Role Playing DB V2.0 — Tcl Interface

Contents
1 Copyright Info
2 Introduction
3 Dice Class
3.1 class Dice e e e e e
4 Record Class
4.1 class Record e e e e
5 Character Class
5.1 class Character e e e e e e
6 Monster Class
6.1 class Monster e e e e e e e e
6.2 class MonsterInstance L. e e e e e e e e
7 Spell Classes
7.1 class Spell L. e e
8 Dressings Classes
8.1 Treasure Class o 0 e e e e e e e e
8.1.1 «class Treasure o i i e e e e e e e
8.2 TrickTrap Class o i o e e e e e e e
8.2.1 class TrickTrap o . o L e e e e e
8.3 Dressing Class e
8.3.1 «class Dressing L.
9 Space classes

9.1 Geometric constants. L e e e e
9.1.1 «class GeoConstants e e
9.2 class Exit e e e
9.2.1 classExit e e
9.3 ExitVector Class @ i e e e e e e

9.3.1 class ExitVector e

11
13
16

17
18

20
20
21
24
24
25
26

2 2 INTRODUCTION

9.4 Ttem Class o o o e e e e e e e e 30
94.1 classItem L e e e e 30

9.5 TtemVector Class o o o i e e e e e e e e e e e 31
9.5.1 class ItemVector e e e e e 31

9.6 Space Class« o L e e e e e e e 32
9.6.1 class Space e e e 32
References 36
Index 37

1 Copyright Info

Role Playing DB — A database package that creates and maintains a
database of RPG characters, monsters, treasures,
spells, and playing environments.

Copyright (C) 1995,1998-1999 Robert Heller D/B/A Deepwoods Software

51 Locke Hill Road

Wendell, MA 01379-9728
This program is free software; you can redistribute it and/or modify it under the terms of the

GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

2 Introduction

This manual describes the Tcl interface to the C++ class library used by the Role Playing DB.
This consists of a collection of classes for the various base data structures used to represent the
various informational objects used in Role Playing Games. These informational objects consist
of Characters, Monsters, “Magic” Spells, (Dungeon) Dressings, and “Spaces”. All of these data
objects are built upon a common low-level data object, a Record. Also included is a specialized
random number generator that emulates one or more dice, dice being commonly used to implement

random chance or “fate” in most Role Playing Games'.

Although TSR’s Advanced Dungeons & Dragons [1], [2], and [3] were used as a reference in the
design of these data structures, they should be generic enough to be usable for any other Role
Playing Game system.

3 Dice Class

Dice Class — Just a random number generator using a dice model.

3.1 class Dice
[created from class Dice]
Dice name 7ns? 7nd?

[Constructor: returns Dice x]
Constructor, create 1 or more dice.

rename obj
[Destructor: returns void]

Destructor

Roll
[Member : returns unsigned int]
Roll them bones...

TypeOfDice

[Member : returns bool]
Return the type of dice.

4 Record Class

Record structure.
Core resident record - it has a size and a chunk of memory (the record itself). This structure is
lifted from the Home Librarian package. A very re-usable piece of code.

!Some use shuffled decks of cards and others use a mix.

Lots of fun. I wish C++ had a garbage collector...

4.1 class Record

[created from struct Record]

Record name
[Constructor: returns Record *]
Constructor: preallocated buffer.

rename obj
[Destructor: returns void]
Destructor: free up allocated memory.

ReturnRecord
[Member : returns TclRecord x]
Return the Record in printable form.

SetRecord source
[Member : returns void]
Set the Record from its printable form.

ReadRecord filename

[Member : returns int]
Load Record from a file.

WriteRecord filename

[Member : returns int]
Write Record to file.

5 Character Class

5 CHARACTER CLASS

Basic character class. Contains all of the information needed to describe a player or non player

character.

NewCharacter args

[Native method : NewCharacter]
This is the interface to the constructor for Character objects. The argument
list is an option-value list. = This function does not make a first class Tcl ob-

ject. You need to use the Character function with a -this argument to do that:
[Character -this [NewCharacter optioms...]].

The defined options for this function are:

flag
-strength

-intelligence
-wisdom
-dexterity
-constitution

-charisma

-exceptionalstrength

-level
-hitdice

-numbhitdice
-maxhitdice

-name
-player

-race
-characterclass

-alignment
-sex
-age

-commentary

-image

type
integer

integer
integer
integer
integer

integer

integer

integer
integer

integer
integer

string
string

string
string

string
string
integer

string

string

default
0

(13

5 CHARACTER CLASS

explanation

Set the initial
strength value

Set the initial character intel-
ligence value

Set the initial character wis-
dom value

Set the initial character dex-
terity value

Set the initial character consti-
tution value

Set

the initial character charisma
value

Set the initial character excep-
tional strength value

Set the initial character level
Set the initial character hit die
type (number of sides)

Set the initial character num-
ber of hit dice

Set the initial character maxi-
mum number of hit dice

Set the initial character name
Set the initial character player
name

Set the initial character race
Set the initial character char-
acter class
Set the
alignment
Set the initial character sex
Set the initial character age
Set the initial character
commentary

Set the initial character image
(GIF file)

character

initial character

5.1 class Character

5.1 class Character

[created from class Character]

Character name
[Constructor: returns Character *]
Base Constructor.

rename obj
[Destructor: returns void]
Destructor: free up allocated memory.

HitPoints
[Member : returns int]
Return hit points.

Age
[Member : returns int]
Return age.
Strength
[Member : returns int]
Return strength.
Intelligence
[Member : returns int]
Return intelligence.
Wisdom
[Member : returns int]
Return Wisdom.
Dexterity

[Member : returns int]
Return dexterity.

Constitution

8 5 CHARACTER CLASS

[Member : returns int]
Return constitution

Charisma
[Member : returns int]
Return charisma.

ExceptionalStrength
[Member : returns int]
Return exceptional strength.

Level
[Member : returns int]
Return level.

ExperiencePoints
[Member : returns int]
Return experience points.

Gold
[Member : returns int]
Return gold.

Name
[Member : returns char x]
Return name.

Player
[Member : returns char x]
Return player.

Race

[Member : returns char *]
Return race.

CharacterClass

5.1 class Character

[Member : returns

Return character class.

Alignment
[Member : returns
Return alignment.
Sex
[Member : returns
Return sex.
Comments
[Member : returns
Return comments.
Image
[Member : returns
Return image.
Set Age newage
[Member : returns

Set age.

SetStrength newS
[Member : returns
Set strength.

SetIntelligence newl
[Member : returns
Set intelligence.

SetWisdom newW
[Member : returns
Set wisdom.

SetDexterity newD

char

char

char

char

char

int]

int]

int]

int]

10 5 CHARACTER CLASS

[Member : returns int]
Set dexterity.

SetConstitution newC
[Member : returns int]
Set constitution.

SetCharisma newCh
[Member : returns int]
Set charisma.

SetExceptionalStrength newES
[Member : returns int]
Set exceptional strength.

SetExperiencePoints newEP
[Member : returns int]
Set experience points.

SetGold newGP
[Member : returns int]

Set gold.

SetName newlN
[Member : returns char *]
Set name.

SetPlayer newP
[Member : returns char x]
Set player.

SetRace newR
[Member : returns char *]
Set race.

SetCharacterClass newCh

[Member : returns char x]
Set character class.

SetAlignment newA
[Member : returns char *]
Set alignment.

SetSex newS
[Member : returns char x]
Set sex.

SetComments newC
[Member : returns char *]
Set comments.

SetImage newl

[Member : returns char x]
Set image.

AdvanceLevel
[Member : returns void]

Advance character’s level.

UpdateFromRecord rec
[Member : returns void]
Update character from Record.

RawData
[Member : returns Record x]
Type conversion: convert to a Record.

6 Monster Class

Basic monster class. Contains all of the information needed to describe a monster.

12 6 MONSTER CLASS

NewMonster args
[Native method : NewMonster]

This is the interface to the constructor for Monster objects. The argument list is an option-
value list. This function does not make a first class Tcl object. You need to use the Monster
function with a —this argument to do that: [Monster -this [NewMonster options...]].
The defined options for this function are:

flag type default explanation

-hitpoints integer 0 The monster’s hitpoints (only
if -hittype is Monster::Points).

-hitdie integer 8 The monster’s hit die (only if
-hittype is Monster::Dice).

-numbhitdice integer 1 The number of hit dice (only
if -hittype is Monster::Dice).

-hitadjust integer 0 The hit adjustment (only if -

hittype is Monster::Dice).

-armorclass integer 0 The monster’s armor class

-landspeed integer 0 The monster’s land speed

-flyingspeed integer 0 The monster’s flying speed

-swimmingspeed integer 0 The monster’s swimming
speed

-burrowingspeed integer 0 The monster’s burrowing
speed

-webspeed integer 0 The monster’s web speed

-percentlair integer 0 The monster’s percent in lair

-numattacks integer 0 The monster’s number of
attacks

-mindamage integer 0 The monster’s minimum dam-
age per attack

-maxdamage integer 0 The monster’s maximum dam-
age per attack

-magicres integer 0 The monster’s magical
resistance

-minnumappear integer 0 The minimum number
appearing

-maxnumappear integer 0 The maximum number
appearing

-intelligence enum - The monster’s intelligence
rating

-frequency enum - The monster’s frequency of

occurrence

6.1 class Monster

flag type
-hittype enum
-size double
-name string
-alignment string
-treasure string
-specialatt string
-specialdef string
-psionics string
-commentary string
-image string

6.1 class Monster

default

0.0

(132
(13
(132

(132
(132
(132

(1%

(132

[created from class Monster]

Monster name

explanation

The monster’s hit type

The monster’s size

The name or type of monster
The monster’s alignment

The monster’s treasure type
The monster’s special attack
modes

The monster’s special defen-
sive modes

The monster’s psionic abilities
Additional commentary

Name of image file

[Constructor: returns Monster *]

Base Constructor.

rename obj

[Destructor: returns void]

Destructor.

Name

[Member : returns char *]

Return Name/Type.

Alignment

[Member : returns char x]

Return the alignment.

TreasureType

[Member : returns char *]
Return the treasure type.

13

14
SpecialAttacks
[Member : returns char *]
Return the special attacks.
SpecialDefences
[Member : returns char *]
Return the special defenses.
Psionics
[Member : returns char x]
Return the psionics.
Comments
[Member : returns char *]
Return the commentary.
Image
[Member : returns char *]
Return the image.
HitDieSides
[Member : returns int]
Return the hit die sides.
NumHitDice
[Member : returns int]
Return the number of hit dice.
HitAdjustment
[Member : returns int]
Return the hit dice adjustment.
ArmorClass

[Member : returns int]
Return the armor class.

LandSpeed

6 MONSTER CLASS

6.1 class Monster

[Member : returns int]
Return the speed on land.

FlyingSpeed
[Member : returns int]
Return the speed in the air (flying).

SwimmingSpeed
[Member : returns int]

Return the speed in the water (swimming).

BurrowingSpeed
[Member : returns int]

Return the speed in the earth (burrowing).

WebSpeed
[Member : returns int]
Return the speed in web.

PercentInLair
[Member : returns int]
Return the percent in lair.

NumberOfAttacks
[Member : returns int]
Return the number of attacks.

MagicalResistance
[Member : returns int]
Return the magical resistance.

HitPoints
[Member : returns int]
Return the number of hit points.

DamagePerAttack

15

16
[Member : returns void]
Return the damage per attack.
NumberAppearing
[Member : returns void]
Return the number appearing.
Size

[Member : returns double]
Return the size.

UpdateFromRecord rec
[Member : returns void]
Update monster from Record.

RawData
[Member : returns Record x]
Type conversion: convert to a Record.

Intelligence
[Member : returns char *]
Return the intelligence rating.

Frequency
[Member : returns char *]
Return the frequency.

Hittype
[Member : returns char x]
Return the hit type.

Monster “instance”. Used to implement a working instance of a monster.

6.2 class MonsterInstance

[created from class MonsterInstance]

6 MONSTER CLASS

17

MonsterInstance name iOf 7iN7?
[Constructor: returns MonsterInstance *]
Constructor.

rename obj
[Destructor: returns void]
Destructor.

InstanceName
[Member : returns char *]
Return the name.

InstanceHitPoints
[Member : returns int]
Return the hit points.

UpdatelnstanceHitPoints adj
[Member : returns int]
Adjust the hit points.

InstanceOf
[Member : returns Monster *]
Return base monster object.

7 Spell Classes

Basic spell class. Contains all of the information needed to describe a spell.

NewSpell args
[Native method : NewSpell]

This is the interface to the constructor for Spell objects. The argument list is an option-
value list. This function does not make a first class Tcl object. You need to use the Spell
function with a -this argument to do that: [Spell -this [NewSpell optiomns...]].

18

The defined options for this function are:
flag type default explanation
-class string “ Character class that can use
the spell.

-name string “ Name of the spell.

-type string “ Type of spell.

-description string “ Description of spell.

-area, string “ Area effected by spell.
-casttime string “ Casting time.

-duration string “ Duration of spell.

-savethrow string “ Saving throw (if any).

-level integer 0 Spell level.

-range integer 0 Spell range.

-reversible boolean false Spell reversibility.

-verbal boolean false Spell has verbal component.
-somatic boolean false Spell has somatic component.
-material boolean false Spell has material component.

7.1 class Spell

[created from class Spell]

Spell name
[Constructor: returns Spell x]
Base constructor.

rename obj
[Destructor: returns void]
Destructor.

UpdateFromRecord rec
[Member : returns void]
Update Spell from Record.

SpellClass
[Member : returns char *]
Return the spell’s class.

7 SPELL CLASSES

7.1 class Spell

Name
[Member : returns char *]
Return the spell’s name.

SpellType
[Member : returns char *]
Return the spell’s type.

Description
[Member : returns char *]
Return the spell’s description.

AreaOfEffect
[Member : returns char *]
Return the spell’s area of effect.

CastingTime
[Member : returns char *]
Return the spell’s casting time.

Duration
[Member : returns char x]
Return the spell’s Duration.

SavingThrow
[Member : returns char *]
Return the spell’s saving Throw.

Level
[Member : returns int]
Return the spell’s level.

Range
[Member : returns int]

Return the spell’s range.

ReversibleP

19

20
[Member : returns bool]
Return spell’s reversibility flag.
VerbalP
[Member : returns bool]
Return spell’s verbal component flag.
SomaticP
[Member : returns bool]
Return spell’s somatic component flag.
MaterialP
[Member : returns bool]
Return spell’s material component flag.
RawData

[Member : returns Record *]
Type conversion: convert to a Record.

8 Dressings Classes

Various dressing classes.

8.1 Treasure Class

8 DRESSINGS CLASSES

Treasures are the things the characters are trying to get and the monsters are guarding.

NewTreasure args

[Native method : NewTreasure]
This is the interface to the constructor for Treasure objects. The argument
list is an option-value list. This function does not make a first class Tcl ob-

ject. You need to use the Treasure function with a -this argument to do that:

[Treasure -this [NewTreasure options...]].

8.1 Treasure Class

The defined options for this function are:

flag

-name

-description

-image

-weight
-armorclassadj
-tohitadj

-damageadj
-magicalresistancead]

-damageprotectionad]

-strengthadj
-intelligencead]
-wisdomadj
-dexterityadj
-constitutionadj
-charismaadj
-groundmovementad]

-flyingadj

-swimmingadj
-value

8.1.1 class Treasure

type
string
string
string
integer
integer
integer
integer
integer

integer

integer
integer
integer
integer
integer
integer
integer

integer
integer
integer

[created from class Treasure]

Treasure name
[Constructor:
Base constructor.

rename obj
[Destructor:
Destructor.

UpdateFromRecord rec

returns void 1]

default

@
(132

(134

jen Rl e i en B an Bl an B e i e [en O OO OO

o O

returns Treasure *]

explanation

Name of the treasure.
Description of treasure.
Image file (GIF) of treasure.
Weight of treasure.

Armor class adjustment.

To hit adjustment.

Damage adjustment.

Magical resistance
adjustment.
Damage protection
adjustment.

Strength adjustment.
Intelligence adjustment.
Wisdom adjustment.
Dexterity adjustment.
Constitution adjustment.
Charisma adjustment.
Ground Movement
adjustment.

Flying adjustment.
Swimming adjustment.
Value.

21

22
[Member : returns void]
Update Treasure from Record.
Name
[Member : returns char *]
Return name.
Description
[Member : returns char *]
Return description.
Image
[Member : returns char *]
Return image.
Weight
[Member : returns int]
Return weight.
ArmorClassAdj
[Member : returns int]
Return armor class adjustment.
ToHit Adj
[Member : returns int]
Return to hit adjustment.
DamageAdj
[Member : returns int]
Return damage adjustment.
MagicalResistance Adj

[Member : returns int]

Return magical resistance adjustment.

DamageProtectionAdj

8 DRESSINGS CLASSES

8.1 Treasure Class

[Member : returns int]
Return damage protection adjustment.

StrengthAdj
[Member : returns int]
Return strength adjustment.

IntelligenceAdj
[Member : returns int]
Return intelligence adjustment.

WisdomAdj
[Member : returns int]
Return wisdom adjustment.

Dexterity Adj
[Member : returns int]
Return dexterity adjustment.

ConstitutionAdj
[Member : returns int]
Return constitution adjustment.

CharismaAdj
[Member : returns int]
Return charisma adjustment.

GroundMovementAd]
[Member : returns int]
Return ground movement adjustment.

FlyingAdj
[Member : returns int]

Return flying adjustment.

SwimmingAdj

24

[Member : returns int]
Return swimming adjustment.

Value
[Member : returns int]
Return value.

RawData
[Member : returns Record *]

Type conversion: convert to a Record.

8.2 TrickTrap Class

8 DRESSINGS CLASSES

Tricks and Traps are used to protect treasure and to generally keep the players on their toes.

NewTrickTrap args

[Native method : NewTrickTrap]

This is the interface to the constructor for TrickTrap objects. The argument
list is an option-value list. = This function does not make a first class Tcl ob-
ject. You need to use the TrickTrap function with a -this argument to do that:

[TrickTrap -this [NewTrickTrap options...]].
The defined options for this function are:
flag type default explanation
Name of the trick or trap.
Type of the trick or trap.

-name string
-type string «*
-description string “’

trap.

8.2.1 class TrickTrap

[created from class TrickTrap]

TrickTrap name

[Constructor: returns TrickTrap *]

Constructor.

Description of trick or trap.
-image string ¢’ Image file (GIF) of trick or

8.3 Dressing Class 25

UpdateFromRecord rec
[Member : returns void]
Update Treasure from Record.

rename obj
[Destructor: returns void]
Destructor.

Name
[Member : returns char x]
Return name.

Type
[Member : returns char *]
Return trick or trap type.

Description
[Member : returns char *]
Return description.

Image
[Member : returns char *]
Return image.

RawData
[Member : returns Record x]
Type conversion: convert to a Record.

8.3 Dressing Class

Random dungeon dressings — random odds and ends. Sometimes these things have value, but real
treasures use the Treasure class.

26 8 DRESSINGS CLASSES

NewDressing args

[Native method : NewDressing]
This is the interface to the constructor for Dressing objects. The argument
list is an option-value list. = This function does not make a first class Tcl ob-

ject. You need to use the Dressing function with a -this argument to do that:
[Dressing -this [NewDressing optioms...]].
The defined options for this function are:

flag type default explanation

-name string “” Name of the dressing.
-value integer 0 Value of the dressing.
-description string ¢’ Description of dressing.
-image string " Image file (GIF) of dressing.

8.3.1 class Dressing

[created from class Dressing]

UpdateFromRecord rec
[Member : returns void]
Update Dressing from Record.

Dressing name
[Constructor: returns Dressing *]
Constructor.

rename obj
[Destructor: returns void]
Destructor.

Name
[Member : returns char x]
Return name.

Description
[Member : returns char *]
Return description.

Image
[Member : returns char *]
Return image.

Value
[Member : returns int]
Return value.

RawData
[Member : returns Record x]
Type conversion: convert to a Record.

9 Space classes

Spaces — Squares and Hexes, where things happen.

9.1 Geometric constants.
9.1.1 class GeoConstants

[created from class GeoConstants]

$GeoConstants_ Width = 100.0
[Constant : double]
Space “width”.

$GeoConstants_HexSideLength = 57.735
[Constant : double]

Side of a hex (computed to give a width of 100).

$GeoConstants_ HexPeakHeight = 28.8675
[Constant : double]
Height of peak above vertical sides.

27

28 9 SPACE CLASSES

9.2 class Exit

Exit points and other inter-spatial interconnection points like windows and staircases.

9.2.1 class Exit

[created from class Exit]

XCenter
[Member : returns double]
Return center x coordinate.

Y Center
[Member : returns double]
Return center y coordinate.

WallAligned
[Member : returns bool]
Return wall alignment flag.

Description
[Member : returns char *]
Return description.

Image
[Member : returns char *]
Return picture of exit.

NextSpaceIndexString
[Member : returns char x*]
Return next space filename.

Exit name
[Constructor: returns Exit *]
Constructor.

9.3 ExitVector Class

rename obj
[Destructor: returns void]
Destructor.

Type
[Member : returns char *]
Return type of exit.

9.3 ExitVector Class
9.3.1 class ExitVector
[created from class ExitVector 1]

ExitVector name
[Constructor: returns ExitVector *]
Constructor.

rename obj
[Destructor: returns void]
Destructor.

Index index
[Member : returns Exit *]
Index function.

Nearest x y
[Member : returns Exit *]
Select nearest to (x,y) function.

ElementCount
[Member : returns int]
Return element count.

29

30 9 SPACE CLASSES

9.4 Item Class

9.4.1 class Item

[created from class Item]

XCenter
[Member : returns double]
Return center x coordinate.

Y Center
[Member : returns double]
Return center y coordinate.

Image
[Member : returns char *]
Return image.

Filename
[Member : returns char x]
Return file name.

Item name
[Constructor: returns Item *]
Constructor.

rename obj
[Destructor: returns void]
Ttem in space.

Type
[Member : returns char *]
Return type of item.

9.5 ItemVector Class

9.5 ItemVector Class

9.5.1 class ItemVector

[created from class ItemVector]

ItemVector name
[Constructor: returns ItemVector *]
Constructor.

rename obj
[Destructor: returns void]
Destructor.

Index index
[Member : returns Item x]
Index function.

Nearest x y
[Member : returns Item *]
Select nearest to (x,y) function.

ElementCount
[Member : returns int]
Return element count.

31

32 9 SPACE CLASSES

9.6 Space Class

NewSpace args
[Native method : NewSpace]

This is the interface to the constructor for Space objects. The argument list is an option-
value list. This function does not make a first class Tcl object. You need to use the Space
function with a —-this argument to do that: [Space -this [NewSpace options...]].
The defined options for this function are:

flag type default explanation

-shape enum SpaceShape Space::Undefined Space shape.

-xcenter double 0.0 X coordinate of the center.
-ycenter double 0.0 Y coordinate of the center.
-name string “ Name of space.
-description string “ Description of space.
-backgroundcolor string “white” Background color of space.

9.6.1 class Space

[created from class Space]

UpdateFromRecord rec
[Member : returns void]
Update Space from Record.

Space name
[Constructor: returns Space *]
Constructor.

rename obj
[Destructor: returns void]
Destructor.

CenterX
[Member : returns double]
Return this space’s center point X coordinate.

9.6 Space Class

SetCenterX newX
[Member : returns double]
Set the space’s center point X coordinate.

CenterY
[Member : returns double]
Return this space’s center point Y coordinate.

SetCenterY newY
[Member : returns double]
Set the space’s center point Y coordinate.

NearestExit x y
[Member : returns Exit x]
Return the nearest exit.

IndexedExit index
[Member : returns Exit *]
Return the ith exit.

NumberOfExits
[Member : returns int]
Return the count of exits.

InsertExit source
[Member : returns void]
Insert an exit.

DeleteExitNear x y
[Member : returns void]
Delete exit nearest to x,y.

DeleteExit AtIndex index
[Member : returns void]
Delete exit by index.

33

34 9 SPACE CLASSES

Nearestitem x y
[Member : returns Item *]
Return the nearest item.

IndexedItem index
[Member : returns Item *]
Return the ith item.

NumberOfItems
[Member : returns int]
Return the count of items.

InsertItem source
[Member : returns void]
Insert an item.

DeleteltemNear x y
[Member : returns void]
Delete item nearest to x,y.

DeleteltemAtIndex index
[Member : returns void]
Delete item by index.

Name
[Member : returns char x*]
Return name of the space.

SetName newlN
[Member : returns char *]
Set the name of the space.

Description
[Member : returns char *]
Return description of the space.

9.6 Space Class

SetDescription newD
[Member : returns char *]
Set the description of the space.

BackgroundColor
[Member : returns char *]
Return background color of the space.

SetBackgroundColor newBG
[Member : returns char *]
Basic Space class.

Shape
[Member : returns char *]
Return this space’s shape.

SetShape newS
[Member : returns int]
Set this space’s shape.

RawData
[Member : returns Record *]
Type conversion: convert to a Record.

InsertNewExit ?type? ?x? ?y? ?wa? ?7d? 7im? 7ns?
[Member : returns int]
Insert a new exit.

InsertNewltem ?type? ?x? ?y? ?im? 7fn?
[Member : returns int]
Insert a new item.

MakeGraphicCommannd ?scaleFactor?
[Member : returns int]
Generate the command body to draw the base
eval [concat .canvas create [space MakeGraphicCommannd ?scale?]].

35

space:

36

References
[1] Gary Gygax
[2] Gary Gygax

[3] Gary Gygax

. Monster Manual. TSR Games, Lake Geneva, WI, 1977, 1978.
. Players Handbook. TSR Games, Lake Geneva, WI, 1978.

. Dungeon Masters Guide. TSR Games, Lake Geneva, WI, 1979.

REFERENCES

Index

Character Class, 4
Copyright Info, 2

Dice Class, 3
Dressing Class, 25

Exit Class, 28
Item Class, 30
Monster Class, 11
Record Class, 3

Space Class, 27
Spell Class, 17

Treasure Class, 20
TrickTrap Class, 24

37

