
Black Hole – Core 1

Black Hole
Module system for Gambit

Core documentation, revision 1.

Module system core copyright © 2008-2009 Per Eckerdal
Documentation copyright © 2009 Mikael More
Bundled libraries are copyrighted by their respective authors, details are found in each library's
sourcecode and/or documentation.
Licensed under the MIT license, see the License section for details.

Documentation distributed in PDF, OpenOffice and Microsoft Word versions.

Please email any feedback, questions and suggestions to the authors.

Table of Contents
Introduction..2
Concepts...2
Quick tour...2
What it does..3
Installation..4

Installing the files...4
Installation into the Gambit environment..4
Setting it up..5

How to use for a project...5
Set up files...5
Set up modules...5
In incremental work...5
Export binaries...5

How to migrate to BH..6
Special forms for use in modules...6

(compile-options #!key options cc-options ld-options-prelude ld-options force-compile).............6
(export)...7
(module #!optional module-name)..8

Procedures and macros...8
(import)..8

Filter, prefix, rename symbols on import..9
Behavior of subsequent (import):s of one and the same module..10
HTTP URL:s as module names...11

(module-compile! module-name #!optional continue-on-error)..12
(modules-compile-bunch to-file files #!key (save-links #t) port)..12
(module-deps module #!optional recursive)..13
(modules-in-dir top-dir)...13
(module-clean! module)...13
(modules-compile! modules #!optional continue-on-error port)...14
(modules-clean! modules)..14
(module-compile/deps! module #!optional continue-on-error port)..14
(module-clean/deps! module #!optional continue-on-error port)..14

Black Hole – Core 2

(expand-macro macro)...14
General advice..15
Internals..15

The sourcecode..15
Why BH must be in ~~/lib/modules/...15
What BH really does with Gambit's namespace functionality..15

Development status, design limits..15
License..16

Introduction
Black Hole (“BH”) is a module system abstraction that provides recurring module file dependency
compilation and loading, including export of macros, for regular R5RS Scheme.

It is built atop Gambit's (load), (compile-file) and namespace and macro expansion.

BH requires no runtime library or alike for output code to execute, it is a code processor only.

BH is installed into the Gambit environment (i.e. gsc) through that BH's main file is (load):ed
upon each start of Gambit. Typically this is done by creating a shellscript by the name of bsc, that
starts gsc with arguments specifying that BH should be loaded on startup. More on this later.

BH requires Gambit version 4.4.2 or later.

Concepts
BH works with Scheme code at the level of granularity of modules. Each module is typically one
Scheme file.

Modules are subsectioned into module-resolvers. A module-resolver is a function that gives BH a
module's sourcecode, given its name.

One thing the concept of module-resolvers provides with, is for all modules not to be
required to be located in or under one single root directory (i.e. say the/home/user/project-name
directory, with all Scheme files directly put into it).

BH is bundled with the startup default module-resolver, that takes files from the current
directory, and with the std module-resolver containing the bundled libraries.

Quick tour
As soon as you have BH installed and up running, just type bsc in your shell. You get the REPL
prompt, >.

The (import) form loads modules. Its calling convention is (import (module-resolver
argument-to-module-resolver [another-argument [..]]) [(another-module-resolver
another-argument-to-module-resolver [..]) [..]).

If you evaluate string-upcase, you of course get an error, since SRFI 13 is not loaded.
Evaluate (import (std srfi/13)) to load it. Now evaluate (string-upcase "Try

Black Hole – Core 3

this"), and see that it is loaded.

Into the current directory, put the file ”a.scm” with the following contents:

(import (std srfi/13))
(define (proc)
 (let loop ((x 10000))
 (string-upcase "s")
 (if (not (zero? x))
 (loop (- x 1))
 "Hello world"))

Evaluate (import a) (proc) in the REPL.

However, running it will take some time as it is executed in interpreted mode, you can see how
much by evaluating (time (proc)).

Now do (module-compile! 'a) to compile it, (import a) to reimport it and then (time
(proc)) again, and you will see that the numbers are much lower.

Create the file “b.scm” in the same directory, with the contents:

(import a)
(define mirror proc)
(print "Module B\n")

When evaluating (import b) the first time, Module B will be printed to the console. Evaluating
(mirror) gives the same result as evaluating (proc).

What it does
BH automatically manages symbol export/import between modules – variables, procedures and
macros. Functionality exists to import symbols from modules under other names than the names
under which they are exported, i.e. the symbol a of module b can be imported under the name c into
your module or REPL.

BH automatically loads dependencies on (import). Upon load, if a compiled version of the module
exists, it is loaded rather than the source file. If the compiled version is older than the source file,
the module is automatically recompiled.

For macros, define-syntax / let-syntax / letrec-syntax , define-macro and syntax-rules /
sc-macro-transformer are supported.

Additionally, rsc-macro-transformer (a variant of sc-macro-transformer) and nh-
macro-transformer (using which define-macro is implemented) are supported.

(See the design limits section for current constraints of these features.)

Procedures/macros exist to explicitly compile a module, compile a module and its dependencies,
force recompilation, remove the compiled version of a module, etc. .

Functionality exists to compile all modules addressed by an (import) command into one object
file. Also, functionality exists to gather the compiled object files addressed by an (import)

Black Hole – Core 4

command into one list, for you to link together, in order to create executable files for distribution to
end-users. Please see the ”How to export binaries” section for this.

Installation

Installing the files
Look to it that you have GIT (http://www.git-scm.org) installed.

Download a local copy of BH using GIT. BH will be downloaded into the modules subdirectory of
the directory that you execute git from.

BH must reside in the directory that Gambit relates to as the ~~/lib/modules/ directory.
That is, the modules subdirectory of the lib subdirectory directory of your Gambit installation.

On non-Cygwin Windows, this is the directory into which you must actually download BH.
Thus on windows, cd to the lib directory of your Gambit installation, and follow the download
instructions below.

On Unix systems, you can have BH in any directory, and create a symlink from Gambit's
lib directory to it (by ensuring that you are logged in as root (su), and running ln -s [the
absolute path to your BH modules directory] /usr/local/Gambit-
C/current/lib/modules).

Download BH using GIT by:

git clone http://mwaza.dyndns.org/apps/files/modules.git

When downloaded, go to BH's directory (cd modules), and compile it by gsc build . Compiling
BH is not necessary, but it does provide significant speed improvements over running it in
interpreted mode.

Installation into the Gambit environment
BH is loaded by evaluating (load "~~/lib/modules/build") .

While this can be done manually on each start of gsc, typically you want a helper bsc script that
automatizes the task.

For Unix, a bsc script is bundled with BH. To install it, ensure that you are logged in as
administrator (su), and execute ln -s [the absolute path to your BH modules
directory]/bsc /usr/local/bin/bsc .

On non-Cygwin Windows, a bsc.bat script is bundled with BH. To install it, copy it from the
modules directory, to the bin subdirectory of your Gambit directory.

Ensure that this directory is in the system PATH environment variable, as found in the
”System variables” panel, under ”Environment variables”, in the ”Advanced” tab of the ”System
properties” option in the Control panel.

For your reference, all that the bsc script typically contains is:

#!/bin/sh
gsc -:dar -e '(load "~~/lib/modules/build")' $@ -

http://www.git-scm.org/

Black Hole – Core 5

Setting it up
BH needs no configuration, however you may benefit of compiling the standard libraries. To do
this, start bsc and evaluate

(modules-compile! (modules-in-dir "~~/lib/modules/std") #t)

(In a future version, we will probably advice you to compile all the bundled libraries into one single
object file. However the set of bundled libraries is currently not so stable as to justify that.)

How to use for a project

Set up files
Chose a root directory for your project, and put your sourcecode files in it.

Set up modules
In the beginning of each module, describe the import dependencies by (import).

The module references you make in (import) should be relative to the respective module file's own
directory.

I.e., for each Scheme file, (import a) imports a.scm from the same directory as the Scheme
file, (import b/a) imports a.scm of the subdirectory b, and (import ../a) imports a.scm from
the file's parent directory.

Review the “Special forms for use in modules” chapter for options applicable to your modules.

In incremental work
Originate development out of the REPL as usual.

When you restart bsc, use Gambit's history feature (i.e. the arrow up key on the keyboard) in order
not to need to re-type any (import):s you made in the previous bsc instance.

Keep your use of global state low, both because it is a good design principle to adhere to, and
because BH's implementation of the syntactic tower benefits from this.

Export binaries
The object files generated by (module-compile!) etc. require only their module dependencies to
be already (load):ed in order to function.

(module-deps) returns all of a module's dependencies, sorted in the order of descending depth of
the dependency tree. Therefore, the return value of (map module-path (module-deps module))
is usable as object file load order.

Black Hole – Core 6

(modules-compile-bunch) compiles multiple modules into one single object file. For information
and examples, see its documentation section.

The basic principle to make you understand how to export binaries is this:
Object files do not contain the module-information of the module of which it is a compiled

version, and neither does it contain export declarations for macros it contains.
(load) of object file version of a module performs the same action as (import):ing it

would have done, presuming that dependencies have been loaded rightly.

How to migrate to BH
Create a directory structure, and follow the other guidance, as described in the “How to use for a
project” section.

Replace your Scheme file loading scripts, and any usage of (include) and (load) by (import) :s.

Effectively, BH requires being the exclusive user of Gambit's namespace functionality.
Therefore, you must remove any namespace definitions (i.e. use of (namespace)), and any

explicit addressing of namespaces (i.e. addressing symbols in particular namespaces with
namespace-name#symbol-name) from your code.

(The use of namespace-name#symbol-name is perfectly OK to use in the REPL. The hook
with you using this notion is that you have no guarantee that a given module will have the same
namespace name on two different computers.)

Special forms for use in modules

(compile-options #!key options cc-options ld-options-prelude ld-options force-
compile)
(compile-options) may be put into any module, and can take any of the following arguments:

options:, cc-options:, ld-options-prelude:, ld-options:

The respective value will be appended to the respective argument of (compile-file) on
module compilation.

For more information, see (compile-file) in Gambit's documentation (link).

force-compile:

Tells whether the module must be compiled or not. Must be #t for modules that use Gambit
FFI functionality such as (c-define). However, the FFI forms imply setting this option to
#t, so in practice you quite never need to care of this option.

Example use:

http://www.iro.umontreal.ca/~gambit/doc/gambit-c.html#Definition_of_compile-file

Black Hole – Core 7

(compile-options force-compile: #t)

(export)
Specifies what symbols of the module to export. If a module does not contain an (export)
declaration, all of its symbols are exported.

(export) takes a list of arguments. Each argument should either be

– a symbol that should be exported, or
– a list, starting by rename: , and continuing by an a-list of symbols that should be renamed,

and the names they should be renamed to.
– a list, starting by re-export: , that contains a list of the modules whose exports this module

should proxy, in the same notation as used in (import).
A module does not need to be imported to be re-exported.
Using (import)'s tools, you can chose to re-export only particular names, or rename

symbols on the re-export.

Example module (a.scm):

(import (std srfi/13))
(export
 output
 a-struct-a
 a
 (rename: (more-output more-output-renamed)
 (a-struct-b a-struct-b-renamed))
 (re-export: (std srfi/13)))

(define-type a-struct a b c)
(define a (make-a-struct 1 2 3))
(define (output) (display "Output.\n"))
(define (more-output) (display "More output.\n"))

Example use of module:

> (import a)
> a
#<a-struct #2 a: 1 b: 2 c: 3>
> (a-struct-a a)
1
> (a-struct-b-renamed a)
2
> (output)
Output.
> (more-output-renamed)
More output.
> (string-upcase "Abc") ; (From SRFI 13)
"ABC"
> (make-a-struct 4 5 6)
*** ERROR IN (console)@16.2 -- Unbound variable: ~#make-a-struct
1> [ctrl+d]
> (a-struct-c a)
*** ERROR IN (console)@19.2 -- Unbound variable: ~#a-struct-c

Black Hole – Core 8

1> [ctrl+d]
> (more-output)
*** ERROR IN (console)@13.2 -- Unbound variable: ~#more-output
1>

(module #!optional module-name)
For use from the REPL for switching the current namespace to the namespace of a module, or to the
REPL's namespace.

(module a-module) switches the current namespace to the namespace of the module a-module.

(module) switches the current namespace to the REPL's namespace.

A typical use scenario would be to first (import your-module), do something with it, and when
you realize you need modifications to it, without wanting to update the sourcecode file + (import
your-module) again.

Thus into the REPL you (module your-module), paste the definitions that are modified,
and then (module).

Procedures and macros

(import)
Takes one or more arguments, each argument being either a module name, where the root is the
current directory, or a list consisting of a module-resolver, and one or more module names within
the module-resolver.

When (import) is made from a Scheme file, we define the current directory as the directory that
the Scheme file resides in. When (import) is made from the REPL, the current directory is the
current working directory.

Examples:

Import module a of the current module-resolver (typically = a.scm of the current directory):

(import a)

Import the srfi/13 module of the std module-resolver:

(import (std srfi/13))

Import modules srfi/13, srfi/14 and misc/uuid of the std module-resolver, and module
a of the current module-resolver (typically = a.scm of the current directory):

(import
 (std srfi/13 srfi/14 misc/uuid)
 a)

Import /tmp/a.scm:

Black Hole – Core 9

(import /tmp/a.scm)

The imports' dependencies are imported also.

If compiled versions are found, these are loaded rather than the sourcecode versions. If a module
has a compiled version that has an older last modified timestamp than its sourcecode version, it is
automatically recompiled.

Upon (import), any code in the top-level will be evaluated, and any global defines marked for
export will become available to the caller.

(See the General advice section for why you want to keep any code in the top-level
minimal.)

In the current version of BH, the sourcecode version of a module must always be apparent, for
(import) to be made.

(This is because the exported macro definitions and the internal module-information record
are derived from the sourcecode on import. This will not be the case anymore when BH implements
the syntactic tower, in a future version, though.)

Filter, prefix, rename symbols on import
You can add certain options to module imports by enclosing the imports like this:

prefix: prefixes all imported symbols.

Prefix all srfi/1 symbols by 1-:

(import (prefix: (std srfi/1) 1-))

rename: renames one or more symbols.

Rename srfi/95's sort to srt and merge to mrg:

(import (rename: (std srfi/95) (sort srt) (merge mrg)))

only: specifies that only mentioned symbols should be imported.

Import only string-upcase and string-downcase from srfi/13:

(import (only: (std srfi/13) string-upcase string-downcase))

except: specifies that all symbols except the mentioned should be imported.

Import all symbols except string-upcase and string-downcase from srfi/13:

(import (except: (std srfi/13) string-upcase string-downcase))

You can combine prefix:, rename: and only: or except:. Example:

(import

Black Hole – Core 10

 (prefix:
 (rename:
 (only: (std srfi/13) string-upcase string-downcase)
 (string-upcase string-up)
 (string-downcase string-down))
 13-)
 (prefix:
 (except: (std srfi/95) merge)
 95-))

Behavior of subsequent (import):s of one and the same module
Subsequent (import):s of a module are generally ignored. However, if a module's sourcecode has
been modified, it will be re-imported. If the module has a compiled version, then it will be
recompiled also. Example:

$ echo '(display "hi")(force-output)' > /tmp/a.scm; bsc
> (import /tmp/a)
hi> (import /tmp/a)
> [press ctrl+z]
[1]+ Stopped bsc
$ echo '(display " again")(force-output)' >> /tmp/a.scm; fg
bsc
(import /tmp/a)
hi again> (module-compile! '/tmp/a)
> (import /tmp/a)
> [press ctrl+z]
[1]+ Stopped bsc
$ echo '(display " again!")(force-output)' >> /tmp/a.scm; fg
bsc
(import /tmp/a)
/tmp/a is being compiled...
hi again again!>

Note that imported modules that depend on a module that is reimported, will not be reimported also,
and thus any references the depending modules have to a reimported module, will be to its
previously imported version, and not the new one.

Though, when the referring code is not evaluated with the strategy (declare (block)))
(that is, when it is evaluated with the default strategy (declare (separate))), variable lookup is
made anew on procedure invocations. I.e. given a.scm:

(print "Module A import\n")
(define exported-var 'something)

And b.scm:

(import a)

(define (work-when-separate) exported-var)
(begin (declare (block)) (define (work-when-block) exported-var))

(define work-closure1 (lambda () exported-var))
(define work-closure2 (let ((c exported-var)) (lambda () c)))

(define structure (cons exported-var 'something-tihrd))

Black Hole – Core 11

And then altering a.scm into:

(print "Module A import\n")
(define exported-var 'something-else)

Will produce the behavior:

$ echo "(print \"Module A import\n\") (define exported-var 'something)" >
a.scm
$ echo "(import a) (define (work-when-separate) exported-var) (begin
(declare (block)) (define (work-when-block) exported-var)) (define work-
closure1 (lambda () exported-var)) (define work-closure2 (let ((c
exported-var)) (lambda () c))) (define structure (cons exported-var
'something-third))" > b.scm
$ bsc
> (import b)
Module A import
> (work-with-exported-var)
something
> (more-work)
something
> structure
something . something-third
> [press ctrl+z]
[1]+ Stopped bsc
$ echo "(print \"Module A import\n\") (define exported-var 'something-
else)" > a.scm; fg
(import b)
Module A import
> (work-with-exported-var)
something-else
> (more-work)
something
> structure
something . something-third

i.e. references from a closure or data structure in a depending module are to the old version, but
references from procedures are to the new version.

HTTP URL:s as module names
Is supported. Downloaded files are stored in ~~/lib/modules/work/lib.

Example:

(import "http://github.com/pereckerdal/termite/raw/master/termite.scm")

On subsequent (import):s, no checking is done to ensure that you have the latest version on your
local machine.

HTTP URL:s are also supported by other procedures:

(module-compile/deps!
"http://mwaza.dyndns.org/apps/files/termite/termite.scm")

Downloading is done using the tool wget. Thus it must be installed for it to work.

Black Hole – Core 12

(module-compile! module-name #!optional continue-on-error)
Compiles one module. module-name may either be a module name, describe in the same way as in
(import), or a module structure.

If the module is already compiled, it is recompiled.

If continue-on-error is set to #t, compilation error will not throw an exception, but #f will be
returned.

Examples:

Compile a.scm:

> (module-compile! 'a)
>

Compile srfi/13.scm of std:

> (module-compile! '(std srfi/13))
>

Use with a module structure for argument:

(module-compile! (car (modules-in-dir "/lib/modules/misc")))

(modules-compile-bunch to-file files #!key (save-links #t) port)
Compiles a list of Scheme files into one object file.

Example “raw” use:

$ echo '(define (p) (display "test\n"))' > a.scm
$ echo '(import a) (p)' > b.scm
$ bsc
> (module-compile-bunch "out.o1" '("a.scm" "b.scm") save-links: #f)
Compiling 2 files...
a.scm ...
b.scm ...
Creating link file..
Compiling link file..
Linking files..
"out.o1"
> ,q
$ gsc
Gambit (version)
> (load "out.o1")
test
>

Further example:

> (module-compile-bunch "~~/lib/blackhole/std.ob" (module-files-in-dir

Black Hole – Core 13

"~~/lib/blackhole/std"))
Compiling 31 files...
~~/lib/blackhole/std/string/xml-to-sxml.scm ...
~~/lib/blackhole/std/string/util.scm ...
(snip)
~~/lib/blackhole/std/misc/al.scm ...
~~/lib/blackhole/std/ds/wt-tree.scm ...
~~/lib/blackhole/std/ds/queue.scm ...
Creating link file..
Compiling link file..
Linking files..
"~~/lib/blackhole/std.ob"
>

If save-links is #t, it saves an .ol (note L, not 1) file that contains a row, which is the filename of
the object file, which can be used by (import). So if you have a group of modules that do generally
not change (for instance the bundled modules of the std module-resolver), you can do (module-
compile-bunch) with save-links #t.

This compiles all modules to one binary file, and saves an .ol file per module, in the same
directory as the module, so on import the .ol file is loaded, instead of the module's own sourcecode
or binary object file. This gives a perfomance benefit when importing many modules.

The current version of this procedure takes filenames for files argument only. A future version
will be able to take a module and all of its dependencies and make an object file of it automatically.

(This procedure works on Mac OS X, has been shown not to work on Debian, and has not been
extensively tested. Please do not hesitate to pass reports or questions to the authors about this
procedure – of course after having checked you have the latest version of BH.)

(module-deps module #!optional recursive)
Returns a list of module objects describing module and its dependencies. module should be a
module name, described in the same way as in (import).

(module-deps '(std srfi/13))

The returned list is sorted in the order of descending depth of the dependency tree.

(modules-in-dir top-dir)
Returns a list of module objects describing the modules in top-dir.

(modules-in-dir "~~/lib/modules/std")

(module-clean! module)
Removes the compiled version of the module. module may either be a module name, described in
the same way as in (import), or a module structure.

(module-clean! 'module)
(module-clean! '(std srfi/13))
(module-clean! (car (modules-in-dir "~~/lib/modules/std/misc")))

Black Hole – Core 14

(modules-compile! modules #!optional continue-on-error port)
Recompiles modules. Differs from (module-compile!) in the important way that it does not force
recompilation – if a compiled version of a module is up-to-date with its sourcecode form, it will not
be compiled.

Compilation is made if no compiled version of the module exists, or if the compiled version
is outdated. Combine with (module-clean!)/(modules-clean!)/(module-clean/deps!) to
create forcing behavior.

(modules-compile! '((std srfi/1 srfi/14)))
(modules-compile! (modules-in-dir "~~/lib/modules/std"))

(modules-clean! modules)
(for-each module-clean! modules).

(module-compile/deps! module #!optional continue-on-error port)
Like (modules-compile!), but compiles one module and its dependencies. module may either be
a module name, described in the same way as in (import), or a module structure.

(module-compile/deps! '(std net/tcpip))
(module-compile/deps! (car (modules-in-dir "~~/lib/modules/std/misc")))

(module-clean/deps! module #!optional continue-on-error port)
(module-clean!) for the module and each of its dependencies.

(expand-macro macro)
Returns the expanded form of the macro. The argument should be an s-expression describing the
macro invocation, just like an argument to (eval).

> (define-macro (do-times times code)
 `(begin
 ,@(let loop ((n times) (r '()))
 (if (zero? n) r (loop (- n 1) (cons code r))))
 #!void))
> (expand-macro '(do-times 2 (display "output ")))
(begin (display "output ") (display "output ") #!void)
> (do-times 2 (display "output "))
output output >

Valuable for debugging macros.

Black Hole – Core 15

General advice
Have as little code execute in the top-level of modules as possible. Any such code is executed on
(import).

Any errors in code executed then would be easier to track if they were trigged on a procedure
invocation, in particular if they happen deep in the dependency graph.

Also, generally you want (import) to execute as quickly as possible.

Internals

The sourcecode
BH's sourcecode is of moderate size, and well documented. Originate your reading in
build.scm.

Why BH must be in ~~/lib/modules/
This choice provided for the most straightforward way to implement the std module-resolver.
Otherwise than because of that, there's no need for BH to reside in any particular place.

What BH really does with Gambit's namespace functionality
Actually BH does not use Gambit's namespace functionality at all. It parses gambit#.scm with a
special-written parser in order to extract the symbols Gambit defines, and that's it.

Development status, design limits
BH's core is stable.

For the development status of the bundled libraries, see their respective documentation.

There are certain constraints in the functionality of BH's core:

Currently (let-syntax) and (letrec-syntax) cannot contain (define-syntax), due to
incomplete handling of syntactic closures. Example:

(let-syntax
 ((macro-1 (syntax-rules () ((_) #t))))
 (define-syntax macro-2
 (syntax-rules ()
 ((_) (macro-1))))

 (macro-2)) ;; Correctly expands to #t

(macro-2) ;; This should expand to #t, but macro-1 will be forgotten at
 ;; this time, so this doesn't work

Black Hole – Core 16

Currently C type definitions are not exported between modules.

Currently two modules cannot have the same name. The module name is given by the filename.
(Minor additions required to support this.)

Note that BH always works with at most one instance of each module.
An instance where this could be relevant, and where BH differs from certain other Scheme

environment (in this case at least PLT), is in this case: if you have a module a in which there is the
global b, and you evaluate (import a) b (syntax-begin (import a) b), then the two instances
of use of b will address the same object instance. If not paid attention to, this could manifest as
subtle problems.

Cyclic (import):s are not detected, and cause an infinite loop.

License
BH and its bundled libraries (CURRENLTY WITH SOME EXCEPTIONS) is licensed under the
MIT non-academic license:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

For further references to the MIT non-academic license, including notes on its relation with the
BSD license, please see http://en.wikipedia.org/wiki/MIT_license .

The license text is also found on http://opensource.org/licenses/mit-license.php .

http://opensource.org/licenses/mit-license.php
http://en.wikipedia.org/wiki/MIT_license

	Introduction
	Concepts
	Quick tour
	What it does
	Installation
	Installing the files
	Installation into the Gambit environment
	Setting it up

	How to use for a project
	Set up files
	Set up modules
	In incremental work
	Export binaries

	How to migrate to BH
	Special forms for use in modules
	(compile-options #!key options cc-options ld-options-prelude ld-options force-compile)
	(export)
	(module #!optional module-name)

	Procedures and macros
	(import)
	Filter, prefix, rename symbols on import
	Behavior of subsequent (import):s of one and the same module
	HTTP URL:s as module names

	(module-compile! module-name #!optional continue-on-error)
	(modules-compile-bunch to-file files #!key (save-links #t) port)
	(module-deps module #!optional recursive)
	(modules-in-dir top-dir)
	(module-clean! module)
	(modules-compile! modules #!optional continue-on-error port)
	(modules-clean! modules)
	(module-compile/deps! module #!optional continue-on-error port)
	(module-clean/deps! module #!optional continue-on-error port)
	(expand-macro macro)

	General advice
	Internals
	The sourcecode
	Why BH must be in ~~/lib/modules/
	What BH really does with Gambit's namespace functionality

	Development status, design limits
	License

