## ----echo = FALSE, fig.align='center', fig.width = 4.5, fig.height = 3-------- grid <- seq(from = -5, to = 10, length.out = 1000) plot(x = grid, y = dnorm(grid, mean = 2, sd = 2), bty = "n", type = "l", xlab = "Value", ylab = "Density") abline(v = 0, lwd = 2, lty = 2) ## ----------------------------------------------------------------------------- library(scoringRules) # CRPS of a normal distribution with mean = standard deviation = 2, outcome is zero crps(y = 0, family = "normal", mean = 2, sd = 2) ## ----echo = FALSE, fig.align='center', fig.width = 4.5, fig.height = 3-------- # Load data data(gdp_mcmc) # Histogram of forecast draws for 2012Q4 dat <- gdp_mcmc$forecasts[, "X2012Q4"] h <- hist(dat, plot = FALSE) h$counts <- h$density grid <- seq(from = min(h$breaks), to = max(h$breaks), length.out = 1000) n_approx <- dnorm(grid, mean = mean(dat), sd = sd(dat)) plot(h, xlab = "Value", ylab = "Probability", main = "") # Add vertical line at realizing value abline(v = gdp_mcmc$actuals[, "X2012Q4"], lwd = 2, lty = 2) ## ----------------------------------------------------------------------------- # Load data data(gdp_mcmc) # Get forecast distribution for 2012:Q4 dat <- gdp_mcmc$forecasts[, "X2012Q4"] # Get realization for 2012:Q4 y <- gdp_mcmc$actuals[, "X2012Q4"] # Compute CRPS of simulated sample crps_sample(y = y, dat = dat)