## ----setup, include=FALSE----------------------------------------------------- # knitr::opts_chunk$set(warning = FALSE, message = FALSE) library(lme4breeding) ## ----------------------------------------------------------------------------- data(DT_example) DT <- DT_example A <- A_example ansMain <- lmebreed(Yield ~ Env + (1|Name), relmat = list(Name = A ), verbose = FALSE, data=DT) vc <- VarCorr(ansMain); print(vc,comp=c("Variance")) ## ----------------------------------------------------------------------------- Z <- with(DT, smm(Env)) diagFormula <- paste0( "Yield ~ Env + (0+", paste(colnames(Z), collapse = "+"), "|| Name)") for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]} print(as.formula(diagFormula)) ansDG <- lmebreed(as.formula(diagFormula), relmat = list(Name = A ), verbose = FALSE, data=DT) vc <- VarCorr(ansDG); print(vc,comp=c("Variance")) ve <- attr(vc, "sc")^2; ve ## ----------------------------------------------------------------------------- DT$EnvName <- paste(DT$Env, DT$Name, sep = ":") E <- Matrix::Diagonal(length(unique(DT$Env))); colnames(E) <- rownames(E) <- unique(DT$Env);E EA <- Matrix::kronecker(E,A, make.dimnames = TRUE) ansCS <- lmebreed(Yield ~ Env + (1|Name) + (1|EnvName), relmat = list(Name = A, EnvName= EA ), verbose = FALSE, data=DT) vc <- VarCorr(ansCS); print(vc,comp=c("Variance")) ve <- attr(vc, "sc")^2; ve ## ----------------------------------------------------------------------------- Z <- with(DT, smm(Env)) csdiagFormula <- paste0( "Yield ~ Env + (", paste(colnames(Z), collapse = "+"), "|| Name)") for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]} print(as.formula(csdiagFormula)) ansCSDG <- lmebreed(as.formula(csdiagFormula), relmat = list(Name = A ), verbose = FALSE, data=DT) vc <- VarCorr(ansCSDG); print(vc,comp=c("Variance")) ve <- attr(vc, "sc")^2; ve ## ----------------------------------------------------------------------------- Z <- with(DT, smm(Env)) usFormula <- paste0( "Yield ~ Env + (0+", paste(colnames(Z), collapse = "+"), "| Name)") for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]} print(as.formula(usFormula)) ansDG <- lmebreed(as.formula(usFormula), relmat = list(Name = A ), verbose = FALSE, data=DT) vc <- VarCorr(ansDG); print(vc,comp=c("Variance")) ve <- attr(vc, "sc")^2; ve ## ----------------------------------------------------------------------------- # library(orthopolynom) # DT$EnvN <- as.numeric(as.factor(DT$Env)) # # Z <- with(DT, smm(leg(EnvN,1)) ) # rrFormula <- paste0( "Yield ~ Env + (0+", paste(colnames(Z), collapse = "+"), "| Name)") # for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]} # ansRR <- lmebreed(as.formula(rrFormula), # relmat = list(Name = A ), # data=DT) # vc <- VarCorr(ansRR); print(vc,comp=c("Variance")) # ve <- attr(vc, "sc")^2; ve ## ----------------------------------------------------------------------------- # library(orthopolynom) # DT$EnvN <- as.numeric(as.factor(DT$Env)) # Z <- with(DT, smm(leg(EnvN,1)) ) # rrFormula <- paste0( "Yield ~ Env + (0+", paste(colnames(Z), collapse = "+"), "|| Name)") # for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]} # ansRR <- lmebreed(as.formula(rrFormula), # relmat = list(Name = A ), # data=DT) # vc <- VarCorr(ansRR); print(vc,comp=c("Variance")) # ve <- attr(vc, "sc")^2; ve ## ----------------------------------------------------------------------------- data(DT_h2) DT <- DT_h2 ## build the environmental index ei <- aggregate(y~Env, data=DT,FUN=mean) colnames(ei)[2] <- "envIndex" ei$envIndex <- ei$envIndex - mean(ei$envIndex,na.rm=TRUE) # center the envIndex to have clean VCs ei <- ei[with(ei, order(envIndex)), ] ## add the environmental index to the original dataset DT2 <- merge(DT,ei, by="Env") DT2 <- DT2[with(DT2, order(Name)), ] ansFW <- lmebreed(y~ Env + (envIndex || Name), verbose = FALSE, data=DT2) vc <- VarCorr(ansFW); print(vc,comp=c("Variance")) ve <- attr(vc, "sc")^2; ve ## ----------------------------------------------------------------------------- ansFW2 <- lmebreed(y~ Env + (envIndex | Name), verbose = FALSE, data=DT2) vc <- VarCorr(ansFW2); print(vc,comp=c("Variance")) ve <- attr(vc, "sc")^2; ve ## ----------------------------------------------------------------------------- data(DT_h2) DT <- DT_h2 DT=DT[with(DT, order(Env)), ] head(DT) indNames <- na.omit(unique(DT$Name)) A <- diag(length(indNames)) rownames(A) <- colnames(A) <- indNames # fit diagonal model first to produce a two-way table of genotype by env BLUPs Z <- with(DT, smm(Env)) diagFormula <- paste0( "y ~ Env + (0+", paste(colnames(Z), collapse = "+"), "|| Name)") for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]} ans1a <- lmebreed(as.formula(diagFormula), relmat = list(Name = A ), verbose = FALSE,data=DT) vc <- VarCorr(ans1a); H0 <- ranef(ans1a)$Name # GxE table # Use the GxE table to obtain loadings and build loadings columns nPC=3 Z <- with(DT, rrm(Env, H = H0, nPC = nPC) ) Zd <- with(DT, smm(Env) ) faFormula <- paste0( "y ~ Env + (0+", paste(colnames(Z), collapse = "+"), "| Name) + (0+",paste(colnames(Zd), collapse = "+"), "|| Name)") for(i in 1:ncol(Z)){DT[,colnames(Z)[i]] <- Z[,i]} # fit the FA model (rr + diag) to calculate factor scores ansFA <- lmebreed(as.formula(faFormula), relmat = list(Name = A ), verbose = FALSE, data=DT) u <- ranef(ansFA)$Name # all BLUPs scores <- as.matrix(u[,1:nPC]) # extract factor scores loadings=with(DT, rrm(Env, nPC = nPC, H = H0, # lodings (latent covars) returnGamma = TRUE) )$Gamma vc <- VarCorr(ansFA); print(vc,comp=c("Variance")) # extract all varcomps vcFA <- vc[[1]] # G of PCs only vcDG <- diag( unlist(lapply(vc[2:16], function(x){x[[1]]})) ) # G of diag model vcUS <- loadings %*% vcFA %*% t(loadings) # G of unstructured model G <- vcUS + vcDG # total G as the sum of both Gs colfunc <- colorRampPalette(c("steelblue4","springgreen","yellow")) hv <- heatmap(cov2cor(G), col = colfunc(100), symm = TRUE) uFA <- scores %*% t(loadings) # recover UNS effects uDG <- as.matrix(u[,(nPC+1):ncol(u)]) # recover DIAG effects u <- uFA + uDG # total effects ## ----------------------------------------------------------------------------- ########## ## stage 1 ########## data(DT_h2) DT <- DT_h2 head(DT) envs <- unique(DT$Env) vals <- list() for(i in 1:length(envs)){ ans1 <- lmebreed(y~Name + (1|Block), verbose = FALSE, data= droplevels(DT[which(DT$Env == envs[i]),]) ) b <- fixef(ans1) b[2:length(b)] <- b[2:length(b)] + b[1] ids <- colnames(model.matrix(~Name-1, data=droplevels(DT[which(DT$Env == envs[i]),]) )) ids <- gsub("Name","",ids) vals[[i]] <- data.frame(Estimate=b , stdError= diag( vcov(ans1)), Effect= ids, Env= envs[i]) } DT2 <- do.call(rbind, vals) ########## ## stage 2 ########## DT2$w <- 1/DT2$stdError ans2 <- lmebreed(Estimate~Env + (1|Effect) + (1|Env:Effect), weights = w,data=DT2, control = lmerControl( # optimizer="bobyqa", check.nobs.vs.nlev = "ignore", check.nobs.vs.rankZ = "ignore", check.nobs.vs.nRE="ignore" ), verbose = FALSE ) vc <- VarCorr(ans2); print(vc,comp=c("Variance")) ve <- attr(vc, "sc")^2; ve