline fonts. When no outline is available, pdfTEX
tries to locate a suitable pk font (or invoke a process that generates it).

content The pdfTgX user manual

LR The PDFTEX configuration

One has to keep in mind that, as opposed to TEX with its dvi output, the pdfTEX program does not require a separate
postprocessing stage to transform the TEX input into a pdf file. As a consequence, all data needed for building a ready pdf page
must be available during the pdfTEX run, in particular information on media dimensions and offsets, graphics files for
embedding, and font information (font files, encodings).

When TEX builds a page, it places items relative to the top left page corner (the dvi reference point). Separate dvi postprocessors
allow specifying the paper size (e. g. ‘A4’ or ‘letter’), so that this reference point is moved to the correct position on the paper,
and the text ends up at the right place.

In pdf, the paper dimensions are part of the page definition, and pdfTEX therefore requires that they be defined at the beginning
of the pdfTEX run. As with pages described by PostScript, the pdf reference point s in the lower-left corner.

Formerly, these dimensions and other pdfTEX parameters were read in from a configuration file named pdftex. cfg, which
had a special (non-TgX) format, at the start of processing. Nowadays such a file is ignored by pdfTEX. Instead, the page
dimensions and offsets, as well as all other parameters, can be set by pdfTEX primitives during the pdfTEX format building
process, so that the settings are dumped into the fresh format and consequently will be used when pdfTEX is later called with
that format. All settings can still be overridden during a pdfTEX run by using the same primitives. This new configuration
concept is a more unified approach, as it avoids the configuration file with a special format.

A list of pdfTEX primitives relevant for setting up the pdfTEX engine is given in table 2. These are described in detail within later
sections. Figure 1 shows a recent configuration file (pdftexconfig. tex) in TEX format, using the primitives from table 2,
which typically is read in during the format building process. It enables pdf output, sets a high compression level for reducing
pdf file size, sets item placement precision, paper dimensions, and offsets, sets the default pixel density for pk font inclusion,
and sets the pdf version number to appear in the pdf file. The default values are chosen so that pdfTEX often can be used (e. g,
in -ini mode) even without setting any parameters.

Independent of whether such a configuration file is read or not, the first action in a pdfTEX run is that the program reads the
global Web2c configuration file (texmf . cnf), which is common to all programs in the web2C system. This file mainly defines
file search paths, the memory layout (e. g. pool and hash size), and other general parameters.

content The pdfTEX user manual

internal name type comment

\pdfoutput integer dvi
\pdfadjustspacing integer off
\pdfcompresslevel integer best
\pdfdecimaldigits integer max.
\pdfmovechars integer off
\pdf imageresolution integer dpi
\pdfpkresolution integer 72 dpi
\pdfuniqueresname integer

\pdfprotrudechars integer
\pdfoptionpdfminorversion integer pdf1.4
\pdfoptionalwaysusepdfpagebox integer
\pdfoptionpdfinclusionerrorlevel integer 0

\pdfhorigin dimension 1in

\pdfvorigin dimension Tin

\pdfpagewidth dimension 0 pt
\pdfpageheight dimension 0 pt
\pdflinkmargin dimension 0 pt
\pdfdestmargin dimension 0 pt
\pdfthreadmargin dimension 0 pt

\pdfmapfile text pdftex.map

Table 2 The set of pdfTEX configuration parameters.

LN Creating format files

Both pdfTEX and pdfe TEX engines allow building formats for dvi and pdf output in the same way as the classical TEX engine
does for dvi. Format generation is enabled by the —-ini option. The default mode (dvi or pdf) can be chosen either on the
command line by setting the option —output-format to dvi or pdf, or by setting the \pdfoutput parameter. The format
file then inherits this setting, so that a later call to pdf TEX with this format starts in the preselected mode (which still can be

content The pdfTgX user manual

% Set pdfTeX parameters for pdf mode
% (replacing pdftex.cfg file).

% Thomas Esser, 2004. public domain.
\pdfoutput=1

\pdf compresslevel=9
\pdfdecimaldigits=3
\pdfpagewidth=210 true mm
\pdfpageheight=297 true mm
\pdfhorigin=1 true in

\pdfvorigin=1 true in
\pdfpkresolution=1200
\pdfoptionpdfminorversion=4
\endinput

Figure 1 A typical configuration file (pdftexconfig.tex).

% Thomas Esser, 1998, 2004. public domain.
\ifx\pdfoutput\undefined
\else

\ifx\pdfoutput\relax

\else

\input pdftexconfig

\pdfoutput=0

\fi
\fi
\input etex.src
\dump
\endinput

Figure 2 File etex.ini for e-TEX format with dvi output.

overrun then). A format file can be read in only by the engine that has generated it; a format incompatible with an engine leads

content The pdfTgX user manual

\ifx\pdfoutput\undefined
\else

\ifx\pdfoutput\relax

\else

\input pdftexconfig

\pdfoutput=1

\fi
\fi
\scrollmode
\input latex.ltx
\endinput

Figure 3 File pdflatex.ini for IATEX format with pdf output.

to a fatal error. Often the pdfTEX program is a mere link to the pdfe TEX engine; then also a pdfTEX call generates an extended
format.

Itis customary to package the configuration and macro file input into a . ini file. E. g., the file etex. ini in figure 2 is for
generating an e-TEX format with dvi output (it contains a few comparisons to be safe also for TEX engines). A similar file
pdflatex.ini can be used for generating a “TEX format with pdf output; refer to figure 3. One can see how the primitive
\pdfoutput is used to override the output mode set by file pdf texconfig.tex. The corresponding pdfTEX calls for format
generation are:

pdfetex -ini *etex.ini
pdftex -ini pdflatex.ini

These calls produce format files etex . fmt and pdflatex.fmt, as the default format file name is taken from the input file
name. You can overrule this with the —jobname option. The asterisk (*) in the first example line tells the pdfeTEX engine to go
into extended —-ini mode. Otherwise, it stays in non—extended mode. So, if you want a pdfIATEX format with pdf output and
e-TEX extensions available (format file pdfelatex. fmt), you would need to type e. g.:

pdfetex -ini -jobname=pdfelatex *pdflatex.ini

In ConTEXt the generation depends on the interface used. A format using the English user interface is generated with

content The pdfTgX user manual

pdfetex -ini cont-en
When properly set up, one can also use the ConTEXt command line interface TEXexec to generate one or more formats, like:
texexec --make en
for an English format, or
texexec --make en de
for an English and German one. Most users will simply say:
texexec --make --all [--alone]

and so generate the TEX and METAPOST related formats that Con TEXt needs. Whatever macro package used, the formats
should be placed in the TEXFORMATS path.

Testing the installation

When everything is set up, you can test the installation. In the distribution there is a plain TEX test file example. tex. Process
this file by typing:

pdftex example

If the installation is ok, this run should produce afile called example.pdf. The file example. tex is also a good place to look
for how to use pdfTEX's new primitives.

Common problems

The most common problem with installations is that pdf TEX complains that something cannot be found. In such cases make
sure that TEXMFCNF is set correctly, so pdf TEX can find texmf . cnf. The next best place to look/edit is the file texmf . cnf.
When still in deep trouble, set KPATHSEA™DEBUG=255 before running pdfTEX or run pdfTEX with option -k 255. This will
cause pdfTEX to write a lot of debugging information that can be useful to trace problems. More options can be found in the
Web2c documentation.

content The pdfTgX user manual

Variables in texmf . cnf can be overwritten by environment variables. Here are some of the most common problems you can
encounter when getting started:

I can’t read pdftex.pool; bad path?

TEXMFCNF is not set correctly and so pdfTEX cannot find texmf . cnf, or TEXPOOL in texmf . cnf doesn’t contain a path
to the pool file pdftex.pool or pdfetex.pool when you use pdfeTEX.

You have to increase POOLSIZE.

pdfTEX cannot find texmf . cnf, or the value of pool~size specified in texmf . cnf is not large enough and must be
increased. If pool~size is not specified in texmf . cnf then you can add something like

pool~size = 500000

I can’t find the format file ‘pdftex.fmt’!
I can’t find the format file ‘pdflatex.fmt’!

The format file is not created (see above how to do that) or is not properly placed. Make sure that TEXFORMATS in
texmf . cnf contains the path to pdftex.fmt or pdflatex. fmt.

-—-! xx.fmt was written by tex
Fatal format file error; I’m stymied

This appears e. g. if you forgot to regenerate the . fmt files after installing a new version of the pdfTEX binary and
pdftex.pool. The first line tells by which engine the offending format was generated

TEX.POOL doesn’t match; TANGLE me again!
TEX.POOL doesn’t match; TANGLE me again (or fix the path).

This might appear if you forgot to install the proper pdftex.pool when installing a new version of the pdfTEX binary. E. g.
under teTEX then run texconfig init.

pdfTEX cannot find one or more map files (* . map), encoding vectors (. enc), virtual fonts, Type 1 fonts, TrueType fonts or
some image file.

content The pdfTgX user manual

Make sure that the required file exists and the corresponding variable in texmf . cnf contains a path to the file. See above
which variables pdfTEX needs apart from the ones TEX uses.

When you have installed new fonts, and your pdf viewer complains about missing fonts, you should take a look at the log
file produced by pdfTEX. Missing fonts, map files, encoding vectors as well as missing characters (glyphs) are reported there.

Normally the page content takes one object. This means that one seldom finds more than a few hundred objects in a simple file.
This document for instance uses about 650 objects. In demanding applications this number can grow quite rapidly, especially
when one uses a lot of widget annotations, shared annotations or other shared things. In these situations in texmf . cnf one
can enlarge pdfTEX's internal object table by adding a line in texmf . cnf, for instance:

obj " tab size = 400000

Macro packages supporting PDFTEX

As pdfTEX generates the final pdf output without help of a postprocessor, macro packages that take care of these pdf features
have to be set up properly. Typical tasks are handling color, graphics, hyperlink support, threading, font—inclusion, as well as
page imposition and manipulation. All these pdf-specific tasks can be commanded by pdfTEX's own primitives (a few also by a
pdfTEX-specific \special{pdf: ...} primitive). Any other \special{} commands, like the ones defined for various dvi
postprocessors, are simply ignored by pdfTEX when in pdf output mode; a warning is given only for non—empty \special{}
commands.

When a macro package already written for classical TEX with dvi output is to be modified for use with pdfTEX; it is very helpful
to get some insight to what extent pdfTEX-specific support is needed. This info can be gathered e. g. by outputting the various
\special commands as \message. Simply type

\pdfoutput=1 \let\special\message
or, if this leads to confusion,
\pdfoutput=1 \def\special#1{\writel6{special: #1}}

and see what happens. As soon as one ‘special’ message turns up, one knows for sure that some kind of pdfTEX specific support
is needed, and often the message itself gives a indication of what is needed.

content The pdfTgX user manual

Currently all mainstream macro packages offer pdfTEX support, with automatic detection of pdfTEX as engine. So there is

normally no need to turn on pdfTEX support explicitly.

e For IATEX users, Sebastian Rahtz’s and Heiko Oberdiek’s hyperref package has substantial support for pdfTEX and
provides access to most of its features. In the simplest and most common case, the user merely needs to load hyperref,
and all cross—references will be converted to pdf hypertext links. pdf output is automatically selected, compression is
turned on, and the page size is set up correctly. Bookmarks are created to match the table of contents.

The standard IATEX graphics, graphicx, and color packages also have automatic pdfTgX support, which allow use of
color, text rotation, and graphics inclusion commands.

The ConTEXt macro package by Hans Hagen has very full support for pdfTEX in its generalized hypertext features. Support
for pdfTEX is implemented as a special driver, and is invoked by typing \setupoutput [pdftex] orfeeding TEXexec
with the ——pdf option.

pdf from Texinfo documents can be created by running pdfTEX on the Texinfo file, instead of TEX. Alternatively, run the
shell command texi2pdf instead of texi2dvi.

A small modification of webmac . tex, called pdfwebmac . tex, allows production of hyperlinked pdf versions of the
program code written in web.

Some nice samples of pdfTEX output can be found athttp://www.pdftex.organd http://www.pragma-ade.com.

Setting up fonts

pdfTEX can work with Type T and TrueType fonts, but a source must be available for all fonts used in the document, except for
the 14 standard fonts supplied by the pdf reader (Times, Helvetica, Courier, Symbol and Dingbats). Itis possible to use
METAFONT-generated fonts in pdfTEX— but it is strongly recommended not to use these fonts if an equivalent is available in
Type 1 or TrueType format, if only because bitmap Type 3 fonts render very poorly in (older versions of) Acrobat Reader. Given
the free availability of Type 1 versions of all the Computer Modern fonts, and the ability to use standard PostScript fonts, there is
rarely a need to use bitmap fonts in pdfTEX.

content The pdfTgX user manual

http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com

LA I Map files

Font map files provide the connection between TgX tfm font files and the outline font file names. They contain also information
about re-encoding arrays, partial downloading, and character transformation parameters (like SlantFont and ExtendFont). Those
map files were first created for dvi postprocessors. But, as pdf TEX in pdf output mode includes all pdf processing steps, it also
needs to know about font mapping, and therefore reads in one or more map files. Map files are not read in when pdfTEX is in
dvi mode. Pixel fonts can be used without being listed in the map file.

By default, pdf TEX reads the map file pdftex.map. In Web2c, map files are searched for using the TEXFONTMAPS config file
value and environment variable. By default, the current directory and various system directories are searched.

Within the map file, each font is listed on an individual line. The syntax of each line is upward—compatible with dvips map files
and can contain the following (some are optional) fields: ¢f/mname, basename, fontflags, special, encodingfile, and fontfile;
explanations follow.

It is mandatory that tfmname is the first field. If a basename is given, it must be the second field. Similarly if fontflags is given it
must be the third field (if basename is present) or the second field (if basename is left out). It is possible to mix the positions of
special, encodingfile, and fontfile, however the first three fields must be given in fixed order.

tfmname sets the name of the tfm file for a font — the name TgX sees. This name must always be given.

basename sets the base (PostScript) font name. The basename field is checked against the BaseName entry of fonts coming
with embedded pdf files. If there is a match, the font will be removed from the embedded file, and a local font is opened, which
will contain the glyphs from the embedded file. This collecting mechanism helps keeping the resulting pdf file size small, if many
files with similar fonts are to be embedded. Therefore it is recommended always to set the basename field.

If a basename field is given, also a fontfile field must be there, unless the basename matches one of the 14 standard font names;
then the fontfile field is optional. If the fontfile name is given, this font will be embedded (depending on flags, see below). If the
fontfile name for a standard font is missing, the font will be quietly left out, which is fine, as pdf viewers will later render the text
with their own versions of the font.

fontflags specify some characteristics of the font. The following description of these flags is taken, with slight modification,
from the pdf Reference Manual (the section on font descriptor flags). Viewers can adapt their rendering to these flags, especially
when they substitute a replacements for not embedded fonts.

content The pdfTEX user manual

The value of the flags key in a font descriptor is a 32—-bit integer that contains a collection of boolean attributes. These
attributes are true if the corresponding bit is set to 1. Table 3 specifies the meanings of the bits, with bit T being the least
significant. Reserved bits must be set to zero.

bit position semantics

1 Fixed-width font
Serif font
Symbolic font
Script font
Reserved
Uses the Adobe Standard Roman Character Set
7 Italic
8-16 Reserved
17 All-cap font
18 Small-cap font
19 Force bold at small text sizes
20-32 Reserved

Table 3 The meaning of flags in the font descriptor.

All characters in a fixed-width font have the same width, while characters in a proportional font have different widths.
Characters in a serif font have short strokes drawn at an angle on the top and bottom of character stems, while sans serif
fonts do not have such strokes. A symbolic font contains symbols rather than letters and numbers. Characters in a script

Jfont resemble cursive handwriting. An all-cap font, which is typically used for display purposes such as titles or
headlines, contains no lowercase letters. It differs from a small-cap font in that characters in the latter, while also capital
letters, have been sized and their proportions adjusted so that they have the same size and stroke weight as lowercase
characters in the same typeface family.

Bit 6 in the flags field indicates that the font’s character set conforms to the Adobe Standard Roman Character Set, or a
subset of that, and that it uses the standard names for those characters.

content The pdfTgX user manual

Finally, bit19 is used to determine whether or not bold characters are drawn with extra pixels even at very small text
sizes. Typically, when characters are drawn at small sizes on very low resolution devices such as display screens,
features of bold characters may appear only one pixel wide. Because this is the minimum feature width on a pixel-
based device, ordinary non-bold characters also appear with one—pixel wide features, and thus cannot be
distinguished from bold characters. If bit 19 is set, features of bold characters may be thickened at small text sizes.

If the font flags are not given, pdfTEX treats it as being 4, a symbolic font. If you do not know the correct value, it is best not to
specify it at all, as specifying a bad value of font flags may cause troubles in viewers. On the other hand this option is not
absolutely useless because it provides backward compatibility with older map files (see the fontfile description below).

special instructions can be used to manipulate fonts similar to the way dvips does. Currently only the keywords SlantFont
and ExtendFont are interpreted, other instructions (as ReEncodeFont with parameters, see encoding below) are just ignored.
The permitted SlantFont range is —1..1; for ExtendFont it's —2..2. The block of special instruction must be enclosed by

mr

double quotes .

encoding specifies the name of the file containing the external encoding vector to be used for the font. The file name may be
preceded by a <, but the effect is the same. The format of the encoding vector is identical to that used by dvips. If no encoding
is specified, the font’s built-in default encoding is used. It may be omitted if you are sure that the font resource has the correct
built-in encoding. In general this option is highly preferred and is required when subsetting a TrueType font.

fontfile sets the name of the font source file. This must be a Type 1 or TrueType font file. The font file name can be preceded by
one or two special characters, which says how the font file should be handled.

e Ifthe fontfile name is preceded by a < the font file will be partially downloaded, meaning that only used glyphs (characters)
are embedded to the font. This is the most common use and is strongly recommended for any font, as it ensures the
portability and reduces the size of the pdf output. Partial fonts are included in such a way that name and cache clashes are
minimized.

If the font file name is preceded by a double <<, the font file will be included entirely — all glyphs of the font are embedded,
including the ones that are not used in the document. Apart from causing large size pdf output, this option may cause
troubles with TrueType fonts, so it is not recommended. It might be useful in case the font is atypical and can not be
subsetted well by pdfTEX. Beware: some font vendors forbid full font inclusion.

content The pdfTEX user manual

If nothing precedes the font file name, the font file is read but nothing is embedded, only the font parameters are extracted
to generate the so—called font descriptor, which is used by the pdf reader to simulate the font if needed. This option is
useful only when you do not want to embed the font (i. e. to reduce the output size), but wish to use the font metrics and let
the pdf reader generate instances that look close to the used font in case the font resource is not installed on the system
where the pdf output will be viewed or printed. To use this feature the font flags must be specified, and it must have the
bit 6 set on, which means that only fonts with the Adobe Standard Roman Character Set can be simulated. The only
exception is the case of a Symbolic font, which is not very useful.

If the font file name is preceded by a !, the font is not read at all, and is assumed to be available on the system. This option
can be used to create pdffiles which do not contain embedded fonts. The pdf output then works only on systems where the
resource of the used font is available. It's not very useful for document exchange, as the pdfis not ‘portable’ at all. On the
other hand it is very useful when you wish to speed up running of pdf TEX during interactive work, and only in a final version
embed all used fonts. Don't over—estimate gain in speed and when distributing files, always embed the fonts! This feature
requires the pdf reader to have access to installed fonts on the system. This has been tested on Win95 and Unix (Solaris).

When one suffers from invalid lookups, for instance when pdfTEX tries to open a . pfa file instead of a . pf£b one, one can add
the suffix to the filename. In this respect, pdf TEX completely relies on the kpathsea libraries.

If a used font is not present in the map files, first pdfTEX will look for a source with suffix . pgc, which is a so—called pgc source
(pdf Glyph Container)'. If no pgc source is available, pdfTEX will try to use pk fonts as dvi drivers do, creating pk fonts on—the—fly
if needed.

Lines containing nothing apart from tfmname stand for scalable Type 3 fonts. For scalable fonts as Type 1, TrueType and scalable
Type 3 font, all the fonts loaded from a tfm at various sizes will be included only once in the pdf output. Thus if a font, let’s say
csrl10, is described in one of the map files, then it will be treated as scalable. As a result the font source for csr10 will be
included only once for csr10, csr10 at 12pt etc. So pdfTEX tries to do its best to avoid multiple downloading of identical
font sources. Thus vector pgc fonts should be specified as scalable Type 3 in map files like:

csrl0

'This is a text file containing a pdf Type 3 font, created by METAPOST using some utilities by Hans Hagen. In general pgc files can contain whatever
allowed in pdf page description, which may be used to support fonts that are not available in METAFONT. pgc fonts are not widely useful, as vector
Type 3 fonts are not displayed very well in older versions of Acrobat Reader, but may be more useful when better Type 3 font handling is more common.

content The pdfTEX user manual

It doesn’t hurt much if a scalable Type 3 font is not given in map files, except that the font source will be downloaded multiple
times for various sizes, which causes a much larger pdf output. On the other hand if a font in the map files is defined as scalable
Type 3 font and its pgc source is not scalable or not available, pdfTEX will use pk fonts instead; the pdf output is still valid but
some fonts may look ugly because of the scaled bitmap.

To summarize this rather confusing story, we include a some example lines. First we use two fonts from the 14 standard fonts
with font—specific encoding, i. e. no external encoding is given. In the first line, the fontfile is missing, so viewers will use their
own font. The ZapfDingbats font is taken from the given font file.

psyr Symbol

pzdr ZapfDingbats <pzdr.pfb

Similarly, two standard fonts with an external encoding. The < preceding the encoding file name may be left out.

ptmr8r Times-Roman <8r.enc
ptmri8r Times-Italic <8r.enc <ptmri8a.pfb

A SlantFont is specified similarly as for dvips. The SlantFont or ExtendFont entries work only with embedded font files.

psyro ".167 SlantFont" <usyr.pfb
pcrr8rn Courier ".85 ExtendFont" <8r.enc <pcrr8a.pfb

Download a font entirely without re-encoding:
pgsr8r GillSans <<pgsr8a.pfb
Partially download a font without re—encoding:
pgsr8r GillSans <pgsr8a.pfb
Do not read the font at all — the font is supposed to be installed on the system:
pgsr8r GillSans !pgsr8a.pfb
Entirely download a font with re—encoding:
pgsr8r GillSans <8r.enc <<pgsr8a.pfb

Partially download a font with re-encoding:

content The pdfTgX user manual

pgsr8r GillSans <8r.enc <pgsr8a.pfb

Sometimes we do not want to include a font, but need to extract parameters from the font file and re-encode the font as well,
This only works for fonts with Adobe Standard Encoding. The font flags specify how such a font looks like, so Acrobat Reader
can generate similar instance if the font resource is not available on the target system.

pgsr8r GillSans 32 <8r.enc pgsr8a.pfb
A TrueType font can be used in the same way as a Type 1font:

verdana8r Verdana <8r.enc <verdana.ttf

TrueType fonts

As mentioned above, pdfTEX can work with TrueType fonts. Defining TrueType fonts is similar to Type 1. The only extra thing to
do with TrueType is to create a tfm file. There is a program called ttf2afm in the pdfTEX distribution which can be used to
extract afm from TrueType fonts (another conversion program is tt£2pt1). Usage of ttf2afm is simple:

ttf2afm -e <encoding vector> -o <afm outputfile> <ttf input file>

A TrueType file can be recognized by its suffix tt£. The optional encoding specifies the encoding, which is the same as the
encoding vector used in map files for pdfTEX and dvips. If the encoding is not given, all the glyphs of the afm output will be
mapped to / .notdef. ttf2afm writes the output afm to standard output. If we need to know which glyphs are available in
the font, we can run ttf2afm without encoding to get all glyph names. The resulting afm file can be used to generate a tfm one
by applying afm2tfm.

To use a new TrueType font the minimal steps may look like below. We suppose that test .map is used.

ttf2afm -e 8r.enc -o times.afm times.ttf
afm2tfm times.afm -T 8r.enc
echo "times TimesNewRomanPSMT <8r.enc <times.ttf" >>test.map

There are a few limitations with TrueType fonts in comparison with Type 1 fonts:

content The pdfTgX user manual

a. The special effects SlantFont/ExtendFont cannot be used.
b. To subseta TrueType font, the font must be specified as re-encoded, therefore an encoding vector must be given.
c. TrueType fonts coming with embedded pdf files are kept untouched; they are not replaced by local ones.

(W Formal syntax specification

This section formally specifies the pdfTEX specific extensions to the TEX macro programming language. All primitives are
prefixed by pdf except for \efcode, \1pcode, and \rpcode. The general definitions and syntax rules follow after the list of
primitives.

\pdfoutput (integer)

\pdfadjustspacing (integer)
\pdfcompresslevel (integer)
\pdfdecimaldigits (integer)
\pdfmovechars (integer)

\pdf imageresolution (integer)
\pdfpkresolution (integer)
\pdfuniqueresname (integer)
\pdfprotrudechars (integer)
\pdfoptionpdfminorversion (integer)
\pdfoptionalwaysusepdfpagebox (integer)
\pdfoptionpdfinclusionerrorlevel (integer)
\pdfhorigin (dimen)

\pdfvorigin (dimen)

\pdfpagewidth (dimen)

\pdfpageheight (dimen)

\pdflinkmargin (dimen)

\pdfdestmargin (dimen)
\pdfthreadmargin (dimen)

content The pdfTgX user manual

\pdfpagesattr (tokens)

\pdfpageattr (tokens)

\pdfpageresources (tokens)

\pdftexrevision (expandable)

\pdftexbanner (expandable)

\pdffontname (font) (expandable)
\pdffontobjnum (font) (expandable)
\pdfincludechars (font) (generaltext) (expandable)
\pdftexversion (read-only integer)

\pdflastobj (read-only integer)

\pdflastxform (read-only integer)

\pdflastximage (read-only integer)
\pdflastximagepages (read-only integer)
\pdflastannot (read-only integer)

\pdflastxpos (read-onlyinteger)

\pdflastypos (read—only integer)
\pdflastdemerits (read-only integer)
\pdflastvbreakpenalty (read-only integer)
\pdfliteral [direct] (generaltext) (h,v, m)
\pdfobj (objecttypespec) (h,v, m)

\pdfrefobj (objectnumber) (h,v, m)

\pdfxform [(xform attrspec) | (box number) (h,v, m)
\pdfrefxform (objectnumber) (h,v, m)

\pdfximage [(image attrspec) | (general text) (h,v, m)
\pdfrefximage (objectnumber) (h, v, m)

\pdfannot [(rulespec)] (generaltext) (h,v, m)
\pdfstartlink [(rulespec)] [(attrspec)] (actionspec) (h, m)
\pdfendlink (h, m)

\pdfoutline (outline spec) (h,v, m)

content The pdfTgX user manual

\pdfdest (destspec) (h,v, m)
\pdfthread (threadspec) (h,v, m)
\pdfstartthread (threadspec) (v, m)
\pdfendthread (v, m)

\pdfsavepos (h,v, m)

\pdfinfo (general text)

\pdfcatalog (general text) [(open-action spec)]
\pdfnames (general text)

\pdfmapfile (map spec)
\pdfmapline (map spec)
\pdffontattr (font) (generaltext)
\pdftrailer (general text)
\pdffontexpand (font) (expand spec)
\efcode (font) (8-bitnumber) (integer)
\1lpcode (font) (8-bitnumber) (integer)

(
\rpcode (font) (8-bitnumber) (integer)

\vadjust (prespec) (filler) { (vertical material) } (h, m)
\special (pdfspecial spec)

The general definitions and syntax rules are given below. (general text) is expanded immediately, like \special in traditional
TEX, unless explicitly mentioned otherwise.

(general text) — { (balancedtext) }
(attr spec) — attr (general text)
(rule spec) — (width | height | depth) (dimension) [(rulespec)]
(object type spec) — reserveobjnum |
[useobjnum (number)]
[(attrspec) | [stream [(attrspec)]| (objectcontents)
(object contents) — (file spec) | (general text)
(xform attr spec) — [(attrspec) | [(resources spec)]

content The pdfTgX user manual

(resources spec) — resources (general text)
(image attr spec) — [(rule spec) | [(attrspec) | [(page spec) | [(pdfboxspec)]
(outline spec) — (attrspec) (actionspec) [count (number) | (general text)
(action spec) — user (user-actionspec) | goto (goto-actionspec) |
thread (thread-action spec)
(user-action spec) — (general text)
(goto-action spec) — (numid) |
[{file spec) | (nameid) |
[(file spec) | [(pagespec)| (general text) |
(file spec) (nameid) (newwindow spec) |
(file spec) [(pagespec) | (general text) (newwindow spec)
(thread-action spec) — [(file spec) | (numid) | [(file spec)] (nameid)
(open-action spec) — openaction (action spec)
(pdf box spec) — mediabox | cropbox | bleedbox | trimbox | artbox
(map spec) — { [(map modifier) | (balanced text) }
(map modifier) — + | = | -
(numid) — num (number)
(nameid) — name (general text)
(newwindow spec) — newwindow | nonewwindow
(destspec) — (numid) (desttype) | (nameid) (desttype)
(desttype) — xyz [zoom (number)] | fitr (rulespec) |
fitbh | fitbv | fitb | fith | fitv | fit
(thread spec) — [(rulespec) | [(attrspec) | (id spec)
(id spec)y — (numid) | (nameid)
(file spec) — file (general text)
(page spec) — page (number)
(expand spec) — (stretch) (shrink) (step) [autoexpand |
(stretch) — (number)
(shrink) — (number)

content The pdfTgX user manual

(step) — (number)

(pdfspecial spec) — { [(pdfspecialid) [(pdfspecial modifier)]] (balanced text) }
(pdfspecialid) — pdf: | PDF:

(pdfspecial modifier) — direct:

Some of the object and image related primitives can be prefixed by \immediate. More about that in the next sections.

New primitives
Here follows a short description of the primitives added by pdfTgX to the original TEX engine (other extensions by MLTEX and

encTgX are not listed). One way to learn more about how to use these new primitives is to have a look at the file example. tex
in the pdfTEX distribution.

Note that if the output is dvi then the pdfTEX specific dimension parameters are not used at all. However some pdf TEX integer
parameters can affect the dvi as well as pdf output (currently \pdfoutput and \pdfadjustspacing).

General warning: many of these new primitives, for example \pdfdest and \pdfoutline, write their arguments directly to
the pdf output file (when producing pdf), as pdf string constants. This means that you (or, more likely, the macros you write) must
escape characters as necessary (namely \, (, and). Otherwise, an invalid pdf file may result. The hyperref and Texinfo
packages have code which may serve as a starting point for implementing this, although it will certainly need to be adapted to
any particular situation.

Document setup

\pdfoutput (integer)

This parameter specifies whether the output format should be dvi or pdf. A positive value means pdf output, otherwise (default
0) one gets dvi output. This primitive is the only one that must be set to produce pdf output (unless the commandline option
—output-format=pdf is used); all other primitives are optional. This parameter cannot be specified after shipping out the
first page. In other words, if we want pdf output, we have to set \pdfoutput before pdfTEX ships out the first page.

content The pdfTgX user manual

When pdfTEX starts complaining about specials, one can be rather sure that a macro package is not aware of the pdf mode. A
simple way of making macros aware of pdf TEX in pdf or dvi mode is:

\ifx\pdfoutput\undefined \csname newcount\endcsname\pdfoutput \fi
\ifcase\pdfoutput DVI CODE \else PDF CODE \fi

Using the ifpdf . sty file, which works with both I“TEX and plain TgX, is a cleaner way of doing this. Historically, the simple test
\ifx\pdfoutput\undefined was defined; but nowadays, the pdfTEX engine is used in distributions even for non-pdf
formats (e. g. 'TEX), so \pdfoutput may be defined even when the output format is dvi.

\pdfcompresslevel (integer)

This integer parameter specifies the level of stream compression (text, in-line graphics, and embedded png images; all done by
the z11ib library). Zero means no compression, 1 means fastest, 9 means best, 2..8 means something in between. A value
outside this range will be adjusted to the nearest meaningful value. This parameter is read each time pdfTEX starts a stream.
Setting \pdf compresslevel=0 is great for pdf stream debugging.

\pdfdecimaldigits (integer)

This integer parameter specifies the numeric accuracy of real coordinates as written to the pdffile. It gives the maximal number
of decimal digits after the decimal point. Valid values are in range 0..4. A higher value means more precise output, but also
results in a larger file size and more time to display or print. In most cases the optimal value is 2. This parameter does not
influence the precision of numbers used in raw pdf code, like that used in \pdf1literal and annotation action specifications;
also multiplication items (e. g. scaling factors) are not affected and are always output with best precision. This parameter is read
when pdfTEX writes a real number to the pdf output.

When including huge METAPOST images using supp-pdf . tex, one can limit the accuracy to two digits by typing:
\twodigitMPoutput.

\pdfmovechars (integer)

This parameter specifies whether pdfTEX should try to move characters in range 0..31to higher slots. When set to 1, this feature
affects only those fonts that have all character codes below 128; for instance, Computer Modern. When set to 2 or higher
pdf TEX will try to move those characters to free slots in encoding array, even if the font contains characters with code greater

content The pdfTgX user manual

than or equal to 128. This parameter is read when pdfTEX writes a character of a font to the pdf output, at which moment it has
to decide whether to move the character or not.

\pdfpkresolution (integer)

This integer parameter specifies the default resolution of embedded pk fonts and is read when pdfTEX downloads a pk font
during finishing the pdf output. As bitmap fonts are still rendered poorly by some pdf viewers, it is best to use Type 1fonts when
available.

\pdfhorigin (dimension)

This parameter can be used to set the horizontal offset the output box from the top left corner of the page. A value of 1inch
corresponds to the normal TEX offset. This parameter is read when pdfTEX starts shipping out a page to the pdf output.

For standard purposes, this parameter should always be kept at 1true inch. If you want to shift text on the page, use TEX's own
\horigin primitive. To avoid surprises, after global magnification has been changed by the \mag primitive, the \pdfhorigin
parameter should still be 1 true inch, e. g. by typing \pdfhorigin=1 true in afterissuingthe \mag command. Or, you can
preadjust the \pdfhorigin value before typing \mag, so that its value after the \mag command ends up at 1 true inch again.

\pdfvorigin (dimension)

This parameter is the vertical companion of \pdfhorigin, and the notes above regarding \mag and true dimensions apply.
Also keep in mind that the TEX coordinate system starts in the top left corner (downward), while pdf coordinates start at the
bottom left corner (upward).

\pdfpagewidth (dimension)

This dimension parameter specifies the page width of the pdf output (the screen, the paper, etc.). pdfTEX reads this parameter
when it starts shipping out a page. After magnification has been changed by the \mag primitive, check that this parameter
reflects the wished true page width.

If the value is not given, the page width is calculated as whox being shipped out + 2 X (horigin + \hoffset). When part of the page
falls off the paper or screen, you can be rather sure that this parameter is set wrong.

content The pdfTgX user manual

\pdfpageheight (dimension)

Similar to the previous item, this dimension parameter specifies the page height of the pdf output. If not given, the page height
will be calculated analogously to the above. After magnification has been changed by the \mag primitive, check that this
parameter reflects the wished true page height.

\pdfpagesattr (tokens)

pdfTEX expands this token list when it finishes the pdf output and adds the resulting character stream to the root Pages object.
When defined, these are applied to all pages in the document. Some examples of attributes are /MediaBox, the rectangle
specifying the natural size of the page, /CropBozx, the rectangle specifying the region of the page being displayed and printed,
and /Rotate, the number of degrees (in multiples of 90) the page should be rotated clockwise when it is displayed or printed.

\pdfpagesattr
{ /Rotate 90 % rotate all pages by 90 degrees
/MediaBox [0 O 612 792] } J the media size of all pages (in bp)

\pdfpageattr (tokens)

This is similar to \pdfpagesattr, but has priority over it. It can be used to override any attribute given by \pdfpagesattr
for individual pages. The token list is expanded when pdfTEX ships out a page. The contents are added to the attributes of the
current page.

The document info and catalog

\pdfinfo (general text)

This primitive allows the user to add information to the document info section; if this information is provided, it can be extracted
by Acrobat Reader (version 3.1: menu option Document Information, General). The (general text) is a collection of key-value-
pairs. The key names are preceded by a /, and the values, being strings, are given between parentheses. All keys are optional.
Possible keys are /Author, /CreationDate (defaults to current date including time zone info), /ModDate, /Creator
(defaults to TeX), /Producer (defaults to pdfTeX-1.20b), /Title, /Subject, and /Keywords.

content The pdfTgX user manual

/CreationDate and /ModDate are expressed in the form D: YYYYMMDDhhmmssTZ. ., where YYYY is the year, MM is the
month, DD is the day, hh is the hour, mm is the minutes, ss is the seconds, and TZ. . is an optional string denoting the time zone.
An example of this format is shown below. For details please refer to the pdf Reference.

Multiple appearances of \pdf info will be concatenated. If a key is given more than once, then the first appearance will be
used. An example of the use of \pdfinfo is:

\pdfinfo
{ /Title (example.pdf)

/Creator (TeX)
/Producer (pdfeTeX 1.20Db)
/Author (Tom and Jerry)
/CreationDate (D:20050106154343+01°007)
/ModDate (D:20050106155343+01°00)
/Subject (Example)
/Keywords (mouse, cat) }

\pdfcatalog (general text) [(open-action spec) |

Similar to the document info section is the document catalog, where keys are /URI, which provides the base url of the
document, and /PageMode, which determines how Acrobat displays the document on startup. The possibilities for the latter
are explained in Table 4:

value meaning

/UseNone neither outline nor thumbnails visible
/UseOutlines outline visible

/UseThumbs thumbnails visible

/FullScreen full-screen mode

Table 4 Supported /PageMode values.

In full-screen mode, there is no menu bar, window controls, nor any other window present. The default setting is /UseNone.

content The pdfTgX user manual

The (openaction) is the action provided when opening the document and is specified in the same way as internal links, see
section 7.8. Instead of using this method, one can also write the open action directly into the catalog.

\pdfnames (general text)

This primitive inserts the (general text) to the /Names array. The text must conform to the specifications as laid down in the pdf
Reference Manual, otherwise the document can be invalid.

\pdftrailer (general text)
This command puts its argument text verbatim into the file trailer dictionary.
\pdfoptionpdfminorversion (integer)

This primitive sets the pdf version of the generated file and the latest allowed pdf version of included pdfs. E. g.,
\pdfoptionpdfminorversion=3 tells pdfTeX to set the pdf version to 1.3 and allows only included pdf files with versions
numbers up to 1.3. The default for \pdfoptionpdfminorversion is 4 for pdf version 1.4. If specified, this primitive must
appear before any data is to be written to the generated pdf file, so you should put it at the very start of your files.

Fonts

\pdffontexpand (font) (stretch) (shrink) (step) [autoexpand |

This extension to TEX's font definitions controls a pdfTEX automatism called font expansion. We describe this by an example:

\font\somefont=somefile at 10pt
\pdffontexpand\somefont 30 20 10 autoexpand
\pdfadjustspacing=2

The 30 20 10 means this: “hey TEX, when line breaking is going badly, you may stretch the glyphs in this font as much as 3 %
or shrink them by 2 %”. Because pdfTEX uses internal data structures with fixed widths, each additional width also means an
additional font. For practical reasons pdfTEX uses discrete steps, in this example, 1%. This means that for font somefile up
to 6 differently scaled alternatives may be used. When no step is specified, 0.5 % steps are used.

content The pdfTgX user manual

Roughly spoken, the trick is as follows. Consider a text typeset in triple column mode. When TgX cannot break a line in the
appropriate way, the unbreakable parts of the word will stick into the margin. When pdfTgX notes this, it will try to scale (shrink)
the glyphs in that line using fixed steps, until the line fits. When lines are too spacy, the opposite happens: pdfTEX starts scaling
(stretching) the glyphs until the white space gaps is acceptable. This glyph stretching and shrinking is called font expansion.

The additional expanded fonts get artificial names by adding the font expansion value to the base font name, e. g.
somefile+10 for1% stretch or somefile-15 for1.5 % shrink. If the autoexpand option is not given, tfm files with these
names and appropriate dimensions must be available. So, each expanded variant of a font must have its own tfm file! Expanded
tfm names like somefile+10 must not be mentioned in the map file (but the tfm name of the base font without expansion
must be there). When no tfm file can be found, pdfTEX will try to generate it by executing the script mktextfm, where available
and supported.

The font expansion is greatly simplified, if the autoexpand option is there. Then no expanded tfm file versions are needed;
instead, pdfTEX generates expanded copies of the unexpanded tfm data structures and keeps them in its memory.

pdfTEX requires only unexpanded Type 1 font files for font expansion, from which all expanded font versions are internally
generated and included (subsetted) into the pdf output file. To enable font expansion, don't forget to set \pdfad justspacing

to a value greater than zero.

The font expansion mechanism is inspired by an optimization first introduced by Prof. Hermann Zapf, which in itself goes back
to optimizations used in the early days of typesetting: use different glyphs to optimize the grayness of a page. So, there are many,
slightly different a’s, €’s, etc. For practical reasons pdfTEX does not use such huge glyph collections; it uses horizontal scaling
instead. This is sub—optimal, and for many fonts, possibly offensive to the design. But, when using pdf, it's not illogical: pdf
viewers use so-called Multiple Master fonts when no fonts are embedded and/or can be found on the target system. Such
fonts are designed to adapt their design to the different scaling parameters. It is up to the user to determine to what extent
mixing slightly remastered fonts can be used without violating the design. Think of an O: when geometrically stretched, the
vertical part of the glyph becomes thicker, and looks incompatible with an unscaled original. With a multiple master situation,
one can stretch while keeping this thickness compatible.

\pdfadjustspacing (integer)

The output that pdf TEX produces is generally compatible with the normal TEX output: TEX's typesetting engine is normally
unchanged, because the optimization described here is turned off by default. At this moment there are two methods provided.

content The pdfTEX user manual

When \pdfadjustspacing is set to 1, stretching is applied affer TEX's normal paragraph breaking routines have broken the
paragraph into lines. In this case, line breaks are identical to standard TEX behaviour.

When set to 2, the width changes that are the result of stretching and shrinking are taken into account while the paragraph is
broken into lines. In this case, line breaks are likely to be different from those of standard TgX. In fact, paragraphs may even
become longer or shorter.

Both alternatives use the extended collection of tfm files that are related to the stretch and shrink settings as described in
the previous section, unless \pdffontexpand is given with the option autoexpand.

\efcode (font) (integer)

We didn't yet tell the whole story. One can imagine that some glyphs are more sensitive to scaling than others. The \efcode
primitive can be used to influence the stretchability of a glyph within a given font. The syntax is similar to \sfcode (but with the
(font) required), and defaults to 1000, meaning 100 %.

\efcode\somefont ‘A=800
\efcode\somefont ‘0=0

In this example an A may stretch 0.8 times as much as normal and the O is not to be stretched at all. The minimum and
maximum stretch is still bound by the font specification, otherwise one would end up with more possible font inclusions than
would be comfortable.

\pdfprotrudechars (integer)

Yet another way of optimizing paragraph breaking is to let certain characters move into the margin. When this primitive is set to 1
(or another positive integer value), the glyphs qualified as such will make this move when applicable. This qualification and the
amount of shift are set by the primitives \rpcode and \1pcode.

If you want to protrude some item other than a character (e. g. a \hbox), you can do so by padding the item with an invisible
zero-width character, for which protrusion is activated.

\rpcode (font) (integer)

The amount that a character from a given font may shift into the right margin (“character protrusion”) is set by the primitive
\rpcode. The protrusion distance is the integer value given to \rpcode, multiplied with 0.001 em from the current font.
Example:

content The pdfTgX user manual

\rpcode\somefont ¢ ,=200
\rpcode\somefont ‘-=150

Here the comma may shift 0.2 em into the margin and the hyphen 0.15 em. All these small bits and pieces will help pdfTEX to
give you better paragraphs (use \rpcode judiciously; don’t overdo it).

Remark: old versions of pdfTEX use the character width as measure. This was changed to a proportion of the em-width after
Han Thé Thanh finished his master’s thesis.

\1lpcode (font) (integer)
This is similar to \rpcode, but affects the amount by which characters may protrude into the left margin.
\pdffontname (font) (expandable)

In pdf files produced by pdfTEX one can recognize a font resource by the prefix /F followed by a number, for instance /F12 or
/F54. This command returns, for a given TgX font, the number from the corresponding font resource name. E. g., if /F12
corresponds to some TgX font \foo, the \pdffontname\foo gives the number12.

In the current implementation, when \pdfuniqueresname (see below) is set to a positive value, the \pdf f ontname still
returns only the number from the font resource name, but not the appended random string.

\pdffontobjnum (font) (expandable)

This command is similar to \pdffontname, but it returns the pdf object number of the font dictionary instead of the number
from the font resource name. E. g., if the font dictionary (‘/Type /Font’)in pdf object 3 corresponds to some TgX font \foo,
the \pdffontobjnum\foo gives the number 3.

Use of \pdf fontname and \pdffontobjnum allows users full access to all the font resources used in the document.
\pdfincludechars (font) (general text)

This command causes pdfTEX to treat the characters in (general text) as if they were used with (font), which means that the
corresponding glyphs will be embedded into the font resources in the pdf output. Nothing is appended to the list being built.

content The pdfTgX user manual

[\pdfuniqueresname (integer)

When this primitive is assigned a positive number, pdf resource names will be made reasonably unique by appending a random
string consisting of six ascii characters.

\pdfmapfile (map spec)

This primitive is used for managing font map files, to make them known to pdfTEX so that they can be read in. If no
\pdfmapfile primitive is given, the default map file pdftex.map will be read in by pdfTEX.

Normally there is no need for the pdfTEX user to bother about the \pdfmapfile primitive, as the main TgX distributions
provide nice helper tools that automatically assemble the default font map file. One prominent tool example is the script
updmap coming with teTEX.

The operation mode of the \pdfmapfile primitive is selected by a flag letter (+, =, -, or omitted). This flag defines how a map
file is going to be handled, and how a collision between an existing map entry and a newer one is resolved; either ignoring a
later entry, or replacing or deleting an existing entry. But in any case, map entries of fonts already in use are kept untouched. The
companion primitive \pdfmapline allows something similar, only that a single map line for one font (instead of a map file
name) is given as argument. Here are two examples:

\pdfmapfile{+myfont .map}
\pdfmapline{+ptmri8r Times-Italic <8r.enc <ptmri8a.pfb}

The general map handling function is that map items, which are either map file names or single font map lines (in case of the
\pdfmapline primitive) are put into an auxiliary list of pending map items. During the next page shipout, this list is processed
and all pending map items are sequentially scanned for their map entries, and an internal map entry database is updated, using
one of the modes described below. Then the list of pending map items is cleared. All \pdfmapfile and \pdfmapline
commands can also be given after shipout of the first page.

If your map file isn't in the current directory (or a standard system directory), you will need to set the TEXFONTMAPS variable (in
Web2c) or give an explicit path so that it will be found.

\pdfmapfile{foo.map} (+/=/- flags omitted) clears the list of pending map items and starts a new list with the only
pending file foo .map. When the file foo .map is scanned, duplicate map entries are ignored and a warning is issued. When

content The pdfTgX user manual

this command is given at the beginning of a TEX run, the default map file pdf tex.map will not be read in. This is compatible
with the former behaviour.

If you want to add support for a new font through an additional font map file while keeping all the existing mappings, dont use
this version of command, but instead type either \pdfmapfile{+myfont.map} or \pdfmapfile{=myfont.map}, as
described below.

\pdfmapfile {+foo.map} puts the file foo.map into the list of pending map items. When the file foo.map is scanned,
duplicate map entries are ignored and a warning is issued. This is compatible with the former behaviour.

\pdfmapfile {=foo.map} puts the file foo.map into the list of pending map items. When the file foo .map is scanned,
matching map entries in the database are replaced by new entries from foo .map.

\pdfmapfile {-foo.map} putsthe file foo.map into the list of pending map items. When t