## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # devtools::install_github("merliseclyde/bark") ## ----------------------------------------------------------------------------- library(bark) ## ----Friedman2---------------------------------------------------------------- set.seed(42) traindata <- data.frame(sim_Friedman2(200, sd=125)) testdata <- data.frame(sim_Friedman2(1000, sd=0)) ## ----example-all-------------------------------------------------------------- set.seed(42) fit.bark.d <- bark(y ~ ., data = traindata, testdata= testdata, classification=FALSE, selection = FALSE, common_lambdas = FALSE, # fixed = list(eps = .25, gam = 2.5), nburn = 100, nkeep = 250, printevery = 10^10) mean((fit.bark.d$yhat.test.mean-testdata$y)^2) ## ----example-selection-------------------------------------------------------- set.seed(42) fit.bark.sd <- bark(y ~ ., data=traindata, testdata = testdata, classification=FALSE, selection = TRUE, common_lambdas = FALSE, fixed = list(eps = .5, gam = 5), nburn = 100, nkeep = 250, printevery = 10^10) mean((fit.bark.sd$yhat.test.mean-testdata$y)^2) ## ----------------------------------------------------------------------------- boxplot(as.data.frame(fit.bark.d$theta.lambda)) ## ----------------------------------------------------------------------------- boxplot(as.data.frame(fit.bark.sd$theta.lambda)) ## ----------------------------------------------------------------------------- bart.available = suppressMessages(require(BART)) svm.available = suppressMessages(require(e1071)) io.available = suppressMessages(require(fdm2id)) ## ----svm-reg------------------------------------------------------------------ if (svm.available) { friedman2.svm = svm(y ~ ., data=traindata, type="eps-regression") pred.svm = predict(friedman2.svm, testdata) mean((pred.svm - testdata$y)^2) } ## ----bart-reg----------------------------------------------------------------- if (bart.available) { y.loc = match("y", colnames(traindata)) friedman2.bart = wbart(x.train = as.matrix(traindata[ , -y.loc]), y.train = traindata$y) pred.bart = predict(friedman2.bart, as.matrix(testdata[ , -y.loc])) yhat.bart = apply(pred.bart, 2, mean) mean((yhat.bart - testdata$y)^2) } ## ----------------------------------------------------------------------------- set.seed(42) n = 500 circle2 = data.frame(sim_circle(n, dim = 5)) train = sample(1:n, size = floor(n/2), rep=FALSE) ## ----fig.width=4, fig.height=4------------------------------------------------ plot(x.1 ~ x.2, data=circle2, col=y+1) ## ----bark--------------------------------------------------------------------- set.seed(42) circle2.bark = bark(y ~ ., data=circle2, subset=train, testdata = circle2[-train,], classification = TRUE, selection = TRUE, common_lambdas = FALSE, fixed = list(eps = .5, gam = 5), nburn = 100, nkeep = 250, printevery = 10^10) ## ----------------------------------------------------------------------------- #Classify # mean((circle2.bark$yhat.test.mean > 0) != circle2[-train, "y"]) ## ----------------------------------------------------------------------------- boxplot(as.data.frame(circle2.bark$theta.lambda)) ## ----svm---------------------------------------------------------------------- if (svm.available) { circle2.svm = svm(y ~ ., data=circle2[train,], type="C") pred.svm = predict(circle2.svm, circle2[-train,]) mean(pred.svm != circle2[-train, "y"]) } ## ----bart--------------------------------------------------------------------- if (bart.available) { y.loc = match("y", colnames(circle2)) circle.bart = pbart(x.train = as.matrix(circle2[train, -y.loc]), y.train = circle2[train, y.loc]) pred.bart = predict(circle.bart, as.matrix(circle2[-train, -y.loc])) mean((pred.bart$prob.test.mean > .5) != circle2[-train, y.loc]) }