## ----echo=FALSE,message=FALSE,warning=FALSE,eval=TRUE------------------------- library(FeatureExtraction) vignetteFolder <- "s:/temp/vignetteFeatureExtractionCohortBased" ## ----tidy=FALSE,eval=FALSE---------------------------------------------------- # library(SqlRender) # sql <- readSql("covariateCohorts.sql") # connection <- connect(connectionDetails) # renderTranslateExecuteSql( # connection = connection, # sql = sql, # cdm_database_schema = cdmDatabaseSchema, # cohort_database_schema = cohortDatabaseSchema, # cohort_table = cohortTable # ) ## ----eval=FALSE--------------------------------------------------------------- # sql <- paste( # "SELECT cohort_definition_id, # COUNT(*) AS count", # "FROM @cohort_database_schema.@cohort_table", # "GROUP BY cohort_definition_id" # ) # renderTranslateQuerySql( # connection = connection, # sql = sql, # cohort_database_schema = cohortDatabaseSchema, # cohort_table = cohortTable # ) ## ----echo=FALSE,message=FALSE------------------------------------------------- data.frame(cohort_concept_id = c(1, 2), count = c(954179, 979874)) ## ----eval=FALSE--------------------------------------------------------------- # covariateCohorts <- tibble( # cohortId = 2, # cohortName = "Type 2 diabetes" # ) # # covariateSettings <- createCohortBasedCovariateSettings( # analysisId = 999, # covariateCohorts = covariateCohorts, # valueType = "binary", # startDay = -365, # endDay = 0 # ) ## ----eval=FALSE--------------------------------------------------------------- # covariateData <- getDbCovariateData( # connectionDetails = connectionDetails, # cdmDatabaseSchema = cdmDatabaseSchema, # cohortDatabaseSchema = cohortDatabaseSchema, # cohortTable = cohortTable, # cohortId = 1, # rowIdField = "subject_id", # covariateSettings = covariateSettings # ) # summary(covariateData) ## ----echo=FALSE,message=FALSE------------------------------------------------- if (file.exists(file.path(vignetteFolder, "covariatesPerPerson"))) { covariateData <- loadCovariateData(file.path(vignetteFolder, "covariatesPerPerson")) summary(covariateData) } ## ----eval=FALSE--------------------------------------------------------------- # covariateData$covariateRef ## ----echo=FALSE,message=FALSE------------------------------------------------- if (file.exists(file.path(vignetteFolder, "covariatesPerPerson"))) { covariateData$covariateRef } ## ----eval=FALSE--------------------------------------------------------------- # covariateSettings1 <- createCovariateSettings( # useDemographicsGender = TRUE, # useDemographicsAgeGroup = TRUE, # useDemographicsRace = TRUE, # useDemographicsEthnicity = TRUE, # useDemographicsIndexYear = TRUE, # useDemographicsIndexMonth = TRUE # ) # # covariateCohorts <- tibble( # cohortId = 2, # cohortName = "Type 2 diabetes" # ) # # covariateSettings2 <- createCohortBasedCovariateSettings( # analysisId = 999, # covariateCohorts = covariateCohorts, # valueType = "binary", # startDay = -365, # endDay = 0 # ) # # covariateSettingsList <- list(covariateSettings1, covariateSettings2) # # covariateData <- getDbCovariateData( # connectionDetails = connectionDetails, # cdmDatabaseSchema = cdmDatabaseSchema, # cohortDatabaseSchema = cohortDatabaseSchema, # cohortTable = cohortTable, # cohortId = 1, # rowIdField = "subject_id", # covariateSettings = covariateSettingsList, # aggregated = TRUE # ) # summary(covariateData) ## ----echo=FALSE,message=FALSE------------------------------------------------- if (file.exists(file.path(vignetteFolder, "covariatesAggregated"))) { covariateData <- loadCovariateData(file.path(vignetteFolder, "covariatesAggregated")) summary(covariateData) }