
SWI-Prolog SGML/XML parser
Version 1.0.15, September 2002

Jan Wielemaker

SWI,
University of Amsterdam

The Netherlands
E-mail: jan@swi.psy.uva.nl

Abstract

Markup languages are an increasingly important method for data-representation and ex-
change. This article documents the package sgml2pl, a foreign library for SWI-Prolog to
parse SGML and XML documents, returning information on both the document and the
document’s DTD. The parser is designed to be small, fast and flexible.

Contents

1 Introduction 2

2 Bluffer’s Guide 2
2.1 ‘Goodies’ Predicates . 3

3 Predicate Reference 4
3.1 Loading Structured Documents . 4
3.2 Handling white-space . 6
3.3 XML documents . 6

3.3.1 XML Namespaces . 7
3.4 DTD-Handling . 8

3.4.1 The DOCTYPE declaration . 10
3.5 Extracting a DTD . 10
3.6 Parsing Primitives . 11

3.6.1 Partial Parsing . 16

4 Processing Indexed Files 17

5 External entities 18

6 Writing markup 19

7 Unsupported features 19

8 Installation 20
8.1 Unix systems . 20

9 Acknowledgements 20

A Summary of Predicates 21

1

1 Introduction

Markup languages have recently regained popularity for two reasons. One is document ex-
change, which is largely based on HTML, an instance of SGML, and the other is for data
exchange between programs, which is often based on XML, which can be considered a sim-
plified and rationalised version of SGML.

James Clark’s SP parser is a flexible SGML and XML parser. Unfortunately it has some
drawbacks. It is very big, not very fast, cannot work under event-driven input and is generally
hard to program beyond the scope of the well designed generic interface. The generic interface
however does not provide access to the DTD, does not allow for flexible handling of input or
parsing the DTD independently of a document instance.

The parser described in this document is small (less than 50 kbytes executable on a Pentium
or 80 kbytes on a SPARC), fast (between 2 and 5 times faster than SP), provides access to
the DTD, and provides flexible input handling.

The document output is equal to the output produced by xml2pl, an SP interface to SWI-
Prolog written by Anjo Anjewierden.

2 Bluffer’s Guide

This package allows you to parse SGML, XML and HTML data into a Prolog data structure.
The high-level interface defined in sgml provides access at the file-level, while the low-level
interface defined in the foreign module works with Prolog streams. Please use the source
of sgml.pl as a starting point for dealing with data from other sources than files, such as
SWI-Prolog resources, network-sockets, character strings, etc. The first example below loads
an HTML file.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>
<head>
<title>Demo</title>
</head>
<body>

<h1 align=center>This is a demo</title>

<p>Paragraphs in HTML need not be closed.

<p>This is called ‘omitted-tag’ handling.
</body>
</html>

?- load_html_file(’test.html’, Term),
pretty_print(Term).

2

[element(html,
[],
[element(head,

[],
[element(title,

[],
[’Demo’
])

]),
element(body,

[],
[’\n’,

element(h1,
[align = center
],
[’This is a demo’
]),

’\n\n’,
element(p,

[],
[’Paragraphs in HTML need not be closed.\n’
]),

element(p,
[],
[’This is called ‘omitted-tag\’ handling.’
])

])
])

].

The document is represented as a list, each element being an atom to represent CDATA or a
term element(Name, Attributes, Content). Entities (e.g. <) are returned as part of
CDATA, unless they cannot be represented. See load sgml file/2 for details.

2.1 ‘Goodies’ Predicates

These predicates are for basic use of the library, converting entire and self-contained files in
SGML, HTML, or XML into a structured term. They are based on load structure/3.

load sgml file(+File, -ListOfContent)
Same as load structure(File, ListOfContent, [dialect(sgml)]).

load xml file(+File, -ListOfContent)
Same as load structure(File, ListOfContent, [dialect(xml)]).

load html file(+File, -Content)
Load File and parse as HTML. Implemented as:

3

load_html_file(File, Term) :-
dtd(html, DTD),
load_structure(File, Term,

[dtd(DTD),
dialect(sgml)

]).

3 Predicate Reference

3.1 Loading Structured Documents

SGML or XML files are loaded through the common predicate load structure/3. This is
a predicate with many options. For simplicity a number of commonly used shorthands are
provided: load sgml file/2, load xml file/2, and load html file/2.

load structure(+Source, -ListOfContent, +Options)
Parse Source and return the resulting structure in ListOfContent. Source is either a
term of the format stream(StreamHandle) or a file-name. Options is a list of options
controlling the conversion process.

A proper XML document contains only a single toplevel element whose name matches
the document type. Nevertheless, a list is returned for consistency with the representa-
tion of element content. The ListOfContent consists of the following types:

Atom
Atoms are used to represent CDATA. Note this is possible in SWI-Prolog, as there
is no length-limit on atoms and atom garbage collection is provided.

element(Name, ListAttributes, ListOfContent)
Name is the name of the element. Using SGML, which is case-insensitive, all
element names are returned as lowercase atoms.
ListOfAttributes is a list of Name=Value pairs for attributes. Attributes of type
CDATA are returned literal. Multi-valued attributes (NAMES, etc.) are returned as
a list of atoms. Handling attributes of the types NUMBER and NUMBERS depends on
the setting of the number(+NumberMode) attribute through set sgml parser/2
or load structure/3. By default they are returned as atoms, but automatic
conversion to Prolog integers is supported. ListOfContent defines the content for
the element.

entity(Code)
If a character-entity (e.g. Α) is encoutered that cannot be represented in
the Prolog character set, this term is returned, representing the referred character
code.

entity(Name)
If an entity refers to a character-entity holding a single character, but this character
cannot be represented in the Prolog character set, this term is returned. For
example, the HTML input text Α < Β is returned as below. Please
note that entity names are case sensitive in both SGML and XML.

4

[entity(’Alpha’), ’ < ’, entity(’Beta’)]

This is a special case of entity(Code), intended to handle special symbols by their
name rather than character code.

sdata(Text)
If an entity with declared content-type SDATA is encountered, this term is returned
holding the data in Text.

ndata(Text)
If an entity with declared content-type NDATA is encountered, this term is returned
holding the data in Text.

pi(Text)
If a processing instruction is encountered (<?...?>), Text holds the text of the
processing instruction. Please note that the <?xml ...?> instruction is handled
internally.

The Options list controls the conversion process. Currently defined options are:

dtd(?DTD)
Reference to a DTD object. If specified, the <!DOCTYPE ...> declaration is ignored
and the document is parsed and validated against the provided DTD. If provided
as a variable, the created DTD is returned. See section 3.5.

dialect(+Dialect)
Specify the parsing dialect. Supported are sgml (default), xml and xmlns. See
section 3.3 for details on the differences.

shorttag(+Bool)
Define whether SHORTTAG abbreviation is accepted. The default is true for
SGML mode and false for the XML modes. Without SHORTTAG, a / is accepted
with warning as part of an unquoted attribute-value, though /> still closes the
element-tag in XML mode. It may be set to false for parsing HTML documents
to allow for unquoted URLs containing /.

space(+SpaceMode)
Sets the ‘space-handling-mode’ for the initial environment. This mode is inherited
by the other environments, which can override the inherited value using the XML
reserved attribute xml:space. See section 3.2.

number(+NumberMode)
Determines how attributes of type NUMBER and NUMBERS are handled. If token
(default) they are passed as an atom. If integer the parser attempts to convert
the value to an integer. If successful, the attribute is passed as a Prolog integer.
Otherwise it is still passed as an atom. Note that SGML defines a numeric attribute
to be a sequence of digits. The - sign is not allowed and 1 is different from 01.
For this reason the default is to handle numeric attributes as tokens. If conversion
to integer is enabled, negative values are silently accepted.

defaults(+Bool)
Determines how default and fixed values from the DTD are used. By default,
defaults are included in the output if they do not appear in the source. If false,
only the attributes occurring in the source are emitted.

5

file(+Name)
Sets the name of the file on which errors are reported. Sets the linenumber to 1.

line(+Line)
Sets the starting line-number for reporting errors.

max errors(+Max)
Sets the maximum number of errors. If this number is reached, an exception of
the format below is raised. The default is 50.

error(limit exceeded(max errors, Max),)

3.2 Handling white-space

SGPL2PL has four modes for handling white-space. The initial mode can be switched us-
ing the space(SpaceMode) option to load structure/3 and set sgml parser/2. In XML
mode, the mode is further controlled by the xml:space attribute, which may be specified
both in the DTD and in the document. The defined modes are:

space(sgml)
In SGML, newlines at the start and end of an element are removed.1 This is the default
mode for the SGML dialect.

space(preserve)
White space is passed literally to the application. This mode leaves all white space
handling to the application. This is the default mode for the XML dialect.

space(default)
In addition to sgml space-mode, all consequtive white-space is reduced to a single space-
character. This mode canonises all white space.

space(remove)
In addition to default, all leading and trailing white-space is removed from CDATA
objects. If, as a result, the CDATA becomes empty, nothing is passed to the application.
This mode is especially handy for processing ‘data-oriented’ documents, such as RDF.
It is not suitable for normal text documents. Consider the HTML fragment below.
When processed in this mode, the spaces between the three modified words are lost.
This mode is not part of any standard; XML 1.0 allows only default and preserve.

Consider adjacent bold and <it>italic</it> words.

3.3 XML documents

The parser can operate in two modes: sgml mode and xml mode, as defined by the
dialect(Dialect) option. Regardless of this option, if the first line of the document reads
as below, the parser is switched automatically into XML mode.

1In addition, newlines at the end of lines containing only markup should be deleted. This is not yet
implemented.

6

<?xml ... ?>

Currently switching to XML mode implies:

• XML empty elements
The construct <element [attribute...] /> is recognised as an empty element.

• Predefined entities
The following entitities are predefined: lt (<), gt (>), amp (&), apos (’) and quot (").

• Case sensitivity
In XML mode, names are treated case-sensitive, except for the DTD reserved names
(i.e. ELEMENT, etc.).

• Character classes
In XML mode, underscores (_) and colon (:) are allowed in names.

• White-space handling
White space mode is set to preserve. In addition to setting white-space handling at
the toplevel the XML reserved attribute xml:space is honoured. It may appear both
in the document and the DTD. The remove extension is honoured as xml:space value.
For example, the DTD statement below ensures that the pre element preserves space,
regardless of the default processing mode.

<!ATTLIST pre xml:space nmtoken #fixed preserve>

3.3.1 XML Namespaces

Using the dialect xmlns, the parser will interpret XML namespaces. In this case, the names
of elements are returned as a term of the format

URL:LocalName

If an identifier has no namespace and there is no default namespace it is returned as a simple
atom. If an identifier has a namespace but this namespace is undeclared, the namespace name
rather than the related URL is returned.

Attributes declaring namespaces (xmlns:ns=url) are reported as if xmlns were not a defined
resource.

In many cases, getting attribute-names as url:name is not desirable. Such terms are hard to
unify and sometimes multiple URLs may be mapped to the same identifier. This may happen
due to poor version management, poor standardisation or because the the application doesn’t
care too much about versions. This package defines two call-backs that can be set using
set sgml parser/2 to deal with this problem.

The call-back xmlns is called as XML namespaces are noticed. It can be used to extend a
canonical mapping for later use by the urlns call-back. The following illustrates this be-
haviour. Any namespace containing rdf-syntax in its URL or that is used as rdf namespace
is canonised to rdf. This implies that any attribute and element name from the RDF names-
pace appears as rdf:name.

7

:- dynamic
xmlns/3.

on_xmlns(rdf, URL, _Parser) :- !,
asserta(xmlns(URL, rdf, _)).

on_xmlns(_, URL, _Parser) :-
sub_atom(URL, _, _, _, ’rdf-syntax’), !,
asserta(xmlns(URL, rdf, _)).

load_rdf_xml(File, Term) :-
load_structure(File, Term,

[dialect(xmlns),
call(xmlns, on_xmlns),
call(urlns, xmlns)

]).

3.4 DTD-Handling

The DTD (Document Type Definition) is a separate entity in sgml2pl, that can be created,
freed, defined and inspected. Like the parser itself, it is filled by opening it as a Prolog output
stream and sending data to it. This section summarises the predicates for handling the DTD.

new dtd(+DocType, -DTD)
Creates an empty DTD for the named DocType. The returned DTD-reference is an
opaque term that can be used in the other predicates of this package.

free dtd(+DTD)
Deallocate all resources associated to the DTD. Further use of DTD is invalid.

load dtd(+DTD, +File)
Define the DTD by loading the SGML-DTD file File. This predicate is defined using
the low-level open dtd/3 predicate:

load_dtd(DTD, DtdFile) :-
open_dtd(DTD, [], DtdOut),
open(DtdFile, read, DtdIn),
copy_stream_data(DtdIn, DtdOut),
close(DtdIn),
close(DtdOut).

open dtd(+DTD, +Options, -OutStream)
Open a DTD as an output stream. The option-list is currently empty. See load dtd/2
for an example.

dtd(+DocType, -DTD)
Find the DTD representing the indicated doctype. This predicate uses a cache of DTD
objects. If a doctype has no associated dtd, it searches for a file using the file search
path dtd using the call:

8

...,
absolute_file_name(dtd(Type),

[extensions([dtd]),
access(read)

], DtdFile),
...

dtd property(+DTD, ?Property)
This predicate is used to examine the content of a DTD. Property is one of:

doctype(DocType)
An atom representing the document-type defined by this DTD.

elements(ListOfElements)
A list of atoms representing the names of the elements in this DTD.

element(Name, Omit, Content)
The DTD contains an element with the given name. Omit is a term of the for-
mat omit(OmitOpen, OmitClose), where both arguments are booleans (true or
false representing whether the open- or close-tag may be omitted. Content is the
content-model of the element represented as a Prolog term. This term takes the
following form:

empty
The element has no content.

cdata
The element contains non-parsed character data. All data up to the matching
end-tag is included in the data (declared content).

rcdata
As cdata, but entity-references are expanded.

any
The element may contain any number of any element from the DTD in any
order.

#pcdata
The element contains parsed character data .

element
An element with this name.

*(SubModel)
0 or more appearances.

?(SubModel)
0 or one appearance.

+(SubModel)
1 or more appearances.

,(SubModel1, SubModel2)
SubModel1 followed by SubModel2.

&(SubModel1, SubModel2)
SubModel1 and SubModel2 in any order.

9

|(SubModel1, SubModel2)
SubModel1 or SubModel2.

attributes(Element, ListOfAttributes)
ListOfAttributes is a list of atoms representing the attributes of the element Ele-
ment.

attribute(Element, Attribute, Type, Default)
Query an element. Type is one of cdata, entity, id, idref, name, nmtoken,
notation, number or nutoken. For DTD types that allow for a list, the notation
list(Type) is used. Finally, the DTD construct (a|b|...) is mapped to the term
nameof(ListOfValues).
Default describes the sgml default. It is one required, current, conref or
implied. If a real default is present, it is one of default(Value) or fixed(Value).

entities(ListOfEntities)
ListOfEntities is a list of atoms representing the names of the defined entities.

entity(Name, Value)
Name is the name of an entity with given value. Value is one of

Atom
If the value is atomic, it represents the literal value of the entity.

system(Url)
Url is the URL of the system external entity.

public(Id, Url)
For external public entities, Id is the identifier. If an URL is provided this is
returned in Url. Otherwise this argument is unbound.

notations(ListOfNotations)
Returns a list holding the names of all NOTATION declarations.

notation(Name, Decl)
Unify Decl with a list if system(+File) andor public(+PublicId).

3.4.1 The DOCTYPE declaration

As this parser allows for processing partial documents and process the DTD separately, the
DOCTYPE declaration plays a special role.

If a document has no DOCTYPE declaraction, the parser returns a list holding all elements
and CDATA found. If the document has a DOCTYPE declaraction, the parser will open the
element defined in the DOCTYPE as soon as the first real data is encountered.

3.5 Extracting a DTD

Some documents have no DTD. One of the neat facilities of this library is that it builds
a DTD while parsing a document with an implicit DTD. The resulting DTD contains all
elements encountered in the document. For each element the content model is a disjunction
of elements and possibly #PCDATA that can be repeated. Thus, if we found element y and
CDATA in element x, the model is:

10

<!ELEMENT x - - (y|#PCDATA)*>

Any encountered attribute is added to the attribute list with the type CDATA and default
#IMPLIED.

The example below extracts the elements used in an unknown XML document.

elements_in_xml_document(File, Elements) :-
load_structure(File, _,

[dialect(xml),
dtd(DTD)

]),
dtd_property(DTD, elements(Elements)),
free_dtd(DTD).

3.6 Parsing Primitives

new sgml parser(-Parser, +Options)
Creates a new parser. A parser can be used one or multiple times for parsing documents
or parts thereof. It may be bound to a DTD or the DTD may be left implicit, in which
case it is created from the document prologue or parsing is performed without a DTD.
Options:

dtd(?DTD)
If specified with an initialised DTD, this DTD is used for parsing the document,
regardless of the document prologue. If specified using as a variable, a reference
to the created DTD is returned. This DTD may be created from the document
prologue or build implicitely from the document’s content.

free sgml parser(+Parser)
Destroy all resources related to the parser. This does not destroy the DTD if the parser
was created using the dtd(DTD) option.

set sgml parser(+Parser, +Option)
Sets attributes to the parser. Currently defined attributes:

file(File)
Sets the file for reporting errors and warnings. Sets the line to 1.

line(Line)
Sets the current line. Useful if the stream is not at the start of the (file) object for
generating proper line-numbers.

charpos(Offset)
Sets the current character location. See also the file(File) option.

dialect(Dialect)
Set the markup dialect. Known dialects:

11

sgml
The default dialect is to process as SGML. This implies markup is case-
insensitive and standard SGML abbreviation is allowed (abreviated attributes
and omitted tags).

xml
This dialect is selected automatically if the processing instruction <?xml ...>
is encountered. See section 3.3 for details.

xmlns
Process file as XML file with namespace support. See section 3.3.1 for details.
See also the qualify_attributes option below.

qualify attributes(Boolean)
How to handle unqualified attribute (i.e. without an explicit namespace) in XML
namespace (xmlns) mode. Default and standard compliant is not to qualify such
elements. If true, such attributes are qualified with the namespace of the element
they appear in. This option is for backward compatibility as this is the behaviour
of older versions. In addition, the namespace document suggests unqualified at-
tributes are often interpreted in the namespace of their element.

space(SpaceMode)
Define the initial handling of white-space in PCDATA. This attribute is described
in section 3.2.

number(NumberMode)
If token (default), attributes of type number are passed as a Prolog atom. If
integer, such attributes are translated into Prolog integers. If the conversion fails
(e.g. due to overflow) a warning is issued and the value is passed as an atom.

doctype(Element)
Defines the toplevel element expected. If a <!DOCTYPE declaration has been parsed,
the default is the defined doctype. The parser can be instructed to accept the first
element encountered as the toplevel using doctype(). This feature is especially
useful when parsing part of a document (see the parse option to sgml parse/2.

get sgml parser(+Parser, -Option)
Retrieve infomation on the current status of the parser. Notably useful if the parser is
used in the call-back mode. Currently defined options:

file(-File)
Current file-name. Note that this may be different from the provided file if an
external entity is being loaded.

line(-Line)
Line-offset from where the parser started its processing in the file-object.

charpos(-CharPos)
Offset from where the parser started its processing in the file-object. See section 4.

charpos(-Start, -End)
Character offsets of the start and end of the source processed causing the current
call-back. Used in PceEmacs to for colouring text in SGML and XML modes.

12

source(-Stream)
Prolog stream being processed. May be used in the on begin, etc. callbacks from
sgml parse/2.

dialect(-Dialect)
Return the current dialect used by the parser (sgml, xml or xmlns).

event class(-Class)
The event class can be requested in call-back events. It denotes the cause of the
event, providing useful information for syntax highlighting. Defined values are:

explicit
The code generating this event is explicitely present in the document.

omitted
The current event is caused by the insertion of an omitted tag. This may be
a normal event in SGML mode or an error in XML mode.

shorttag
The current event (begin or end) is caused by an element written down using
the shorttag notation (<tag/value/>.

shortref
The current event is caused by the expansion of a shortref. This allows for
highlighting shortref strings in the source-text.

doctype(-Element)
Return the defined document-type (= toplevel element). See also
set sgml parser/2.

dtd(-DTD)
Return the currently used DTD. See dtd property/2 for obtaining information on
the DTD such as element and attribute properties.

context(-StackOfElements)
Returns the stack of currently open elements as a list. The head of this list is
the current element. This can be used to determine the context of, for example,
CDATA events in call-back mode. The elements are passed as atoms. Currently
no access to the attributes is provided.

allowed(-Elements)
Determines which elements may be inserted at the current location. This infor-
mation is returned as a list of element-names. If character data is allowed in the
current location, #pcdata is part of Elements. If no element is open, the doctype
is returned.
This option is intended to support syntax-sensitive editors. Such an editor should
load the DTD, find an appropriate starting point and then feed all data between
the starting point and the caret into the parser. Next it can use this option to
determine the elements allowed at this point. Below is a code fragment illustrating
this use given a parser with loaded DTD, an input stream and a start-location.

...,
seek(In, Start, bof, _),
set_sgml_parser(Parser, charpos(Start)),
set_sgml_parser(Parser, doctype(_)),

13

Len is Caret - Start,
sgml_parse(Parser,

[source(In),
content_length(Len),
parse(input) % do not complete document

]),
get_sgml_parser(Parser, allowed(Allowed)),

...

sgml parse(+Parser, +Options)
Parse an XML file. The parser can operate in two input and two output modes. Output
is either a structured term as described with load structure/2 or call-backs on prede-
fined events. The first is especially suitable for manipulating not-too-large documents,
while the latter provides a primitive means for handling very large documents.

Input is a stream. A full description of the option-list is below.

document(+Term)
A variable that will be unified with a list describing the content of the document
(see load structure/2).

source(+Stream)
An input stream that is read. This option must be given.

content length(+Characters)
Stop parsing after Characters. This option is useful to parse input embedded in
envelopes, such as the HTTP protocol.

parse(Unit)
Defines how much of the input is parsed. This option is used to parse only parts
of a file.

file
Default. Parse everything upto the end of the input.

element
The parser stops after reading the first element. Using source(Stream), this
implies reading is stopped as soon as the element is complete, and another call
may be issued on the same stream to read the next element.

content
The value content is like element but assumes the element has already been
opened. It may be used in a call-back from call(on begin, Pred) to parse
individual elements after validating their headers.

declaration
This may be used to stop the parser after reading the first declaration. This
is especially useful to parse only the doctype declaration.

input
This option is intended to be used in conjunction with the allowed(Elements)
option of get sgml parser/2. It disables the parser’s default to complete the
parse-tree by closing all open elements.

14

max errors(+MaxErrors)
Set the maximum number of errors. If this number is exceeded further writes to
the stream will yield an I/O error exception. Printing of errors is suppressed after
reaching this value. The default is 100.

syntax errors(+ErrorMode)
Defines how syntax errors are handled.

quiet
Suppress all messages.

print
Default. Pass messages to print message/2.

style
Print dubious input such as attempts for redefinitions in the DTD using
print message/2 with severity informational.

call(+Event, :PredicateName)
Issue call-backs on the specified events. PredicateName is the name of the predicate
to call on this event, possibly prefixed with a module identifier. The defined events
are:

begin
An open-tag has been parsed. The named handler is called with three argu-
ments: Handler(+Tag, +Attributes, +Parser).

end
A close-tag has been parsed. The named handler is called with two arguments:
Handler(+Tag, +Parser).

cdata
CDATA has been parsed. The named handler is called with two arguments:
Handler(+CDATA, +Parser), where CDATA is an atom representing the data.

entity
An entity that cannot be represented as CDATA has been parsed. The named
handler is called with two arguments: Handler(+NameOrCode, +Parser).

pi
A processing instruction has been parsed. The named handler is called with
two arguments: Handler(+Text, +Parser), where Text is the text of the pro-
cessing instruction.

decl
A declaration (<!...>) has been read. The named handler is called with two
arguments: Handler(+Text, +Parser), where Text is the text of the declara-
tion with comments removed.
This option is expecially useful for highlighting declarations and comments
in editor support, where the location of the declaration is extracted using
get sgml parser/2.

error
An error has been encountered. the named handler is called with three argu-
ments: Handler(+Severity, +Message, +Parser), where Severity is one of
warning or error and Message is an atom representing the diagnostic message.
The location of the error can be determined using get sgml parser/2

15

If this option is present, errors and warnings are not reported using
print message/3

xmlns
When parsing an in xmlns mode, a new namespace declaraction is pushed on
the environment. The named handler is called with three arguments: Han-
dler(+NameSpace, +URL, +Parser). See section 3.3.1 for details.

urlns
When parsing an in xmlns mode, this predicate can be used to map a url into
either a canonical URL for this namespace or another internal identifier. See
section 3.3.1 for details.

3.6.1 Partial Parsing

In some cases, part of a document needs to be parsed. One option is to use load structure/2
or one of its variations and extract the desired elements from the returned structure. This is
a clean solution, especially on small and medium-sized documents. It however is unsuitable
for parsing really big documents. Such documents can only be handled with the call-back
output interface realised by the call(Event, Action) option of sgml parse/2. Event-
driven processing is not very natural in Prolog.

The SGML2PL library allows for a mixed approach. Consider the case where we want
to process all descriptions from RDF elements in a document. The code below calls
process rdf description(Element) on each element that is directly inside an RDF ele-
ment.

:- dynamic
in_rdf/0.

load_rdf(File) :-
retractall(in_rdf),
open(File, read, In),
new_sgml_parser(Parser, []),
set_sgml_parser(Parser, file(File)),
set_sgml_parser(Parser, dialect(xml)),
sgml_parse(Parser,

[source(In),
call(begin, on_begin),
call(end, on_end)

]),
close(In).

on_end(’RDF’, _) :-
retractall(in_rdf).

on_begin(’RDF’, _, _) :-
assert(in_rdf).

on_begin(Tag, Attr, Parser) :-

16

in_rdf, !,
sgml_parse(Parser,

[document(Content),
parse(content)

]),
process_rdf_description(element(Tag, Attr, Content)).

4 Processing Indexed Files

In some cases applications which to process small portions of large SGML, XML or RDF
files. For example, the OpenDirectory project by Netscape has produced a 90MB RDF file
representing the main index. The parser described here can process this document as a unit,
but loading takes 85 seconds on a Pentium-II 450 and the resulting term requires about 70MB
global stack. One option is to process the entire document and output it as a Prolog fact-base
of RDF triplets, but in many cases this is undesirable. Another example is a large SGML
file containing online documentation. The application normally wishes to provide only small
portions at a time to the user. Loading the entire document into memory is then undesirable.

Using the parse(element) option, we open a file, seek (using seek/4) to the position of the
element and read the desired element.

The index can be built using the call-back interface of sgml parse/2. For example, the
following code makes an index of the structure.rdf file of the OpenDirectory project:

:- dynamic
location/3. % Id, File, Offset

rdf_index(File) :-
retractall(location(_,_)),
open(File, read, In, [type(binary)]),
new_sgml_parser(Parser, []),
set_sgml_parser(Parser, file(File)),
set_sgml_parser(Parser, dialect(xml)),
sgml_parse(Parser,

[source(In),
call(begin, index_on_begin)

]),
close(In).

index_on_begin(_Element, Attributes, Parser) :-
memberchk(’r:id’=Id, Attributes),
get_sgml_parser(Parser, charpos(Offset)),
get_sgml_parser(Parser, file(File)),
assert(location(Id, File, Offset)).

The following code extracts the RDF element with required id:

17

rdf_element(Id, Term) :-
location(Id, File, Offset),
load_structure(File, Term,

[dialect(xml),
offset(Offset),
parse(element)

]).

5 External entities

While processing an SGML document the document may refer to external data. This occurs
in three places: external parameter entities, normal external entities and the DOCTYPE decla-
ration. The current version of this tool deals rather primitively with external data. External
entities can only be loaded from a file and the mapping between the entity names and the
file is done using a catalog file in a format compatible with that used by James Clark’s SP
Parser, based on the SGML Open (now OASIS) specification.

Catalog files can be specified using two primitives: the predicate
sgml register catalog file/2 or the environment variable SGML CATALOG FILES
(compatible with the SP package).

sgml register catalog file(+File, +Location)
Register the indicated File as a catalog file. Location is either start or end and defines
whether the catalog is considered first or last. This predicate has no effect if File is
already part of the catalog.

If no files are registered using this predicate, the first query on the catalog examines
SGML CATALOG FILES and fills the catalog with all files in this path.

Two types of lines are used by this package.

DOCTYPE doctype file

PUBLIC " Id " file

The specified file path is taken relative to the location of the catolog file. For the DOCTYPE
declaraction, sgml2pl first makes an attempt to resolve the SYSTEM or PUBLIC identifier. If
this fails it tries to resolve the doctype using the provided catalog files.

Strictly speaking, sgml2pl breaks the rules for XML, where system identifiers must be Univer-
sal Resource Indicators, not local file names. Simple uses of relative URIs will work correctly
under UNIX and Windows.

In the future we will design a call-back mechanism for locating and processing external entities,
so Prolog-based file-location and Prolog resources can be used to store external entities.

18

6 Writing markup

The sgml2pl package is a parser. Output is generally much easier achieved directly from
Prolog. Nevertheless, it contains a few building blocks for emitting markup data.

xml quote attribute(+In, -Quoted)
Map the characters that may not appear in XML attributes to entities. Currently these
are <>&’". Future versions may also deal with characters that cannot be represented
by the document character-set.

xml quote cdata(+In, -Quoted)
Very similar to xml quote attribute/2, but does not quote the single- and double-
quotes.

7 Unsupported features

The current parser is rather limited. While it is able to deal with many serious documents, it
omits several less-used features of SGML and XML. Known missing SGML features include

• NOTATION on entities
Though notation is parsed, notation attributes on external entity declarations are not
handed to the user.

• NOTATION attributes
SGML notations may have attributes, declared using
<!ATTLIST #NOTATION name attributes>. Those data attributes are provided
when you declare an external CDATA, NDATA, or SDATA entity.

XML does not include external CDATA, NDATA, or SDATA entities, nor any of the
other uses to which data attributes are put in SGML, so it doesn’t include data at-
tributes for notations either.

Sgml2pl does not support this feature and is unlikely to; you should be aware that
SGML documents using this feature cannot be converted faithfully to XML.

• SHORTTAG
The SGML SHORTTAG syntax is only partially implemented. Currently,
<tag/content/ is a valid abbreviation for <tag>content</tag>, which can also be
written as <tag>content</>. Empty start tags (<>), unclosed start tags (<a<b) and
unclosed end tags (</a<b) are not supported.

• SGML declaration
The ‘SGML declaration’ is fixed, though most of the parameters are handled through
indirections in the implementation.

• The DATATAG feature
It is regarded as superseeded by SHORTREF, which is supported. (SP does not support
it either.)

19

• The RANK feature
It is regarded as obsolete.

• The LINK feature
It is regarded as too complicated.

• The CONCUR feature
Concurrent markup allows a document to be tagged according to more than one DTD
at the same time. It is not supported.

In XML mode the parser recognises SGML constructs that are not allowed in XML. Also
various extensions of XML over SGML are not yet realised. In particular, XInclude is not
implemented because the designers of XInclude can’t make up their minds whether to base
it on elements or attributes yet, let alone details.

8 Installation

8.1 Unix systems

Installation on Unix system uses the commonly found configure, make and make install
sequence. SWI-Prolog should be installed before building this package. If SWI-Prolog is not
installed as pl, the environment variable PL must be set to the name of the SWI-Prolog
executable. Installation is now accomplished using:

% ./configure
% make
% make install

This installs the foreign libraries in $PLBASE/lib/$PLARCH and the Prolog library files
in $PLBASE/library, where $PLBASE refers to the SWI-Prolog ‘home-directory’.

9 Acknowledgements

The Prolog representation for parsed documents is based on the SWI-Prolog interface to SP
by Anjo Anjewierden.

Richard O’Keefe has put a lot of effort testing and providing bug reports consisting of an
illustrative example and explanation of the standard. He also made many suggestions for
improving this document.

20

A Summary of Predicates

dtd/2 Find or build a DTD for a document type
dtd property/2 Query elements, entities and attributes in a DTD
free dtd/1 Free a DTD object
free sgml parser/1 Destroy a parser
get sgml parser/2 Get parser options
load dtd/2 Read DTD information from a file
load html file/2 Parse HTML file into Prolog term
load sgml file/2 Parse SGML file into Prolog term
load structure/3 Parse XML/SGML/HTML data into Prolog term
load xml file/2 Parse XML file into Prolog term
new dtd/2 Create a DTD object
new sgml parser/2 Create a new parser
open dtd/3 Open a DTD object as an output stream
set sgml parser/2 Set parser options (dialect, source, etc.)
sgml parse/2 Parse the input
sgml register catalog file/2 Register a catalog file
xml quote attribute/2 Quote text for use as an attribute
xml quote cdata/2 Quote text for use as PCDATA

21

Index

#pcdata, 9
any, 9
cdata, 9
content, 14
declaration, 14
element, 14
empty, 9
explicit, 13
file, 14
input, 14
omitted, 13
rcdata, 9
sgml, 12
shortref, 13
shorttag, 13
xmlns, 12
xml, 12
-, 5
/>, 5
/, 5
:, 7
CDATA, 3, 4, 6, 11
DOCTYPE, 18
NAMES, 4
NDATA, 5
NOTATION, 10
NUMBERS, 4, 5
NUMBER, 4, 5
PUBLIC, 18
SDATA, 5
SYSTEM, 18
#IMPLIED, 11
#pcdata, 13
amp, 7
apos, 7
begin, 13
cdata, 9, 10
conref, 10
content, 14
current, 10
default, 6
element, 14
end, 13, 18
entity, 10

error, 15
false, 5, 9
gt, 7
idref, 10
id, 10
implied, 10
informational, 15
integer, 5, 12
lt, 7
name, 10
nmtoken, 10
notation, 10
number, 10
nutoken, 10
on begin, 13, 14
parse, 12
preserve, 6, 7
quot, 7
rdf-syntax, 7
rdf, 7
remove, 7
required, 10
sgml, 5, 6, 13
start, 18
token, 5, 12
true, 9, 12
urlns, 7
warning, 15
xmlns, 5, 7, 12, 13, 16
xml, 5, 6, 13

catalog, 18

declared content, 9
dialect, 7
doctype, 8, 13
dtd/2, 8
dtd property/2, 9

event class, 13

free dtd/1, 8
free sgml parser/1, 11

get sgml parser/2, 12

22

implicit, 10

load dtd/2, 8
load html file/2, 3
load sgml file/2, 3
load structure/3, 4
load xml file/2, 3

new dtd/2, 8
new sgml parser/2, 11

open dtd/3, 8

set sgml parser/2, 11
sgml parse/2, 14
sgml register catalog file/2, 18
shortref, 13
shorttag, 13

xml2pl, 2
xml quote attribute/2, 19
xml quote cdata/2, 19

23

