
GStreamer Plugin Writer’s Guide
(0.8.11)

Richard John Boulton

Erik Walthinsen

Steve Baker

Leif Johnson

Ronald S. Bultje

GStreamer Plugin Writer’s Guide (0.8.11)
by Richard John Boulton, Erik Walthinsen, Steve Baker, LeifJohnson, and Ronald S. Bultje

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0or later (the latest version

is presently available at http://www.opencontent.org/openpub/).

Table of Contents
I. Introduction ... vii

1. Preface..1
1.1. Who Should Read This Guide?...1
1.2. Preliminary Reading..1
1.3. Structure of This Guide...1

2. Basic Concepts...4
2.1. Elements and Plugins..4
2.2. Pads..4
2.3. Data, Buffers and Events...5
2.4. Mimetypes and Properties...7

II. Building a Plugin ..11

3. Constructing the Boilerplate..12
3.1. Getting the GStreamer Plugin Templates..12
3.2. Using the Project Stamp..12
3.3. Examining the Basic Code..13
3.4. GstElementDetails...14
3.5. GstStaticPadTemplate..15
3.6. Constructor Functions...16
3.7. The plugin_init function..17

4. Specifying the pads..18
4.1. The link function...18
4.2. The getcaps function..20
4.3. Explicit caps..21

5. The chain function...22
6. What are states?...24

6.1. Managing filter state..24
7. Adding Arguments...26
8. Signals..29
9. Building a Test Application...30
10. Creating a Filter with a Filter Factory..32

III. Advanced Filter Concepts ..33

11. How scheduling works...34
11.1. The Basic Scheduler..34
11.2. The Optimal Scheduler..34

12. How a loopfunc works...36
12.1. Multi-Input Elements...36
12.2. The Bytestream Object..39
12.3. Adding a second output...41
12.4. Modifying the test application...41

13. Types and Properties..42
13.1. Building a Simple Format for Testing...42
13.2. Typefind Functions and Autoplugging..42
13.3. List of Defined Types..44

14. Request and Sometimes pads...54
14.1. Sometimes pads...54

iii

14.2. Request pads..57
15. Clocking...59

15.1. Types of time...59
15.2. Clocks..59
15.3. Flow of data between elements and time...59
15.4. Obligations of each element..60

16. Supporting Dynamic Parameters..61
16.1. Comparing Dynamic Parameters with GObject Properties...61
16.2. Getting Started...61
16.3. Defining Parameter Specifications...62
16.4. The Data Processing Loop...65

17. MIDI...69
18. Interfaces..70

18.1. How to Implement Interfaces..70
18.2. Mixer Interface..71
18.3. Tuner Interface...75
18.4. Color Balance Interface...77
18.5. Property Probe Interface..77
18.6. X Overlay Interface...80
18.7. Navigation Interface..82

19. Tagging (Metadata and Streaminfo)...83
19.1. Reading Tags from Streams...83
19.2. Writing Tags to Streams..85

20. Events: Seeking, Navigation and More..88
20.1. Downstream events..88
20.2. Upstream events..89
20.3. All Events Together...90

IV. Other Element Types ..95

21. Writing a Source..96
21.1. The get()-function..96
21.2. Events, querying and converting...96
21.3. Time, clocking and synchronization..100
21.4. Using special memory...103

22. Writing a Sink..105
22.1. Data processing, events, synchronization and clocks..105
22.2. Special memory...106

23. Writing a 1-to-N Element, Demuxer or Parser..108
23.1. Demuxer Caps Negotiation...108
23.2. Data processing and downstream events...108
23.3. Parsing versus interpreting..108
23.4. Simple seeking and indexes...110

24. Writing a N-to-1 Element or Muxer...111
24.1. The Data Loop Function..111
24.2. Events in the Loop Function..111
24.3. Negotiation..112
24.4. Markup vs. data processing...114

25. Writing a N-to-N element..116

iv

26. Writing an Autoplugger...117
27. Writing a Manager...118

V. Appendices...119

28. Things to check when writing an element...120
28.1. About states...120
28.2. Debugging...120
28.3. Querying, events and the like..121
28.4. Testing your element...121

29. GStreamer licensing...122
29.1. How to license the code you write for GStreamer...122

v

List of Tables
2-1. Table of Basic Types...7
13-1. Table of Audio Types...44
13-2. Table of Video Types..48
13-3. Table of Container Types..52
13-4. Table of Subtitle Types...53
13-5. Table of Other Types..53

vi

I. Introduction
GStreamer is an exremely powerful and versatile framework for creating streaming media applications.
Many of the virtues of the GStreamer framework come from its modularity: GStreamer can seamlessly
incorporate new plugin modules. But because modularity andpower often come at a cost of greater
complexity (consider, for example, CORBA (http://www.omg.org/)), writing new plugins is not always
easy.

This guide is intended to help you understand the GStreamer framework (version 0.8.11) so you can
develop new plugins to extend the existing functionality. The guide addresses most issues by following
the development of an example plugin - an audio filter plugin -written in C. However, the later parts of
the guide also present some issues involved in writing othertypes of plugins, and the end of the guide
describes some of the Python bindings for GStreamer.

Chapter 1. Preface

1.1. Who Should Read This Guide?

This guide explains how to write new modules for GStreamer. The guide is relevant to several groups of
people:

• Anyone who wants to add support for new ways of processing data in GStreamer. For example, a
person in this group might want to create a new data format converter, a new visualization tool, or a
new decoder or encoder.

• Anyone who wants to add support for new input and output devices. For example, people in this group
might want to add the ability to write to a new video output system or read data from a digital camera
or special microphone.

• Anyone who wants to extend GStreamer in any way. You need to have an understanding of how the
plugin system works before you can understand the constraints that the plugin system places on the
rest of the code. Also, you might be surprised after reading this at how much can be done with plugins.

This guide is not relevant to you if you only want to use the existing functionality of GStreamer, or if you
just want to use an application that uses GStreamer. If you are only interested in using existing plugins to
write a new application - and there are quite a lot of plugins already - you might want to check the
GStreamer Application Development Manual. If you are just trying to get help with a GStreamer
application, then you should check with the user manual for that particular application.

1.2. Preliminary Reading

This guide assumes that you are somewhat familiar with the basic workings of GStreamer. For a gentle
introduction to programming concepts in GStreamer, you maywish to read theGStreamer Application
Development Manualfirst. Also check out the documentation available on the GStreamer web site
(http://gstreamer.freedesktop.org/documentation/).

Since GStreamer adheres to the GObject programming model, this guide also assumes that you
understand the basics of GObject (http://developer.gnome.org/doc/API/2.0/gobject/index.html)
programming. There are several good introductions to the GObject library, including theGTK+ Tutorial
(http://www.gtk.org/tutorial/)and theGlib Object system
(http://www.le-hacker.org/papers/gobject/index.html).

1.3. Structure of This Guide

To help you navigate through this guide, it is divided into several large parts. Each part addresses a

1

Chapter 1. Preface

particular broad topic concerning GStreamer plugin development. The parts of this guide are laid out in
the following order:

• Building a Plugin- Introduction to the structure of a plugin, using an exampleaudio filter for
illustration.

This part covers all the basic steps you generally need to perform to build a plugin, such as registering
the element with GStreamer and setting up the basics so it canreceive data from and send data to
neighbour elements. The discussion begins by giving examples of generating the basic structures and
registering an element inConstructing the Boilerplate. Then, you will learn how to write the code to
get a basic filter plugin working inChapter 4, Chapter 5andChapter 6.

After that, we will show some of the GObject concepts on how tomake an element configurable for
applications and how to do application-element interaction in Adding ArgumentsandChapter 8. Next,
you will learn to build a quick test application to test all that you’ve just learned inChapter 9. We will
just touch upon basics here. For full-blown application development, you should look at the
Application Development Manual
(http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/index.html).

• Advanced Filter Concepts- Information on advanced features of GStreamer plugin development.

After learning about the basic steps, you should be able to create a functional audio or video filter
plugin with some nice features. However, GStreamer offers more for plugin writers. This part of the
guide includes chapters on more advanced topics, such as scheduling, media type definitions in
GStreamer, clocks, interfaces and tagging. Since these features are purpose-specific, you can read
them in any order, most of them don’t require knowledge from other sections.

The first chapter, namedChapter 11, will explain some of the basics of element scheduling. It isnot
very in-depth, but is mostly some sort of an introduction on why other things work as they do. Read
this chapter if you’re interested in GStreamer internals. Next, we will apply this knowledge and
discuss another type of data transmission than what you learned inChapter 5: Chapter 12. Loop-based
elements will give you more control over input rate. This is useful when writing, for example, muxers
or demuxers.

Next, we will discuss media identification in GStreamer inChapter 13. You will learn how to define
new media types and get to know a list of standard media types defined in GStreamer.

In the next chapter, you will learn the concept of request- and sometimes-pads, which are pads that are
created dynamically, either because the application askedfor it (request) or because the media stream
requires it (sometimes). This will be inChapter 14.

The next chapter,Chapter 15, will explain the concept of clocks in GStreamer. You need this
information when you want to know how elements should achieve audio/video synchronization.

2

Chapter 1. Preface

The next few chapters will discuss advanced ways of doing application-element interaction.
Previously, we learned on the GObject-ways of doing this inAdding ArgumentsandChapter 8. We
will discuss dynamic parameters, which are a way of defining element behaviour over time in advance,
in Chapter 16. Next, you will learn about interfaces inChapter 18. Interfaces are very target- specific
ways of application-element interaction, based on GObject’s GInterface. Lastly, you will learn about
how metadata is handled in GStreamer inChapter 19.

The last chapter,Chapter 20, will discuss the concept of events in GStreamer. Events are, on the one
hand, another way of doing application-element interaction. It takes care of seeking, for example. On
the other hand, it is also a way in which elements interact with each other, such as letting each other
know about media stream discontinuities, forwarding tags inside a pipeline and so on.

• Other Element Types- Explanation of writing other plugin types.

Because the first two parts of the guide use an audio filter as anexample, the concepts introduced
apply to filter plugins. But many of the concepts apply equally to other plugin types, including
sources, sinks, and autopluggers. This part of the guide presents the issues that arise when working on
these more specialized plugin types. The part includes chapters onWriting a Source, Writing a Sink,
Writing a 1-to-N Element, Demuxer or Parser, Writing a N-to-1 Element or Muxerand
Writing a Manager.

• Appendices- Further information for plugin developers.

The appendices contain some information that stubbornly refuses to fit cleanly in other sections of the
guide. Most of this section is not yet finished.

The remainder of this introductory part of the guide presents a short overview of the basic concepts
involved in GStreamer plugin development. Topics covered includeElements and Plugins, Pads,
Data, Buffers and EventsandTypes and Properties. If you are already familiar with this information, you
can use this short overview to refresh your memory, or you canskip toBuilding a Plugin.

As you can see, there a lot to learn, so let’s get started!

• Creating compound and complex elements by extending from a GstBin. This will allow you to create
plugins that have other plugins embedded in them.

• Adding new mime-types to the registry along with typedetectfunctions. This will allow your plugin to
operate on a completely new media type.

3

Chapter 2. Basic Concepts

This chapter of the guide introduces the basic concepts of GStreamer. Understanding these concepts will
help you grok the issues involved in extending GStreamer. Many of these concepts are explained in
greater detail in theGStreamer Application Development Manual; the basic concepts presented here
serve mainly to refresh your memory.

2.1. Elements and Plugins

Elements are at the core of GStreamer. In the context of plugin development, anelementis an object
derived from the GstElement (../../gstreamer/html/GstElement.html) class. Elements provide some
sort of functionality when linked with other elements: For example, a source element provides data to a
stream, and a filter element acts on the data in a stream. Without elements, GStreamer is just a bunch of
conceptual pipe fittings with nothing to link. A large numberof elements ship with GStreamer, but extra
elements can also be written.

Just writing a new element is not entirely enough, however: You will need to encapsulate your element in
a plugin to enable GStreamer to use it. A plugin is essentially a loadable block of code, usually called a
shared object file or a dynamically linked library. A single plugin may contain the implementation of
several elements, or just a single one. For simplicity, thisguide concentrates primarily on plugins
containing one element.

A filter is an important type of element that processes a stream of data. Producers and consumers of data
are calledsourceandsinkelements, respectively.Bin elements contain other elements. One type of bin is
responsible for scheduling the elements that they contain so that data flows smoothly. Another type of
bin, calledautopluggerelements, automatically add other elements to the bin and links them together so
that they act as a filter between two arbitary stream types.

The plugin mechanism is used everywhere in GStreamer, even if only the standard packages are being
used. A few very basic functions reside in the core library, and all others are implemented in plugins. A
plugin registry is used to store the details of the plugins inan XML file. This way, a program using
GStreamer does not have to load all plugins to determine which are needed. Plugins are only loaded
when their provided elements are requested.

See theGStreamer Library Referencefor the current implementation details ofGstElement
(../../gstreamer/html/GstElement.html) andGstPlugin (../../gstreamer/html/gstreamer-GstPlugin.html).

2.2. Pads

Padsare used to negotiate links and data flow between elements in GStreamer. A pad can be viewed as a

4

Chapter 2. Basic Concepts

“place” or “port” on an element where links may be made with other elements, and through which data
can flow to or from those elements. Pads have specific data handling capabilities: A pad can restrict the
type of data that flows through it. Links are only allowed between two pads when the allowed data types
of the two pads are compatible.

An analogy may be helpful here. A pad is similar to a plug or jack on a physical device. Consider, for
example, a home theater system consisting of an amplifier, a DVD player, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed because both devices have audio jacks, and linking
the projector to the DVD player is allowed because both devices have compatible video jacks. Links
between the projector and the amplifier may not be made because the projector and amplifier have
different types of jacks. Pads in GStreamer serve the same purpose as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way through alink between elements. Data flows out
of one element through one or moresource pads, and elements accept incoming data through one or
moresink pads. Source and sink elements have only source and sink pads, respectively.

See theGStreamer Library Referencefor the current implementation details of aGstPad
(../../gstreamer/html/GstPad.html).

2.3. Data, Buffers and Events

All streams of data in GStreamer are chopped up into chunks that are passed from a source pad on one
element to a sink pad on another element.Dataare structures used to hold these chunks of data.

Data contains the following important types:

• An exact type indicating what type of data (control, content, ...) this Data is.

• A reference count indicating the number of elements currently holding a reference to the buffer. When
the buffer reference count falls to zero, the buffer will be unlinked, and its memory will be freed in
some sense (see below for more details).

There are two types of data defined: events (control) and buffers (content).

Buffers may contain any sort of data that the two linked pads know how to handle. Normally, a buffer
contains a chunk of some sort of audio or video data that flows from one element to another.

Buffers also contain metadata describing the buffer’s contents. Some of the important types of metadata
are:

• A pointer to the buffer’s data.

5

Chapter 2. Basic Concepts

• An integer indicating the size of the buffer’s data.

• A timestamp indicating the preferred display timestamp of the content in the buffer.

Events contain information on the state of the stream flowingbetween the two linked pads. Events will
only be sent if the element explicitely supports them, else the core will (try to) handle the events
automatically. Events are used to indicate, for example, a clock discontinuity, the end of a media stream
or that the cache should be flushed.

Events may contain several of the following items:

• A subtype indicating the type of the contained event.

• The other contents of the event depend on the specific event type.

Events will be discussed extensively inChapter 20. Until then, the only event that will be used is the
EOSevent, which is used to indicate the end-of-stream (usuallyend-of-file).

See theGStreamer Library Referencefor the current implementation details of aGstData
(../../gstreamer/html/gstreamer-GstData.html),GstBuffer

(../../gstreamer/html/gstreamer-GstBuffer.html) andGstEvent

(../../gstreamer/html/gstreamer-GstEvent.html).

2.3.1. Buffer Allocation

Buffers are able to store chunks of memory of several different types. The most generic type of buffer
contains memory allocated by malloc(). Such buffers, although convenient, are not always very fast,
since data often needs to be specifically copied into the buffer.

Many specialized elements create buffers that point to special memory. For example, the filesrc element
usually maps a file into the address space of the application (using mmap()), and creates buffers that
point into that address range. These buffers created by filesrc act exactly like generic buffers, except that
they are read-only. The buffer freeing code automatically determines the correct method of freeing the
underlying memory. Downstream elements that recieve thesekinds of buffers do not need to do anything
special to handle or unreference it.

Another way an element might get specialized buffers is to request them from a downstream peer. These
are called downstream-allocated buffers. Elements can aska peer connected to a source pad to create an
empty buffer of a given size. If a downstream element is able to create a special buffer of the correct size,
it will do so. Otherwise GStreamer will automatically create a generic buffer instead. The element that
requested the buffer can then copy data into the buffer, and push the buffer to the source pad it was
allocated from.

6

Chapter 2. Basic Concepts

Many sink elements have accelerated methods for copying data to hardware, or have direct access to
hardware. It is common for these elements to be able to createdownstream-allocated buffers for their
upstream peers. One such example is ximagesink. It creates buffers that contain XImages. Thus, when an
upstream peer copies data into the buffer, it is copying directly into the XImage, enabling ximagesink to
draw the image directly to the screen instead of having to copy data into an XImage first.

Filter elements often have the opportunity to either work ona buffer in-place, or work while copying
from a source buffer to a destination buffer. It is optimal toimplement both algorithms, since the
GStreamer framework can choose the fastest algorithm as appropriate. Naturally, this only makes sense
for strict filters -- elements that have exactly the same format on source and sink pads.

2.4. Mimetypes and Properties

GStreamer uses a type system to ensure that the data passed between elements is in a recognized format.
The type system is also important for ensuring that the parameters required to fully specify a format
match up correctly when linking pads between elements. Eachlink that is made between elements has a
specified type and optionally a set of properties.

2.4.1. The Basic Types

GStreamer already supports many basic media types. Following is a table of a few of the the basic types
used for buffers in GStreamer. The table contains the name ("mime type") and a description of the type,
the properties associated with the type, and the meaning of each property. A full list of supported types is
included inList of Defined Types.

Table 2-1. Table of Basic Types

Mime Type Description Property Property
Type

Property
Values

Property
Description

audio/* All audio types rate integer greater than 0 The sample
rate of the data,
in samples (per
channel) per
second.

channels integer greater than 0 The number of
channels of
audio data.

7

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

audio/x-raw-int Unstructured
and
uncompressed
raw integer
audio data.

endianness integer G_BIG_ENDIAN
(1234) or
G_LITTLE_ENDIAN
(4321)

The order of
bytes in a
sample. The
value
G_LITTLE_ENDIAN
(4321) means
“little-endian”
(byte-order is
“least
significant byte
first”). The
value
G_BIG_ENDIAN
(1234) means
“big-endian”
(byte order is
“most
significant byte
first”).

signed boolean TRUE or
FALSE

Whether the
values of the
integer samples
are signed or
not. Signed
samples use
one bit to
indicate sign
(negative or
positive) of the
value.
Unsigned
samples are
always positive.

width integer greater than 0 Number of bits
allocated per
sample.

8

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

depth integer greater than 0 The number of
bits used per
sample. This
must be less
than or equal to
the width: If the
depth is less
than the width,
the low bits are
assumed to be
the ones used.
For example, a
width of 32 and
a depth of 24
means that each
sample is
stored in a 32
bit word, but
only the low 24
bits are actually
used.

audio/mpeg Audio data
compressed
using the
MPEG audio
encoding
scheme.

mpegversion integer 1, 2 or 4 The
MPEG-version
used for
encoding the
data. The value
1 refers to
MPEG-1, -2
and -2.5 layer
1, 2 or 3. The
values 2 and 4
refer to the
MPEG-AAC
audio encoding
schemes.

9

Chapter 2. Basic Concepts

Mime Type Description Property Property
Type

Property
Values

Property
Description

framed boolean 0 or 1 A true value
indicates that
each buffer
contains
exactly one
frame. A false
value indicates
that frames and
buffers do not
necessarily
match up.

layer integer 1, 2, or 3 The
compression
scheme layer
used to
compress the
data(only if
mpegver-
sion=1).

bitrate integer greater than 0 The bitrate, in
bits per second.
For VBR
(variable
bitrate) MPEG
data, this is the
average bitrate.

audio/x-vorbis Vorbis audio
data

There are
currently no
specific
properties
defined for this
type.

10

II. Building a Plugin
You are now ready to learn how to build a plugin. In this part ofthe guide, you will learn how to apply
basic GStreamer programming concepts to write a simple plugin. The previous parts of the guide have
contained no explicit example code, perhaps making things abit abstract and difficult to understand. In
contrast, this section will present both applications and code by following the development of an
example audio filter plugin called “ExampleFilter”.

The example filter element will begin with a single input pad and a single output pad. The filter will, at
first, simply pass media and event data from its sink pad to itssource pad without modification. But by
the end of this part of the guide, you will learn to add some more interesting functionality, including
properties and signal handlers. And after reading the next part of the guide,Advanced Filter Concepts,
you will be able to add even more functionality to your plugins.

The example code used in this part of the guide can be found inexamples/pwg/examplefilter/ in
your GStreamer directory.

Chapter 3. Constructing the Boilerplate

In this chapter you will learn how to construct the bare minimum code for a new plugin. Starting from
ground zero, you will see how to get the GStreamer template source. Then you will learn how to use a
few basic tools to copy and modify a template plugin to createa new plugin. If you follow the examples
here, then by the end of this chapter you will have a functional audio filter plugin that you can compile
and use in GStreamer applications.

3.1. Getting the GStreamer Plugin Templates

There are currently two ways to develop a new plugin for GStreamer: You can write the entire plugin by
hand, or you can copy an existing plugin template and write the plugin code you need. The second
method is by far the simpler of the two, so the first method willnot even be described here. (Errm, that is,
“it is left as an exercise to the reader.”)

The first step is to check out a copy of thegst-template CVS module to get an important tool and the
source code template for a basic GStreamer plugin. To check out thegst-template module, make sure
you are connected to the internet, and type the following commands at a command console:

shell $ cvs -d:pserver:anoncvs@cvs.freedesktop.org/cvs/gstreamer login

Logging in to :pserver:anoncvs@cvs.freedesktop.org:/cvs/gstreamer
CVS password: [ENTER]

shell $ cvs -z3 -d:pserver:anoncvs@cvs.freedesktop.org:/cvs/gstreamer co gst-template

U gst-template/README
U gst-template/gst-app/AUTHORS
U gst-template/gst-app/ChangeLog
U gst-template/gst-app/Makefile.am
U gst-template/gst-app/NEWS
U gst-template/gst-app/README
U gst-template/gst-app/autogen.sh
U gst-template/gst-app/configure.ac
U gst-template/gst-app/src/Makefile.am
...

After the first command, you will have to pressENTER to log in to the CVS server. (You might have to
log in twice.) The second command will check out a series of files and directories into
./gst-template. The template you will be using is in./gst-template/gst-plugin/ directory.
You should look over the files in that directory to get a general idea of the structure of a source tree for a
plugin.

12

Chapter 3. Constructing the Boilerplate

3.2. Using the Project Stamp

The first thing to do when making a new element is to specify some basic details about it: what its name
is, who wrote it, what version number it is, etc. We also need to define an object to represent the element
and to store the data the element needs. These details are collectively known as theboilerplate.

The standard way of defining the boilerplate is simply to write some code, and fill in some structures. As
mentioned in the previous section, the easiest way to do thisis to copy a template and add functionality
according to your needs. To help you do so, there are some tools in the./gst-plugins/tools/
directory. One tool,gst-quick-stamp, is a quick command line tool. The other,
gst-project-stamp, is a full GNOME druid application that takes you through thesteps of creating a
new project (either a plugin or an application).

To usepluginstamp.sh, first open up a terminal window. Change to thegst-template directory, and
then run thepluginstamp.sh command. The arguments to thepluginstamp.sh are:

1. the name of the plugin, and

2. the directory that should hold a new subdirectory for the source tree of the plugin.

Note that capitalization is important for the name of the plugin. Under some operating systems,
capitalization is also important when specifying directory names. For example, the following commands
create the ExampleFilter plugin based on the plugin template and put the output files in a new directory
called~/src/examplefilter/:

shell $ cd gst-template

shell $ tools/pluginstamp.sh ExampleFilter ~/src

3.3. Examining the Basic Code

First we will examine the code you would be likely to place in aheader file (although since the interface
to the code is entirely defined by the plugin system, and doesn’t depend on reading a header file, this is
not crucial.) The code here can be found in
examples/pwg/examplefilter/boiler/gstexamplefilter.h.

Example 3-1. Example Plugin Header File

/* Definition of structure storing data for this element. */
typedef struct _GstExample GstExample;

struct _GstExample {
GstElement element;

GstPad *sinkpad, *srcpad;

13

Chapter 3. Constructing the Boilerplate

gboolean silent;
};

/* Standard definition defining a class for this element. */
typedef struct _GstExampleClass GstExampleClass;
struct _GstExampleClass {

GstElementClass parent_class;
};

/* Standard macros for defining types for this element. */
#define GST_TYPE_EXAMPLE \

(gst_example_get_type())
#define GST_EXAMPLE(obj) \

(G_TYPE_CHECK_CAST((obj),GST_TYPE_EXAMPLE,GstExample))
#define GST_EXAMPLE_CLASS(klass) \

(G_TYPE_CHECK_CLASS_CAST((klass),GST_TYPE_EXAMPLE,GstExample))
#define GST_IS_EXAMPLE(obj) \

(G_TYPE_CHECK_TYPE((obj),GST_TYPE_EXAMPLE))
#define GST_IS_EXAMPLE_CLASS(obj) \

(G_TYPE_CHECK_CLASS_TYPE((klass),GST_TYPE_EXAMPLE))

/* Standard function returning type information. */
GType gst_example_get_type (void);

3.4. GstElementDetails

The GstElementDetails structure gives a hierarchical typefor the element, a human-readable description
of the element, as well as author and version data. The entries are:

• A long, english, name for the element.

• The type of the element, as a hierarchy. The hierarchy is defined by specifying the top level category,
followed by a "/", followed by the next level category, etc. The type should be defined according to the
guidelines elsewhere in this document. (FIXME: write the guidelines, and give a better reference to
them)

• A brief description of the purpose of the element.

• The name of the author of the element, optionally followed bya contact email address in angle
brackets.

For example:

static GstElementDetails example_details = {
"An example plugin",
"Example/FirstExample",
"Shows the basic structure of a plugin",
"your name <your.name@your.isp>"

14

Chapter 3. Constructing the Boilerplate

};

The element details are registered with the plugin during the_base_init () function, which is part of
the GObject system. The_base_init () function should be set for this GObject in the function where
you register the type with Glib.

static void
gst_my_filter_base_init (GstMyFilterClass *klass)
{

static GstElementDetails my_filter_details = {
[..]

};
GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

[..]
gst_element_class_set_details (element_class, &my_filter_details);

}

3.5. GstStaticPadTemplate

A GstStaticPadTemplate is a description of a pad that the element will (or might) create and use. It
contains:

• A short name for the pad.

• Pad direction.

• Existence property. This indicates whether the pad exists always (an “always” pad), only in some
cases (a “sometimes” pad) or only if the application requested such a pad (a “request” pad).

• Supported types by this element (capabilities).

For example:

static GstStaticPadTemplate sink_factory =
GST_STATIC_PAD_TEMPLATE (

"sink",
GST_PAD_SINK,
GST_PAD_ALWAYS,
GST_STATIC_CAPS ("ANY")

);

Those pad templates are registered during the_base_init () function. Pads are created from these
templates in the element’s_init () function usinggst_pad_new_from_template (). The
template can be retrieved from the element class usinggst_element_class_get_pad_template

15

Chapter 3. Constructing the Boilerplate

(). See below for more details on this. In order to create a new pad from this template using
gst_pad_new_from_template (), you will need to declare the pad template as a global variable.
More on this subject inChapter 4.

static GstStaticPadTemplate sink_factory = [..],
src_factory = [..];

static void
gst_my_filter_base_init (GstMyFilterClass *klass)
{
[..]

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

gst_element_class_add_pad_template (element_class,
gst_static_pad_template_get (&src_factory));
gst_element_class_add_pad_template (element_class,

gst_static_pad_template_get (&sink_factory));
[..]
}

The last argument in a template is its type or list of supported types. In this example, we use ’ANY’,
which means that this element will accept all input. In real-life situations, you would set a mimetype and
optionally a set of properties to make sure that only supported input will come in. This representation
should be a string that starts with a mimetype, then a set of comma-separates properties with their
supported values. In case of an audio filter that supports rawinteger 16-bit audio, mono or stereo at any
samplerate, the correct template would look like this:

static GstStaticPadTemplate sink_factory =
GST_STATIC_PAD_TEMPLATE (

"sink",
GST_PAD_SINK,
GST_PAD_ALWAYS,
GST_STATIC_CAPS (

"audio/x-raw-int, "
"width = (int) 16, "
"depth = (int) 16, "
"endianness = (int) BYTE_ORDER, "
"channels = (int) { 1, 2 }, "
"rate = (int) [8000, 96000]"

)
);

Values surrounded by curly brackets (“{” and “}”) are lists,values surrounded by square brackets (“[”
and “]”) are ranges. Multiple sets of types are supported too, and should be separated by a semicolon
(“;”). Later, in the chapter on pads, we will see how to use types to know the exact format of a stream:
Chapter 4.

16

Chapter 3. Constructing the Boilerplate

3.6. Constructor Functions

Each element has three functions which are used for construction of an element. These are the
_base_init() function which is meant to initialize class and child class properties during each new
child class creation; the_class_init() function, which is used to initialise the class only once
(specifying what signals, arguments and virtual functionsthe class has and setting up global state); and
the_init() function, which is used to initialise a specific instance of this type.

3.7. The plugin_init function

Once we have written code defining all the parts of the plugin,we need to write the plugin_init()
function. This is a special function, which is called as soonas the plugin is loaded, and should return
TRUE or FALSE depending on whether it loaded initialized anydependencies correctly. Also, in this
function, any supported element type in the plugin should beregistered.

static gboolean
plugin_init (GstPlugin *plugin)
{

return gst_element_register (plugin, "my_filter",
GST_RANK_NONE,
GST_TYPE_MY_FILTER);

}

GST_PLUGIN_DEFINE (
GST_VERSION_MAJOR,
GST_VERSION_MINOR,
"my_filter",
"My filter plugin",
plugin_init,
VERSION,
"LGPL",
"GStreamer",
"http://gstreamer.net/"

)

Note that the information returned by the plugin_init() function will be cached in a central registry. For
this reason, it is important that the same information is always returned by the function: for example, it
must not make element factories available based on runtime conditions. If an element can only work in
certain conditions (for example, if the soundcard is not being used by some other process) this must be
reflected by the element being unable to enter the READY stateif unavailable, rather than the plugin
attempting to deny existence of the plugin.

17

Chapter 4. Specifying the pads

As explained before, pads are the port through which data goes in and out of your element, and that
makes them a very important item in the process of element creation. In the boilerplate code, we have
seen how static pad templates take care of registering pad templates with the element class. Here, we will
see how to create actual elements, use_link () and_getcaps () functions to let other elements
know their capabilities and how to register functions to letdata flow through the element.

In the element_init () function, you create the pad from the pad template that has been registered
with the element class in the_base_init () function. After creating the pad, you have to set a_link

() function pointer and a_getcaps () function pointer. Optionally, you can set a_chain () function
pointer (on sink pads in filter and sink elements) through which data will come in to the element, or (on
source pads in source elements) a_get () function pointer through which data will be pulled from the
element. After that, you have to register the pad with the element. This happens like this:

static GstPadLinkReturn gst_my_filter_link (GstPad *pad,
const GstCaps *caps);

static GstCaps * gst_my_filter_getcaps (GstPad *pad);
static void gst_my_filter_chain (GstPad *pad,

GstData *data);

static void
gst_my_filter_init (GstMyFilter *filter)
{

GstElementClass *klass = GST_ELEMENT_GET_CLASS (filter);

/* pad through which data comes in to the element */
filter->sinkpad = gst_pad_new_from_template (

gst_element_class_get_pad_template (klass, "sink"), "sink");
gst_pad_set_link_function (filter->sinkpad, gst_my_filter_link);
gst_pad_set_getcaps_function (filter->sinkpad, gst_my_filter_getcaps);
gst_pad_set_chain_function (filter->sinkpad, gst_my_filter_chain);
gst_element_add_pad (GST_ELEMENT (filter), filter->sinkpad);

/* pad through which data goes out of the element */
filter->srcpad = gst_pad_new_from_template (

gst_element_class_get_pad_template (klass, "src"), "src");
gst_pad_set_link_function (filter->srcpad, gst_my_filter_link);
gst_pad_set_getcaps_function (filter->srcpad, gst_my_filter_getcaps);
gst_element_add_pad (GST_ELEMENT (filter), filter->srcpad);

[..]
}

18

Chapter 4. Specifying the pads

4.1. The link function

The_link () is called during caps negotiation. This is the process wherethe linked pads decide on the
streamtype that will transfer between them. A full list of type-definitions can be found inChapter 13. A
_link () receives a pointer to aGstCaps (../../gstreamer/html/gstreamer-GstCaps.html) structthat
defines the proposed streamtype, and can respond with either“yes” (GST_PAD_LINK_OK), “no”
(GST_PAD_LINK_REFUSED) or “don’t know yet” (GST_PAD_LINK_DELAYED). If the element
responds positively towards the streamtype, that type willbe used on the pad. An example:

static GstPadLinkReturn
gst_my_filter_link (GstPad *pad,

const GstCaps *caps)
{

GstStructure *structure = gst_caps_get_structure (caps, 0);
GstMyFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));
GstPad *otherpad = (pad == filter->srcpad) ? filter->sinkpad :

filter->srcpad;
GstPadLinkReturn ret;
const gchar *mime;

/* Since we’re an audio filter, we want to handle raw audio

* and from that audio type, we need to get the samplerate and

* number of channels. */
mime = gst_structure_get_name (structure);
if (strcmp (mime, "audio/x-raw-int") != 0) {

GST_WARNING ("Wrong mimetype %s provided, we only support %s",
mime, "audio/x-raw-int");
return GST_PAD_LINK_REFUSED;

}

/* we’re a filter and don’t touch the properties of the data.

* That means we can set the given caps unmodified on the next

* element, and use that negotiation return value as ours. */
ret = gst_pad_try_set_caps (otherpad, gst_caps_copy (caps));
if (GST_PAD_LINK_FAILED (ret))

return ret;

/* Capsnego succeeded, get the stream properties for internal

* usage and return success. */
gst_structure_get_int (structure, "rate", &filter->samplerate);
gst_structure_get_int (structure, "channels", &filter->channels);

g_print ("Caps negotiation succeeded with %d Hz @ %d channels\n",
filter->samplerate, filter->channels);

return ret;
}

In here, we check the mimetype of the provided caps. Normally, you don’t need to do that in your own
plugin/element, because the core does that for you. We simply use it to show how to retrieve the

19

Chapter 4. Specifying the pads

mimetype from a provided set of caps. Types are stored inGstStructure

(../../gstreamer/html/gstreamer-GstStructure.html) internally. AGstCaps
(../../gstreamer/html/gstreamer-GstCaps.html) is nothing more than a small wrapper for 0 or more
structures/types. From the structure, you can also retrieve properties, as is shown above with the function
gst_structure_get_int ().

If your _link () function does not need to perform any specific operation (i.e. it will only forward
caps), you can set it togst_pad_proxy_link. This is a link forwarding function implementation
provided by the core. It is useful for elements such asidentity.

4.2. The getcaps function

The_getcaps () funtion is used to request the list of supported formats and properties from the
element. In some cases, this will be equal to the formats provided by the pad template, in which case this
function can be omitted. In some cases, too, it will not depend on anything inside this element, but it will
rather depend on the input from another element linked to this element’s sink or source pads. In that case,
you can usegst_pad_proxy_getcaps as implementation, it provides getcaps forwarding in the core.
However, in many cases, the format supported by this elementcannot be defined externally, but is more
specific than those provided by the pad template. In this case, you should use a_getcaps () function.
In the case as specified below, we assume that our filter is ableto resample sound, so it would be able to
provide any samplerate (indifferent from the samplerate specified on the other pad) on both pads. It
explains how a_getcaps () can be used to do this.

static GstCaps *
gst_my_filter_getcaps (GstPad *pad)
{

GstMyFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));
GstPad *otherpad = (pad == filter->srcpad) ? filter->sinkpad :

filter->srcpad;
GstCaps *othercaps = gst_pad_get_allowed_caps (otherpad), *caps;
gint n;

if (gst_caps_is_empty (othercaps))
return othercaps;

/* We support *any* samplerate, indifferent from the samplerate

* supported by the linked elements on both sides. */
for (i = 0; i < gst_caps_get_size (othercaps); i++) {

GstStructure *structure = gst_caps_get_structure (othercaps, i);

gst_structure_remove_field (structure, "rate");
}
caps = gst_caps_intersect (othercaps, gst_pad_get_pad_template_caps (pad));
gst_caps_free (othercaps);

return caps;
}

20

Chapter 4. Specifying the pads

4.3. Explicit caps

Obviously, many elements will not need this complex mechanism, because they are much simpler than
that. They only support one format, or their format is fixed but the contents of the format depend on the
stream or something else. In those cases,explicit capsare an easy way of handling caps. Explicit caps are
an easy way of specifying one, fixed, supported format on a pad. Pads using explicit caps do not
implement their own_getcaps () or _link () functions. When the exact format is known, an
elements usesgst_pad_set_explicit_caps () to specify the exact format. This is very useful for
demuxers, for example.

static void
gst_my_filter_init (GstMyFilter *filter)
{

GstElementClass *klass = GST_ELEMENT_GET_CLASS (filter);
[..]

filter->srcpad = gst_pad_new_from_template (
gst_element_class_get_pad_template (klass, "src"), "src");
gst_pad_use_explicit_caps (filter->srcpad);

[..]
}

static void
gst_my_filter_somefunction (GstMyFilter *filter)
{

GstCaps *caps = ..;
[..]

gst_pad_set_explicit_caps (filter->srcpad, caps);
[..]
}

21

Chapter 5. The chain function

The chain function is the function in which all data processing takes place. In the case of a simple filter,
_chain () functions are mostly linear functions - so for each incomingbuffer, one buffer will go out,
too. Below is a very simple implementation of a chain function:

static void
gst_my_filter_chain (GstPad *pad,

GstData *data)
{

GstMyFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));
GstBuffer *buf = GST_BUFFER (data);

if (!filter->silent)
g_print ("Have data of size %u bytes!\n", GST_BUFFER_SIZE (buf));

gst_pad_push (filter->srcpad, GST_DATA (buf));
}

Obviously, the above doesn’t do much useful. Instead of printing that the data is in, you would normally
process the data there. Remember, however, that buffers arenot always writable. In more advanced
elements (the ones that do event processing), the incoming data might not even be a buffer.

static void
gst_my_filter_chain (GstPad *pad,

GstData *data)
{

GstMyFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));
GstBuffer *buf, *outbuf;

if (GST_IS_EVENT (data)) {
GstEvent *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOS:

/* end-of-stream, we should close down all stream leftovers here */
gst_my_filter_stop_processing (filter);
/* fall-through to default event handling */

default:
gst_pad_event_default (pad, event);
break;

}
return;

}

buf = GST_BUFFER (data);
outbuf = gst_my_filter_process_data (buf);
gst_buffer_unref (buf);
if (!outbuf) {

22

Chapter 5. The chain function

/* something went wrong - signal an error */
gst_element_error (GST_ELEMENT (filter), STREAM, FAILED, (NULL), (NULL));
return;

}

gst_pad_push (filter->srcpad, GST_DATA (outbuf));
}

In some cases, it might be useful for an element to have control over the input data rate, too. In that case,
you probably want to write a so-calledloop-basedelement. Source elements (with only source pads) can
also beget-basedelements. These concepts will be explained in the advanced section of this guide, and
in the section that specifically discusses source pads.

23

Chapter 6. What are states?

A state describes whether the element instance is initialized, whether it is ready to transfer data and
whether it is currently handling data. There are four statesdefined in GStreamer: GST_STATE_NULL,
GST_STATE_READY, GST_STATE_PAUSED and GST_STATE_PLAYING.

GST_STATE_NULL (from now on referred to as “NULL”) is the default state of an element. In this
state, it has not allocated any runtime resources, it has notloaded any runtime libraries and it can
obviously not handle data.

GST_STATE_READY (from now on referred to as “READY”) is the next state that an element can be
in. In the READY state, an element has all default resources (runtime-libraries, runtime-memory)
allocated. However, it has not yet allocated or defined anything that is stream-specific. When going from
NULL to READY state (GST_STATE_NULL_TO_READY), an elementshould allocate any
non-stream-specific resources and should load runtime-loadable libraries (if any). When going the other
way around (from READY to NULL, GST_STATE_READY_TO_NULL),an element should unload
these libraries and free all allocated resources. Examplesof such resources are hardware devices. Note
that files are generally streams, and these should thus be considered as stream-specific resources;
therefore, they shouldnot be allocated in this state.

GST_STATE_PAUSED (from now on referred to as “PAUSED”) is a state in which an element is by all
means able to handle data; the only ’but’ here is that it doesn’t actually handle any data. When going
from the READY state into the PAUSED state (GST_STATE_READY_TO_PAUSED), the element will
usually not do anything at all: all stream-specific info is generally handled in the_link (), which is
called during caps negotiation. Exceptions to this rule are, for example, files: these are considered
stream-specific data (since one file is one stream), and should thus be opened in this state change. When
going from the PAUSED back to READY (GST_STATE_PAUSED_TO_READY), all stream-specific
data should be discarded.

GST_STATE_PLAYING (from now on referred to as “PLAYING”) isthe highest state that an element
can be in. It is similar to PAUSED, except that now, data is actually passing over the pipeline. The
transition from PAUSED to PLAYING (GST_STATE_PAUSED_TO_PLAYING) should be as small as
possible and would ideally cause no delay at all. The same goes for the reverse transition
(GST_STATE_PLAYING_TO_PAUSED).

6.1. Managing filter state

An element can be notified of state changes through a virtual function pointer. Inside this function, the
element can initialize any sort of specific data needed by theelement, and it can optionally fail to go
from one state to another.

Do not g_assert for unhandled state changes; this is taken care of by the GstElement base class.

24

Chapter 6. What are states?

static GstElementStateReturn
gst_my_filter_change_state (GstElement *element);

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

element_class->change_state = gst_my_filter_change_state;
}

static GstElementStateReturn
gst_my_filter_change_state (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);

switch (GST_STATE_TRANSITION (element)) {
case GST_STATE_NULL_TO_READY:
if (!gst_my_filter_allocate_memory (filter))

return GST_STATE_FAILURE;
break;

case GST_STATE_READY_TO_NULL:
gst_my_filter_free_memory (filter);
break;

default:
break;

}

if (GST_ELEMENT_CLASS (parent_class)->change_state)
return GST_ELEMENT_CLASS (parent_class)->change_state (element);

return GST_STATE_SUCCESS;
}

25

Chapter 7. Adding Arguments

The primary and most important way of controlling how an element behaves, is through GObject
properties. GObject properties are defined in the_class_init () function. The element optionally
implements a_get_property () and a_set_property () function. These functions will be
notified if an application changes or requests the value of a property, and can then fill in the value or take
action required for that property to change value internally.

/* properties */
enum {

ARG_0,
ARG_SILENT
/* FILL ME */

};

static void gst_my_filter_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec);

static void gst_my_filter_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec);

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{

GObjectClass *object_class = G_OBJECT_CLASS (klass);

/* define properties */
g_object_class_install_property (object_class, ARG_SILENT,

g_param_spec_boolean ("silent", "Silent",
"Whether to be very verbose or not",
FALSE, G_PARAM_READWRITE));

/* define virtual function pointers */
object_class->set_property = gst_my_filter_set_property;
object_class->get_property = gst_my_filter_get_property;

}

static void
gst_my_filter_set_property (GObject *object,

guint prop_id,
const GValue *value,
GParamSpec *pspec)

{
GstMyFilter *filter = GST_MY_FILTER (object);

switch (prop_id) {
case ARG_SILENT:
filter->silent = g_value_get_boolean (value);

26

Chapter 7. Adding Arguments

g_print ("Silent argument was changed to %s\n",
filter->silent ? "true" : "false");

break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;

}
}

static void
gst_my_filter_get_property (GObject *object,

guint prop_id,
GValue *value,
GParamSpec *pspec)

{
GstMyFilter *filter = GST_MY_FILTER (object);

switch (prop_id) {
case ARG_SILENT:
g_value_set_boolean (value, filter->silent);
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;

}
}

The above is a very simple example of how arguments are used. Graphical applications - for example
GStreamer Editor - will use these properties and will display a user-controlleable widget with which
these properties can be changed. This means that - for the property to be as user-friendly as possible - you
should be as exact as possible in the definition of the property. Not only in defining ranges in between
which valid properties can be located (for integers, floats,etc.), but also in using very descriptive (better
yet: internationalized) strings in the definition of the property, and if possible using enums and flags
instead of integers. The GObject documentation describes these in a very complete way, but below, we’ll
give a short example of where this is useful. Note that using integers here would probably completely
confuse the user, because they make no sense in this context.The example is stolen from videotestsrc.

typedef enum {
GST_VIDEOTESTSRC_SMPTE,
GST_VIDEOTESTSRC_SNOW,
GST_VIDEOTESTSRC_BLACK

} GstVideotestsrcPattern;

[..]

#define GST_TYPE_VIDEOTESTSRC_PATTERN (gst_videotestsrc_pattern_get_type ())
static GType
gst_videotestsrc_pattern_get_type (void)
{

static GType videotestsrc_pattern_type = 0;

27

Chapter 7. Adding Arguments

if (!videotestsrc_pattern_type) {
static GEnumValue pattern_types[] = {
{ GST_VIDEOTESTSRC_SMPTE, "smpte", "SMPTE 100% color bars" },
{ GST_VIDEOTESTSRC_SNOW, "snow", "Random (television snow)" },
{ GST_VIDEOTESTSRC_BLACK, "black", "0% Black" },
{ 0, NULL, NULL },

};

videotestsrc_pattern_type =
g_enum_register_static ("GstVideotestsrcPattern",

pattern_types);
}

return videotestsrc_pattern_type;
}

[..]

static void
gst_videotestsrc_class_init (GstvideotestsrcClass *klass)
{
[..]

g_object_class_install_property (G_OBJECT_CLASS (klass), ARG_TYPE,
g_param_spec_enum ("pattern", "Pattern",

"Type of test pattern to generate",
GST_TYPE_VIDEOTESTSRC_PATTERN, 1, G_PARAM_READWRITE));

[..]
}

28

Chapter 8. Signals

GObject signals can be used to notify applications of eventsspecific to this object. Note, however, that
the application needs to be aware of signals and their meaning, so if you’re looking for a generic way for
application-element interaction, signals are probably not what you’re looking for. In many cases,
however, signals can be very useful. See the GObject documentation
(http://www.le-hacker.org/papers/gobject/index.html) for all internals about signals.

29

Chapter 9. Building a Test Application

Often, you will want to test your newly written plugin in an assmall setting as possible. Usually,
gst-launch is a good first step at testing a plugin. However, you will often need more testing features
than gst-launch can provide, such as seeking, events, interactivity and more. Writing your own small
testing program is the easiest way to accomplish this. This section explains - in a few words - how to do
that. For a complete application development guide, see theApplication Development Manual
(../../manual/html/index.html).

At the start, you need to initialize the GStreamer core library by callinggst_init (). You can
alternatively callgst_init_with_popt_tables (), which will return a pointer to popt tables. You
can then use libpopt to handle the given argument table, and this will finish the GStreamer intialization.

You can create elements usinggst_element_factory_make (), where the first argument is the
element type that you want to create, and the second argumentis a free-form name. The example at the
end uses a simple filesource - decoder - soundcard output pipeline, but you can use specific debugging
elements if that’s necessary. For example, anidentity element can be used in the middle of the
pipeline to act as a data-to-application transmitter. Thiscan be used to check the data for misbehaviours
or correctness in your test application. Also, you can use afakesink element at the end of the pipeline
to dump your data to the stdout (in order to do this, set thedump property to TRUE). Lastly, you can use
theefence element (indeed, an eletric fence memory debugger wrapper element) to check for memory
errors.

During linking, your test application can use fixation or filtered caps as a way to drive a specific type of
data to or from your element. This is a very simple and effective way of checking multiple types of input
and output in your element.

Running the pipeline happens through thegst_bin_iterate () function. Note that during running,
you should connect to at least the “error” and “eos” signals on the pipeline and/or your plugin/element to
check for correct handling of this. Also, you should add events into the pipeline and make sure your
plugin handles these correctly (with respect to clocking, internal caching, etc.).

Never forget to clean up memory in your plugin or your test application. When going to the NULL state,
your element should clean up allocated memory and caches. Also, it should close down any references
held to possible support libraries. Your application should unref () the pipeline and make sure it
doesn’t crash.

#include <gst/gst.h>

gint
main (gint arcg,

gchar *argv[])
{

GstElement *pipeline, *filesrc, *decoder, *filter, *sink;

30

Chapter 9. Building a Test Application

/* initialization */
gst_init (&argc, &argv);

/* create elements */
pipeline = gst_pipeline_new ("my_pipeline");

filesrc = gst_element_factory_make ("filesrc", "my_filesource");
decoder = gst_element_factory_make ("mad", "my_decoder");
filter = gst_element_factory_make ("my_filter", "my_filter");
sink = gst_element_factory_make ("osssink", "audiosink");

g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

/* link everything together */
gst_element_link_many (filesrc, decoder, filter, sink, NULL);
gst_bin_add_many (GST_BIN (pipeline), filesrc, decoder, filter, sink, NULL);

/* run */
gst_element_set_state (pipeline, GST_STATE_PLAYING);
while (gst_bin_iterate (GST_BIN (pipeline)));

/* clean up */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

31

Chapter 10. Creating a Filter with a Filter
Factory

A plan for the future is to create a FilterFactory, to make theprocess of making a new filter a simple
process of specifying a few details, and writing a small amount of code to perform the actual data
processing. Ideally, a FilterFactory would perform the tasks of boilerplate creation, code functionality
implementation, and filter registration.

Unfortunately, this has not yet been implemented. Even whensomeone eventually does write a
FilterFactory, this element will not be able to cover all thepossibilities available for filter writing. Thus,
some plugins will always need to be manually coded and registered.

Here is a rough outline of what is planned: You run the FilterFactory and give the factory a list of
appropriate function pointers and data structures to definea filter. With a reasonable measure of
preprocessor magic, you just need to provide a name for the filter and definitions of the functions and
data structures desired. Then you call a macro from within plugin_init() that registers the new filter. All
the fluff that goes into the definition of a filter is thus be hidden from view.

32

III. Advanced Filter Concepts
By now, you should be able to create basic filter elements thatcan receive and send data. This is the
simple model that GStreamer stands for. But GStreamer can domuch more than only this! In this
chapter, various advanced topics will be discussed, such asscheduling, special pad types, clocking,
events, interfaces, tagging and more. These topics are the sugar that makes GStreamer so easy to use for
applications.

Chapter 11. How scheduling works

Scheduling is, in short, a method for making sure that every element gets called once in a while to
process data and prepare data for the next element. Likewise, a kernel has a scheduler to for processes,
and your brain is a very complex scheduler too in a way. Randomly calling elements’ chain functions
won’t bring us far, however, so you’ll understand that the schedulers in GStreamer are a bit more
complex than this. However, as a start, it’s a nice picture. GStreamer currently provides two schedulers: a
basicscheduler and anoptimalscheduler. As the name says, the basic scheduler (“basic”) is an
unoptimized, but very complete and simple scheduler. The optimal scheduler (“opt”), on the other hand,
is optimized for media processing, but therefore also more complex.

Note that schedulers only operate on one thread. If your pipeline contains multiple threads, each thread
will run with a separate scheduler. That is the reason why twoelements running in different threads need
a queue-like element (aDECOUPLED element) in between them.

11.1. The Basic Scheduler

Thebasicscheduler assumes that each element is its own process. We don’t use UNIX processes or
POSIX threads for this, however; instead, we use so-calledco-threads. Co-threads are threads that run
besides each other, but only one is active at a time. The advantage of co-threads over normal threads is
that they’re lightweight. The disadvantage is that UNIX or POSIX do not provide such a thing, so we
need to include our own co-threads stack for this to run.

The task of the scheduler here is to control which co-thread runs at what time. A well-written scheduler
based on co-threads will let an element run until it outputs one piece of data. Upon pushing one piece of
data to the next element, it will let the next element run, andso on. Whenever a running element requires
data from the previous element, the scheduler will switch tothat previous element and run that element
until it has provided data for use in the next element.

This method of running elements as needed has the disadvantage that a lot of data will often be queued in
between two elements, as the one element has provided data but the other element hasn’t actually used it
yet. These storages of in-between-data are calledbufpens, and they can be visualized as a light “queue”.

Note that since every element runs in its own (co-)thread, this scheduler is rather heavy on your system
for larger pipelines.

11.2. The Optimal Scheduler

Theoptimalscheduler takes advantage of the fact that several elementscan be linked together in one
thread, with one element controlling the other. This works as follows: in a series of chain-based

34

Chapter 11. How scheduling works

elements, each element has a function that accepts one pieceof data, and it calls a function that provides
one piece of data to the next element. The optimal scheduler will make sure that thegst_pad_push ()

function of the first elementdirectly calls the chain-function of the second element. This significantly
decreases the latency in a pipeline. It takes similar advantage of other possibilities of short-cutting the
data path from one element to the next.

The disadvantage of the optimal scheduler is that it is not fully implemented. Also it is badly
documented; for most developers, the opt scheduler is one big black box. Features that are not
implemented include pad-unlinking within a group while running, pad-selecting (i.e. waiting for data to
arrive on a list of pads), and it can’t really cope with multi-input/-output elements (with the elements
linked to each of these in-/outputs running in the same thread) right now.

Some of our developers are intending to write a new scheduler, similar to the optimal scheduler (but
better documented and more completely implemented).

35

Chapter 12. How a loopfunc works

A _loop () function is a function that is called by the scheduler, but without providing data to the
element. Instead, the element will become responsible for acquiring its own data, and it will still be
responsible of sending data over to its source pads. This method noticeably complicates scheduling; you
should only write loop-based elements when you need to. Normally, chain-based elements are preferred.
Examples of elements thathaveto be loop-based are elements with multiple sink pads. Sincethe
scheduler will push data into the pads as it comes (and this might not be synchronous), you will easily
get asynchronous data on both pads, which means that the datathat arrives on the first pad has a different
display timestamp than the data arriving on the second pad atthe same time. To get over these issues,
you should write such elements in a loop-based form. Other elements that areeasierto write in a
loop-based form than in a chain-based form are demuxers and parsers. It is not required to write such
elements in a loop-based form, though.

Below is an example of the easiest loop-function that one canwrite:

static void gst_my_filter_loopfunc (GstElement *element);

static void
gst_my_filter_init (GstMyFilter *filter)
{
[..]

gst_element_set_loopfunc (GST_ELEMENT (filter), gst_my_filter_loopfunc);
[..]
}

static void
gst_my_filter_loopfunc (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);
GstData *data;

/* acquire data */
data = gst_pad_pull (filter->sinkpad);

/* send data */
gst_pad_push (filter->srcpad, data);

}

Obviously, this specific example has no single advantage over a chain-based element, so you should
never write such elements. However, it’s a good introduction to the concept.

36

Chapter 12. How a loopfunc works

12.1. Multi-Input Elements

Elements with multiple sink pads need to take manual controlover their input to assure that the input is
synchronized. The following example code could (should) beused in an aggregator, i.e. an element that
takes input from multiple streams and sends it out intermangled. Not really useful in practice, but a good
example, again.

typedef struct _GstMyFilterInputContext {
gboolean eos;
GstBuffer *lastbuf;

} GstMyFilterInputContext;

[..]

static void
gst_my_filter_init (GstMyFilter *filter)
{

GstElementClass *klass = GST_ELEMENT_GET_CLASS (filter);
GstMyFilterInputContext *context;

filter->sinkpad1 = gst_pad_new_from_template (
gst_element_class_get_pad_template (klass, "sink"), "sink_1");
context = g_new0 (GstMyFilterInputContext, 1);
gst_pad_set_private_data (filter->sinkpad1, context);

[..]
filter->sinkpad2 = gst_pad_new_from_template (

gst_element_class_get_pad_template (klass, "sink"), "sink_2");
context = g_new0 (GstMyFilterInputContext, 1);
gst_pad_set_private_data (filter->sinkpad2, context);

[..]
gst_element_set_loopfunc (GST_ELEMENT (filter),

gst_my_filter_loopfunc);
}

[..]

static void
gst_my_filter_loopfunc (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);
GList *padlist;
GstMyFilterInputContext *first_context = NULL;

/* Go over each sink pad, update the cache if needed, handle EOS

* or non-responding streams and see which data we should handle

* next. */
for (padlist = gst_element_get_padlist (element);

padlist != NULL; padlist = g_list_next (padlist)) {
GstPad *pad = GST_PAD (padlist->data);
GstMyFilterInputContext *context = gst_pad_get_private_data (pad);

37

Chapter 12. How a loopfunc works

if (GST_PAD_IS_SRC (pad))
continue;

while (GST_PAD_IS_USABLE (pad) &&
!context->eos && !context->lastbuf) {

GstData *data = gst_pad_pull (pad);

if (GST_IS_EVENT (data)) {
/* We handle events immediately */
GstEvent *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOS:
context->eos = TRUE;
gst_event_unref (event);
break;

case GST_EVENT_DISCONTINUOUS:
g_warning ("HELP! How do I handle this?");
/* fall-through */

default:
gst_pad_event_default (pad, event);
break;

}
} else {

/* We store the buffer to handle synchronization below */
context->lastbuf = GST_BUFFER (data);

}
}

/* synchronize streams by always using the earliest buffer */
if (context->lastbuf) {
if (!first_context) {

first_context = context;
} else {

if (GST_BUFFER_TIMESTAMP (context->lastbuf) <
GST_BUFFER_TIMESTAMP (first_context->lastbuf))

first_context = context;
}

}
}

/* If we handle no data at all, we’re at the end-of-stream, so

* we should signal EOS. */
if (!first_context) {

gst_pad_push (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EOS)));
gst_element_set_eos (element);
return;

}

/* So we do have data! Let’s forward that to our source pad. */
gst_pad_push (filter->srcpad, GST_DATA (first_context->lastbuf));
first_context->lastbuf = NULL;

38

Chapter 12. How a loopfunc works

}

Note that a loop-function is allowed to return. Better yet, aloop functionhas toreturn so the scheduler
can let other elements run (this is particularly true for theoptimal scheduler). Whenever the scheduler
feels right, it will call the loop-function of the element again.

12.2. The Bytestream Object

A second type of elements that wants to be loop-based, are theso-called bytestream-elements. Until now,
we’ve only dealt with elements that receive or pull full buffers of a random size from other elements.
Often, however, it is wanted to have control over the stream at a byte-level, such as in stream parsers or
demuxers. It is possible to manually pull buffers and merge them until a certain size; it is easier, however,
to use bytestream, which wraps this behaviour.

To use bytestream, you need to load the bytestream when your plugin is loaded; you should do this
before registering the element, which you learned previously in Section 3.7. After that, all functions of
the bytestream plugin are available in your plugin as well.

#include <gst/bytestream/bytestream.h>

static gboolean
plugin_init (GstPlugin *plugin)
{

if (!gst_library_load ("gstbytestream"))
return FALSE;

/* and now, actually register the element */
[..]
}

Bytestream-using elements are usually stream parsers or demuxers. For now, we will take a parser as an
example. Demuxers require some more magic that will be dealtwith later in this guide:Chapter 14. The
goal of this parser will be to parse a text-file and to push eachline of text as a separate buffer over its
source pad.

static void
gst_my_filter_loopfunc (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);
gint n, num;
guint8 *data;

for (n = 0; ; n++) {

39

Chapter 12. How a loopfunc works

num = gst_bytestream_peek_bytes (filter->bs, &data, n + 1);
if (num != n + 1) {
GstEvent *event = NULL;
guint remaining;

gst_bytestream_get_status (filter->bs, &remaining, &event);
if (event) {

if (GST_EVENT_TYPE (event) == GST_EVENT_EOS)) {
/* end-of-file */
gst_pad_push (filter->srcpad, GST_DATA (event));
gst_element_set_eos (element);

return;
}
gst_event_unref (event);

}

/* failed to read - throw error and bail out */
gst_element_error (element, STREAM, READ, (NULL), (NULL));

return;
}

/* check if the last character is a newline */
if (data[n] == ’\n’) {
GstBuffer *buf = gst_buffer_new_and_alloc (n + 1);

/* read the line of text without newline - then flush the newline */
gst_bytestream_peek_data (filter->bs, &data, n);
memcpy (GST_BUFFER_DATA (buf), data, n);
GST_BUFFER_DATA (buf)[n] = ’\0’;
gst_bytestream_flush_fast (filter->bs, n + 1);
g_print ("Pushing ’%s’\n", GST_BUFFER_DATA (buf));
gst_pad_push (filter->srcpad, GST_DATA (buf));

return;
}

}
}

static void
gst_my_filter_change_state (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);

switch (GST_STATE_TRANSITION (element)) {
case GST_STATE_READY_TO_PAUSED:
filter->bs = gst_bytestream_new (filter->sinkpad);
break;

case GST_STATE_PAUSED_TO_READY:
gst_bytestream_destroy (filter->bs);
break;

default:

40

Chapter 12. How a loopfunc works

break;
}

if (GST_ELEMENT_CLASS (parent_class)->change_state)
return GST_ELEMENT_CLASS (parent_class)->change_state (element);

return GST_STATE_SUCCESS;
}

In the above example, you’ll notice how bytestream handles buffering of data for you. The result is that
you can handle the same data multiple times. Event handling in bytestream is currently sort ofwacky, but
it works quite well. The one big disadvantage of bytestream is that itrequiresthe element to be
loop-based. Long-term, we hope to have a chain-based usableversion of bytestream, too.

12.3. Adding a second output

WRITEME

12.4. Modifying the test application

WRITEME

41

Chapter 13. Types and Properties

There is a very large set of possible types that may be used to pass data between elements. Indeed, each
new element that is defined may use a new data format (though unless at least one other element
recognises that format, it will be most likely be useless since nothing will be able to link with it).

In order for types to be useful, and for systems like autopluggers to work, it is necessary that all elements
agree on the type definitions, and which properties are required for each type. The GStreamer framework
itself simply provides the ability to define types and parameters, but does not fix the meaning of types
and parameters, and does not enforce standards on the creation of new types. This is a matter for a policy
to decide, not technical systems to enforce.

For now, the policy is simple:

• Do not create a new type if you could use one which already exists.

• If creating a new type, discuss it first with the other GStreamer developers, on at least one of: IRC,
mailing lists.

• Try to ensure that the name for a new format is as unlikely to conflict with anything else created
already, and is not a more generalised name than it should be.For example: "audio/compressed"
would be too generalised a name to represent audio data compressed with an mp3 codec. Instead
"audio/mp3" might be an appropriate name, or "audio/compressed" could exist and have a property
indicating the type of compression used.

• Ensure that, when you do create a new type, you specify it clearly, and get it added to the list of known
types so that other developers can use the type correctly when writing their elements.

13.1. Building a Simple Format for Testing

If you need a new format that has not yet been defined in ourList of Defined Types, you will want to
have some general guidelines on mimetype naming, properties and such. A mimetype would ideally be
one defined by IANA; else, it should be in the form type/x-name, where type is the sort of data this
mimetype handles (audio, video, ...) and name should be something specific for this specific type. Audio
and video mimetypes should try to support the general audio/video properties (see the list), and can use
their own properties, too. To get an idea of what properties we think are useful, see (again) the list.

Take your time to find the right set of properties for your type. There is no reason to hurry. Also,
experimenting with this is generally a good idea. Experience learns that theoretically thought-out types
are good, but they still need practical use to assure that they serve their needs. Make sure that your
property names do not clash with similar properties used in other types. If they match, make sure they
mean the same thing; properties with different types but thesame names arenot allowed.

42

Chapter 13. Types and Properties

13.2. Typefind Functions and Autoplugging

With only definingthe types, we’re not yet there. In order for a random data file to be recognized and
played back as such, we need a way of recognizing their type out of the blue. For this purpose,
“typefinding” was introduced. Typefinding is the process of detecting the type of a datastream.
Typefinding consists of two separate parts: first, there’s anunlimited number of functions that we call
typefind functions, which are each able to recognize one or more types from an input stream. Then,
secondly, there’s a small engine which registers and calls each of those functions. This is the typefind
core. On top of this typefind core, you would normally write anautoplugger, which is able to use this
type detection system to dynamically build a pipeline around an input stream. Here, we will focus only
on typefind functions.

A typefind function ususally lives ingst-plugins/gst/typefind/gsttypefindfunctions.c,
unless there’s a good reason (like library dependencies) toput it elsewhere. The reason for this
centralization is to decreate the number of plugins that need to be loaded in order to detect a stream’s
type. Below is an example that will recognize AVI files, whichstart with a “RIFF” tag, then the size of
the file and then an “AVI ” tag:

static void
gst_my_typefind_function (GstTypeFind *tf,

gpointer data)
{

guint8 *data = gst_type_find_peek (tf, 0, 12);

if (data &&
GUINT32_FROM_LE (&((guint32 *) data)[0]) == GST_MAKE_FOURCC (’R’,’I’,’F’,’F’) &&
GUINT32_FROM_LE (&((guint32 *) data)[2]) == GST_MAKE_FOURCC (’A’,’V’,’I’,’ ’)) {

gst_type_find_suggest (tf, GST_TYPE_FIND_MAXIMUM,
gst_caps_new_simple ("video/x-msvideo", NULL));

}
}

static gboolean
plugin_init (GstPlugin *plugin)
{

static gchar *exts[] = { "avi", NULL };
if (!gst_type_find_register (plugin, "", GST_RANK_PRIMARY,

gst_my_typefind_function, exts,
gst_caps_new_simple ("video/x-msvideo",
NULL), NULL))

return FALSE;
}

Note thatgst-plugins/gst/typefind/gsttypefindfunctions.c has some simplification
macros to decrease the amount of code. Make good use of those if you want to submit typefinding
patches with new typefind functions.

43

Chapter 13. Types and Properties

Autoplugging will be discussed in great detail in the chapter calledWriting an Autoplugger.

13.3. List of Defined Types

Below is a list of all the defined types in GStreamer. They are split up in separate tables for audio, video,
container, subtitle and other types, for the sake of readability. Below each table might follow a list of
notes that apply to that table. In the definition of each type,we try to follow the types and rules as
defined by IANA (http://www.iana.org/assignmentsmedia-types) for as far as possible.

Jump directly to a specific table:

• Table of Audio Types

• Table of Video Types

• Table of Container Types

• Table of Subtitle Types

• Table of Other Types

Note that many of the properties are notrequired, but ratheroptionalproperties. This means that most of
these properties can be extracted from the container header, but that - in case the container header does
not provide these - they can also be extracted by parsing the stream header or the stream content. The
policy is that your element should provide the data that it knows about by only parsing its own content,
not another element’s content. Example: the AVI header provides samplerate of the contained audio
stream in the header. MPEG system streams don’t. This means that an AVI stream demuxer would
provide samplerate as a property for MPEG audio streams, whereas an MPEG demuxer would not. A
decoder needing this data would require a stream parser in between two extract this from the header or
calculate it from the stream.

Table 13-1. Table of Audio Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

All audio types.

audio/* All
audio
types

rate integer greater
than 0

The sample rate of the data, in samples (per channel)
per second.

channelsinteger greater
than 0

The number of channels of audio data.

All raw audio types.

44

Chapter 13. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

audio/x-
raw-int

Un-
struc-
tured
and
uncom-
pressed
raw
fixed-
integer
audio
data.

endiannessinteger G_BIG_ENDIAN
(1234)
or
G_LITTLE_ENDIAN
(4321)

The order of bytes in a sample. The value
G_LITTLE_ENDIAN (4321) means “little-endian”
(byte-order is “least significant byte first”). The value
G_BIG_ENDIAN (1234) means “big-endian” (byte
order is “most significant byte first”).

signed boolean TRUE
or
FALSE

Whether the values of the integer samples are signed or
not. Signed samples use one bit to indicate sign
(negative or positive) of the value. Unsigned samples
are always positive.

width integer greater
than 0

Number of bits allocated per sample.

depth integer greater
than 0

The number of bits used per sample. This must be less
than or equal to the width: If the depth is less than the
width, the low bits are assumed to be the ones used. For
example, a width of 32 and a depth of 24 means that
each sample is stored in a 32 bit word, but only the low
24 bits are actually used.

audio/x-
raw-
float

Un-
struc-
tured
and
uncom-
pressed
raw
floating-
point
audio
data.

endiannessinteger G_BIG_ENDIAN
(1234)
or
G_LITTLE_ENDIAN
(4321)

The order of bytes in a sample. The value
G_LITTLE_ENDIAN (4321) means “little-endian”
(byte-order is “least significant byte first”). The value
G_BIG_ENDIAN (1234) means “big-endian” (byte
order is “most significant byte first”).

width integer greater
than 0

The amount of bits used and allocated per sample.

buffer-
frames

integer Any The number of frames per buffer. The reason for this
property is that the element does not need to reuse
buffers or use data spanned over multiple buffers, so
this property - when used rightly - will decrease
latency. Note that some people think that this property
is very ugly, whereas others think it is vital for the use
of GStreamer in professional audio applications. The
special value zero is reserved and implies that size is
variable between buffers.

All encoded audio types.

audio/x-
ac3

AC-3
or A52
audio
streams.

There are currently no specific properties defined or
needed for this type.

45

Chapter 13. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

audio/x-
adpcm

ADPCM
Audio
streams.

layout string
“quick-
time”,
“dvi”,
“mi-
crosoft”
or
“4xm”.

The layout defines the packing of the samples in the
stream. In ADPCM, most formats store multiple
samples per channel together. This number of samples
differs per format, hence the different layouts. On the
long term, we probably want this variable to die and use
something more descriptive, but this will do for now.

block_aligninteger Any Chunk buffer size.

audio/x-
cinepak

Audio
as pro-
vided
in a
Cinepak
(Quick-
time)
stream.

There are currently no specific properties defined or
needed for this type.

audio/x-
dv

Audio
as pro-
vided
in a
Digital
Video
stream.

There are currently no specific properties defined or
needed for this type.

audio/x-
flac

Free
Loss-
less
Audio
codec
(FLAC).

There are currently no specific properties defined or
needed for this type.

audio/x-
gsm

Data
en-
coded
by the
GSM
codec.

There are currently no specific properties defined or
needed for this type.

audio/x-
alaw

A-Law
Audio.

There are currently no specific properties defined or
needed for this type.

46

Chapter 13. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

audio/x-
mulaw

Mu-
Law
Audio.

There are currently no specific properties defined or
needed for this type.

audio/x-
mace

MACE
Audio
(used in
Quick-
time).

maceversioninteger 3 or 6 The version of the MACE audio codec used to encode
the stream.

audio/mpegAudio
data
com-
pressed
using
the
MPEG
audio
encod-
ing
sce-
hem.

mpegversioninteger 1, 2 or
4

The MPEG-version used for encoding the data. The
value 1 refers to MPEG-1, -2 and -2.5 layer 1, 2 or 3.
The values 2 and 4 refer to the MPEG-AAC audio
encoding schemes.

framed boolean 0 or 1 A true value indicates that each buffer contains exactly
one frame. A false value indicates that frames and
buffers do not necessarily match up.

layer integer 1, 2, or
3

The compression scheme layer used to compress the
data(only if mpegversion=1).

bitrate integer greater
than 0

The bitrate, in bits per second. For VBR (variable
bitrate) MPEG data, this is the average bitrate.

audio/x-
qdm2

Data
en-
coded
by the
QDM
version
2
codec.

There are currently no specific properties defined or
needed for this type.

audio/x-
pn-
realaudio

Realmedia
Audio
data.

raversioninteger 1 or 2 The version of the Real Audio codec used to encode
the stream. 1 stands for a 14k4 stream, 2 stands for a
28k8 stream.

audio/x-
speex

Data
en-
coded
by the
Speex
audio
codec

There are currently no specific properties defined or
needed for this type.

47

Chapter 13. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

audio/x-
vorbis

Vorbis
audio
data

There are currently no specific properties defined or
needed for this type.

audio/x-
wma

Windows
Media
Audio

wmaversioninteger 1,2 or 3 The version of the WMA codec used to encode the
stream.

audio/x-
paris

Ensoniq
PARIS
audio

There are currently no specific properties defined or
needed for this type.

audio/x-
svx

Amiga
IFF /
SVX8 /
SV16
audio

There are currently no specific properties defined or
needed for this type.

audio/x-
nist

Sphere
NIST
audio

There are currently no specific properties defined or
needed for this type.

audio/x-
voc

Sound
Blaster
VOC
audio

There are currently no specific properties defined or
needed for this type.

audio/x-
ircam

Berkeley/IRCAM/CARL
audio

There are currently no specific properties defined or
needed for this type.

audio/x-
w64

Sonic
Foundry’s
64 bit
RIFF/WAV

There are currently no specific properties defined or
needed for this type.

Table 13-2. Table of Video Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

All video types.

video/* All
video
types

width integer greater
than 0

The width of the video image

height integer greater
than 0

The height of the video image

48

Chapter 13. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

frameratedouble greater
than 0

The (average) framerate in frames per second. Note
that this property does not guarantee inanyway that it
will actually come close to this value. If you need a
fixed framerate, please use an element that provides
that (such as “videodrop”).

All raw video types.

video/x-
raw-
yuv

YUV
(or
Y’Cb’Cr)
video
format.

format fourcc YUY2,
YVYU,
UYVY,
Y41P,
IYU2,
Y42B,
YV12,
I420,
Y41B,
YUV9,
YVU9,
Y800

The layout of the video. See FourCC definition site
(http://www.fourcc.org/) for references and definitions.
YUY2, YVYU and UYVY are 4:2:2 packed-pixel,
Y41P is 4:1:1 packed-pixel and IYU2 is 4:4:4
packed-pixel. Y42B is 4:2:2 planar, YV12 and I420 are
4:2:0 planar, Y41B is 4:1:1 planar and YUV9 and
YVU9 are 4:1:0 planar. Y800 contains Y-samples only
(black/white).

video/x-
raw-rgb

Red-
Green-
Blue
(RBG)
video.

bpp integer greater
than 0

The number of bits allocated per pixel. This is usually
16, 24 or 32.

depth integer greater
than 0

The number of bits used per pixel by the R/G/B
components. This is usually 15, 16 or 24.

endiannessinteger G_BIG_ENDIAN
(1234)
or
G_LITTLE_ENDIAN
(4321)

The order of bytes in a sample. The value
G_LITTLE_ENDIAN (4321) means “little-endian”
(byte-order is “least significant byte first”). The value
G_BIG_ENDIAN (1234) means “big-endian” (byte
order is “most significant byte first”). For 24/32bpp,
this should always be big endian because the byte order
can be given in both.

red_mask,
green_mask
and
blue_mask

integer any The masks that cover all the bits used by each of the
samples. The mask should be given in the endianness
specified above. This means that for 24/32bpp, the
masks might be opposite to host byte order (if you are
working on little-endian computers).

All encoded video types.

video/x-
3ivx

3ivx
video.

There are currently no specific properties defined or
needed for this type.

video/x-
divx

DivX
video.

divxversioninteger 3, 4 or
5

Version of the DivX codec used to encode the stream.

49

Chapter 13. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

video/x-
dx

Digital
Video.

systemstreamboolean FALSE Indicates that this stream isnot a system container
stream.

video/x-
ffv

FFMpeg
video.

ffvversioninteger 1 Version of the FFMpeg video codec used to encode the
stream.

video/x-
h263

H-263
video.

There are currently no specific properties defined or
needed for this type.

video/x-
h264

H-264
video.

There are currently no specific properties defined or
needed for this type.

video/x-
huffyuv

Huffyuv
video.

There are currently no specific properties defined or
needed for this type.

video/x-
indeo

Indeo
video.

indeoversioninteger 3 Version of the Indeo codec used to encode this stream.

video/x-
jpeg

Motion-
JPEG
video.

There are currently no specific properties defined or
needed for this type. Note that video/x-jpeg only
applies to Motion-JPEG pictures (YUY2 colourspace).
RGB colourspace JPEG images are referred to as
image/jpeg (JPEG image).

video/mpegMPEG
video.

mpegversioninteger 1, 2 or
4

Version of the MPEG codec that this stream was
encoded with. Note that we have different mimetypes
for 3ivx, XviD, DivX and "standard" ISO MPEG-4.
This isnot a good thing and we’re fully aware of this.
However, we do not have a solution yet.

systemstreamboolean FALSE Indicates that this stream isnot a system container
stream.

video/x-
msmpeg

Microsoft
MPEG-
4 video
devia-
tions.

msmpegversioninteger 41, 42
or 43

Version of the MS-MPEG-4-like codec that was used
to encode this version. A value of 41 refers to MS
MPEG 4.1, 42 to 4.2 and 43 to version 4.3.

video/x-
msvideocodec

Microsoft
Video 1
(oldish
codec).

msvideoversioninteger 1 Version of the codec - always 1.

50

Chapter 13. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

video/x-
pn-
realvideo

Realmedia
video.

rmversioninteger 1, 2 or
3

Version of the Real Video codec that this stream was
encoded with.

video/x-
rle

RLE
anima-
tion
format.

layout string "microsoft"
or
"quick-
time"

The RLE format inside the Microsoft AVI container
has a different byte layout than the RLE format inside
Apple’s Quicktime container; this property keeps track
of the layout.

depth integer 1 to 64 Bitdepth of the used palette. This means that the palette
that belongs to this format defines 2^depth colors.

palette_dataGstBuffer Buffer containing a color palette (in native-endian
RGBA) used by this format. The buffer is of size
4*2^depth.

video/x-
svq

Sorensen
Video.

svqversioninteger 1 or 3 Version of the Sorensen codec that the stream was
encoded with.

video/x-
tarkin

Tarkin
video.

There are currently no specific properties defined or
needed for this type.

video/x-
theora

Theora
video.

There are currently no specific properties defined or
needed for this type.

video/x-
vp3

VP-3
video.

There are currently no specific properties defined or
needed for this type. Note that we have different
mimetypes for VP-3 and Theora, which is not
necessarily a good idea. This could probably be
improved.

video/x-
wmv

Windows
Media
Video

wmvversioninteger 1,2 or 3 Version of the WMV codec that the stream was
encoded with.

video/x-
xvid

XviD
video.

There are currently no specific properties defined or
needed for this type.

All image types.

image/jpegJoint
Picture
Expert
Group
Image.

There are currently no specific properties defined or
needed for this type. Note that image/jpeg only applies
to RGB-colourspace JPEG images; YUY2-colourspace
JPEG pictures are referred to as video/x-jpeg ("Motion
JPEG").

51

Chapter 13. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

image/pngPortable
Net-
work
Graph-
ics
Image.

There are currently no specific properties defined or
needed for this type.

Table 13-3. Table of Container Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

video/x-
ms-asf

Advanced
Stream-
ing
Format
(ASF).

There are currently no specific properties defined or
needed for this type.

video/x-
msvideo

AVI. There are currently no specific properties defined or
needed for this type.

video/x-
dv

Digital
Video.

systemstreamboolean TRUE Indicates that this is a container system stream rather
than an elementary video stream.

video/x-
matroska

Matroska. There are currently no specific properties defined or
needed for this type.

video/mpegMotion
Pic-
tures
Expert
Group
System
Stream.

systemstreamboolean TRUE Indicates that this is a container system stream rather
than an elementary video stream.

application/oggOgg. There are currently no specific properties defined or
needed for this type.

video/quicktimeQuicktime. There are currently no specific properties defined or
needed for this type.

video/x-
pn-
realvideo

Digital
Video.

systemstreamboolean TRUE Indicates that this is a container system stream rather
than an elementary video stream.

52

Chapter 13. Types and Properties

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

audio/x-
wav

WAV. There are currently no specific properties defined or
needed for this type.

Table 13-4. Table of Subtitle Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

None defined yet.

Table 13-5. Table of Other Types

Mime
Type

DescriptionPropertyProperty
Type

Property
Values

Property Description

None defined yet.

53

Chapter 14. Request and Sometimes pads

Until now, we’ve only dealt with pads that are always available. However, there’s also pads that are only
being created in some cases, or only if the application requests the pad. The first is called asometimes;
the second is called arequestpad. The availability of a pad (always, sometimes or request) can be seen in
a pad’s template. This chapter will discuss when each of the two is useful, how they are created and when
they should be disposed.

14.1. Sometimes pads

A “sometimes” pad is a pad that is created under certain conditions, but not in all cases. This mostly
depends on stream content: demuxers will generally parse the stream header, decide what elementary
(video, audio, subtitle, etc.) streams are embedded insidethe system stream, and will then create a
sometimes pad for each of those elementary streams. At its own choice, it can also create more than one
instance of each of those per element instance. The only limitation is that each newly created pad should
have a unique name. Sometimes pads are disposed when the stream data is disposed, too (i.e. when going
from PAUSED to the READY state). You shouldnot dispose the pad on EOS, because someone might
re-activate the pipeline and seek back to before the end-of-stream point. The stream should still stay
valid after EOS, at least until the stream data is disposed. In any case, the element is always the owner of
such a pad.

The example code below will parse a text file, where the first line is a number (n). The next lines all start
with a number (0 to n-1), which is the number of the source pad over which the data should be sent.

3
0: foo
1: bar
0: boo
2: bye

The code to parse this file and create the dynamic “sometimes”pads, looks like this:

typedef struct _GstMyFilter {
[..]

gboolean firstrun;
GList *srcpadlist;

} GstMyFilter;

static void
gst_my_filter_base_init (GstMyFilterClass *klass)
{

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
static GstStaticPadTemplate src_factory =
GST_STATIC_PAD_TEMPLATE (

54

Chapter 14. Request and Sometimes pads

"src_%02d",
GST_PAD_SRC,
GST_PAD_SOMETIMES,
GST_STATIC_CAPS ("ANY")

);
[..]

gst_element_class_add_pad_template (element_class,
gst_static_pad_template_get (&src_factory));

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{
[..]

filter->firstrun = TRUE;
filter->srcpadlist = NULL;

}

/*
* Get one line of data - without newline.

*/

static GstBuffer *
gst_my_filter_getline (GstMyFilter *filter)
{

guint8 *data;
gint n, num;

/* max. line length is 512 characters - for safety */
for (n = 0; n < 512; n++) {

num = gst_bytestream_peek_bytes (filter->bs, &data, n + 1);
if (num != n + 1)
return NULL;

/* newline? */
if (data[n] == ’\n’) {
GstBuffer *buf = gst_buffer_new_and_alloc (n + 1);

gst_bytestream_peek_bytes (filter->bs, &data, n);
memcpy (GST_BUFFER_DATA (buf), data, n);
GST_BUFFER_DATA (buf)[n] = ’\0’;
gst_bytestream_flush_fast (filter->bs, n + 1);

return buf;
}

}
}

static void
gst_my_filter_loopfunc (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);

55

Chapter 14. Request and Sometimes pads

GstBuffer *buf;
GstPad *pad;
gint num, n;

/* parse header */
if (filter->firstrun) {

GstElementClass *klass;
GstPadTemplate *templ;
gchar *padname;

if (!(buf = gst_my_filter_getline (filter))) {
gst_element_error (element, STREAM, READ, (NULL),

("Stream contains no header"));
return;

}
num = atoi (GST_BUFFER_DATA (buf));
gst_buffer_unref (buf);

/* for each of the streams, create a pad */
klass = GST_ELEMENT_GET_CLASS (filter);
templ = gst_element_class_get_pad_template (klass, "src_%02d");
for (n = 0; n < num; n++) {
padname = g_strdup_printf ("src_%02d", n);
pad = gst_pad_new_from_template (templ, padname);
g_free (padname);

/* here, you would set _getcaps () and _link () functions */

gst_element_add_pad (element, pad);
filter->srcpadlist = g_list_append (filter->srcpadlist, pad);

}
}

/* and now, simply parse each line and push over */
if (!(buf = gst_my_filter_getline (filter))) {

GstEvent *event = gst_event_new (GST_EVENT_EOS);
GList *padlist;

for (padlist = srcpadlist;
padlist != NULL; padlist = g_list_next (padlist)) {

pad = GST_PAD (padlist->data);
gst_event_ref (event);
gst_pad_push (pad, GST_DATA (event));

}
gst_event_unref (event);
gst_element_set_eos (element);

return;
}

/* parse stream number and go beyond the ’:’ in the data */
num = atoi (GST_BUFFER_DATA (buf));
if (num >= 0 && num < g_list_length (filter->srcpadlist)) {

56

Chapter 14. Request and Sometimes pads

pad = GST_PAD (g_list_nth_data (filter->srcpadlist, num);

/* magic buffer parsing foo */
for (n = 0; GST_BUFFER_DATA (buf)[n] != ’:’ &&

GST_BUFFER_DATA (buf)[n] != ’\0’; n++) ;
if (GST_BUFFER_DATA (buf)[n] != ’\0’) {
GstBuffer *sub;

/* create subbuffer that starts right past the space. The reason

* that we don’t just forward the data pointer is because the

* pointer is no longer the start of an allocated block of memory,

* but just a pointer to a position somewhere in the middle of it.

* That cannot be freed upon disposal, so we’d either crash or have

* a memleak. Creating a subbuffer is a simple way to solve that. */
sub = gst_buffer_create_sub (buf, n + 1, GST_BUFFER_SIZE (buf) - n - 1);
gst_pad_push (pad, GST_DATA (sub));

}
}
gst_buffer_unref (buf);

}

Note that we use a lot of checks everywhere to make sure that the content in the file is valid. This has two
purposes: first, the file could be erronous, in which case we prevent a crash. The second and most
important reason is that - in extreme cases - the file could be used maliciously to cause undefined
behaviour in the plugin, which might lead to security issues. Alwaysassume that the file could be used to
do bad things.

14.2. Request pads

“Request” pads are similar to sometimes pads, except that request are created on demand of something
outside of the element rather than something inside the element. This concept is often used in muxers,
where - for each elementary stream that is to be placed in the output system stream - one sink pad will be
requested. It can also be used in elements with a variable number of input or outputs pads, such as the
tee (multi-output),switch or aggregator (both multi-input) elements. At the time of writing this, itis
unclear to me who is responsible for cleaning up the created pad and how or when that should be done.
Below is a simple example of an aggregator based on request pads.

static GstPad * gst_my_filter_request_new_pad (GstElement *element,
GstPadTemplate *templ,
const gchar *name);

static void
gst_my_filter_base_init (GstMyFilterClass *klass)
{

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);

57

Chapter 14. Request and Sometimes pads

static GstStaticPadTemplate sink_factory =
GST_STATIC_PAD_TEMPLATE (

"sink_%d",
GST_PAD_SINK,
GST_PAD_REQUEST,
GST_STATIC_CAPS ("ANY")

);
[..]

gst_element_class_add_pad_template (klass,
gst_static_pad_template_get (&sink_factory));

}

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{

GstElementClass *element_class = GST_ELEMENT_CLASS (klass);
[..]

element_class->request_new_pad = gst_my_filter_request_new_pad;
}

static GstPad *
gst_my_filter_request_new_pad (GstElement *element,

GstPadTemplate *templ,
const gchar *name)

{
GstPad *pad;
GstMyFilterInputContext *context;

context = g_new0 (GstMyFilterInputContext, 1);
pad = gst_pad_new_from_template (templ, name);
gst_element_set_private_data (pad, context);

/* normally, you would set _link () and _getcaps () functions here */

gst_element_add_pad (element, pad);

return pad;
}

The_loop () function is the same as the one given previously inMulti-Input Elements.

58

Chapter 15. Clocking

When playing complex media, each sound and video sample mustbe played in a specific order at a
specific time. For this purpose, GStreamer provides a syncrhonization mechanism.

15.1. Types of time

There are two kinds of time in GStreamer.Clock time is an absolute time. By contrast,element time is
the relative time, usually to the start of the current media stream. The element time represents the time
that should have a media sample that is being processed by theelement at this time. The element time is
calculated by adding an offset to the clock time.

15.2. Clocks

GStreamer can use different clocks. Though the system time can be used as a clock, soundcards and
other devices provides a better time source. For this reasonsome elements provide a clock. The method
get_clock is implemented in elements that provide one.

As clocks return an absolute measure of time, they are not usually used directly. Instead, a reference to a
clock is stored in any element that needs it, and it is used internaly by GStreamer to calculate the element
time.

15.3. Flow of data between elements and time

Now we will see how time information travels the pipeline in different states.

The pipeline starts playing. The source element typically knows the time of each sample.1 First, the
source element sends a discontinous event. This event carries information about the current relative time
of the next sample. This relative time is arbitrary, but it must be consistent with the timestamp that will
be placed in buffers. It is expected to be the relative time tothe start of the media stream, or whatever
makes sense in the case of each media. When receiving it, the other elements adjust their offset of the
element time so that this time matches the time written in theevent.

Then the source element sends media samples in buffers. Thiselement places a timestamp in each buffer
saying when the sample should be played. When the buffer reachs the sink pad of the last element, this
element compares the current element time with the timestamp of the buffer. If the timestamp is higher or
equal it plays the buffer, otherwise it waits until the time to place the buffer arrives with
gst_element_wait().

59

Chapter 15. Clocking

If the stream is seeked, the next samples sent will have a timestamp that is not adjusted with the element
time. Therefore, the source element must send a discontinous event.

15.4. Obligations of each element.

Let us clarify the contract between GStreamer and each element in the pipeline.

15.4.1. Source elements

Source elements (or parsers of formats that provide notion of time, such as MPEG, as explained above)
must place a timestamp in each buffer that they deliver. The origin of the time used is arbitrary, but it
must match the time delivered in the discontinous event (seebelow). However, it is expected that the
origin is the origin of the media stream.

In order to initialize the element time of the rest of the pipeline, a source element must send a
discontinous event before starting to play. In addition, after seeking, a discontinious event must be sent,
because the timestamp of the next element does not match the element time of the rest of the pipeline.

15.4.2. Sink elements

If the element is intended to emit samples at a specific time (real time playing), the element should
require a clock, and thus implement the methodset_clock.

In addition, before playing each sample, if the current element time is less than the timestamp in the
sample, it wait until the current time arrives should callgst_element_wait() 2 See an example in
Data processing, events, synchronization and clocks

Notes
1. Sometimes it is a parser element the one that knows the time, for instance if a pipeline contains a

filesrc element connected to a MPEG decoder element, the former is the one that knows the time of
each sample, because the knowledge of when to play each sample is embedded in the MPEG format.
In this case this element will be regarded as the source element for this discussion.

2. With some schedulers,gst_element_wait() blocks the pipeline. For instance, if there is one
audio sink element and one video sink element, while the audio element is waiting for a sample the
video element cannot play other sample. This behaviour is under discussion, and might change in a
future release.

60

Chapter 16. Supporting Dynamic Parameters

Sometimes object properties are not powerful enough to control the parameters that affect the behaviour
of your element. When this is the case you can expose these parameters as Dynamic Parameters which
can be manipulated by any Dynamic Parameters aware application.

Throughout this section, the termdparamswill be used as an abbreviation for "Dynamic Parameters".

16.1. Comparing Dynamic Parameters with GObject
Properties

Your first exposure to dparams may be to convert an existing element from using object properties to
using dparams. The following table gives an overview of the difference between these approaches. The
significance of these differences should become apparent later on.

Object Properties Dynamic Parameters

Parameter definition Class level at compile time Any level at run time

Getting and setting Implemented by element
subclass as functions

Handled entirely by dparams
subsystem

Extra objects required None - all functionality is
derived from base GObject

Element needs to create and store
aGstDParamManager at object
creation

Frequency and resolution of
updates

Object properties will only be
updated between calls to _get,
_chain or _loop

dparams can be updated at any
rate independent of calls to _get,
_chain or _loop up to
sample-level accuracy

16.2. Getting Started

The dparams subsystem is contained within thegstcontrol library. You need to include the header in
your element’s source file:

#include <gst/control/control.h>

Even though thegstcontrol library may be linked into the host application, you should make sure it is
loaded in yourplugin_init function:

static gboolean
plugin_init (GModule *module, GstPlugin *plugin)

61

Chapter 16. Supporting Dynamic Parameters

{
...

/* load dparam support library */
if (!gst_library_load ("gstcontrol"))
{
gst_info ("example: could not load support library: ’gstcontrol’\n");
return FALSE;

}

...
}

You need to store an instance ofGstDParamManager in your element’s struct:

struct _GstExample {
GstElement element;
...

GstDParamManager *dpman;

...
};

TheGstDParamManager can be initialised in your element’s init function:

static void
gst_example_init (GstExample *example)
{

...

example->dpman = gst_dpman_new ("example_dpman", GST_ELEMENT(example));

...
}

16.3. Defining Parameter Specifications

You can define the dparams you need anywhere within your element but will usually need to do so in
only a couple of places:

• In the elementinit function, just after the call togst_dpman_new

• Whenever a new pad is created so that parameters can affect data going into or out of a specific pad. An
example of this would be a mixer element where a separate volume parameter is needed on every pad.

62

Chapter 16. Supporting Dynamic Parameters

There are three different ways the dparams subsystem can pass parameters into your element. Which one
you use will depend on how that parameter is used within your element. Each of these methods has its
own function to define a required dparam:

• gst_dpman_add_required_dparam_direct

• gst_dpman_add_required_dparam_callback

• gst_dpman_add_required_dparam_array

These functions will return TRUE if the required dparam was added successfully.

The following function will be used as an example.

gboolean
gst_dpman_add_required_dparam_direct (GstDParamManager *dpman,

GParamSpec *param_spec,
gboolean is_log,
gboolean is_rate,
gpointer update_data)

The common parameters to these functions are:

• GstDParamManager *dpman the element’s dparam manager

• GParamSpec *param_spec the param spec which defines the required dparam

• gboolean is_log whether this dparam value should be interpreted on a log scale (such as a
frequency or a decibel value)

• gboolean is_rate whether this dparam value is a proportion of the sample rate.For example with a
sample rate of 44100, 0.5 would be 22050 Hz and 0.25 would be 11025 Hz.

16.3.1. Direct Method

This method is the simplest and has the lowest overhead for parameters which change less frequently
than the sample rate. First you need somewhere to store the parameter - this will usually be in your
element’s struct.

struct _GstExample {
GstElement element;
...

GstDParamManager *dpman;
gfloat volume;
...

63

Chapter 16. Supporting Dynamic Parameters

};

Then to define the required dparam just callgst_dpman_add_required_dparam_direct and pass in
the location of the parameter to change. In this case the location is&(example->volume).

gst_dpman_add_required_dparam_direct (
example->dpman,
g_param_spec_float("volume","Volume","Volume of the audio",

0.0, 1.0, 0.8, G_PARAM_READWRITE),
FALSE,
FALSE,
&(example->volume)

);

You can now useexample->volume anywhere in your element knowing that it will always containthe
correct value to use.

16.3.2. Callback Method

This should be used if the you have other values to calculate whenever a parameter changes. If you used
the direct method you wouldn’t know if a parameter had changed so you would have to recalculate the
other values every time you needed them. By using the callback method, other values only have to be
recalculated when the dparam value actually changes.

The following code illustrates an instance where you might want to use the callback method. If you had a
volume dparam which was represented by a gfloat number, your element may only deal with integer
arithmetic. The callback could be used to calculate the integer scaler when the volume changes. First you
will need somewhere to store these values.

struct _GstExample {
GstElement element;
...

GstDParamManager *dpman;
gfloat volume_f;
gint volume_i;
...

};

When the required dparam is defined, the callback functiongst_example_update_volume and some
user data (which in this case is our element instance) is passed in to the call to
gst_dpman_add_required_dparam_callback.

gst_dpman_add_required_dparam_callback (

64

Chapter 16. Supporting Dynamic Parameters

example->dpman,
g_param_spec_float("volume","Volume","Volume of the audio",

0.0, 1.0, 0.8, G_PARAM_READWRITE),
FALSE,
FALSE,
gst_example_update_volume,
example

);

The callback function needs to conform to this signature

typedef void (*GstDPMUpdateFunction) (GValue *value, gpointer data);

In our example the callback function looks like this

static void
gst_example_update_volume(GValue *value, gpointer data)
{

GstExample *example = (GstExample*)data;
g_return_if_fail(GST_IS_EXAMPLE(example));

example->volume_f = g_value_get_float(value);
example->volume_i = example->volume_f * 8192;

}

Now example->volume_i can be used elsewhere and it will always contain the correct value.

16.3.3. Array Method

This method is quite different from the other two. It could bethought of as a specialised method which
should only be used if you need the advantages that it provides. Instead of giving the element a single
value it provides an array of values where each item in the array corresponds to a sample of audio in your
buffer. There are a couple of reasons why this might be useful.

• Certain optimisations may be possible since you can iterateover your dparams array and your buffer
data together.

• Some dparams may be able to interpolate changing values at the sample rate. This would allow the
array to contain very smoothly changing values which may be required for the stability and quality of
some DSP algorithms.

The array method is currently the least mature of the three methods and is not yet ready to be used in
elements, but plugin writers should be aware of its existence for the future.

65

Chapter 16. Supporting Dynamic Parameters

16.4. The Data Processing Loop

This is the most critical aspect of the dparams subsystem as it relates to elements. In a traditional audio
processing loop, afor loop will usually iterate over each sample in the buffer, processing one sample at a
time until the buffer is finished. A simplified loop with no error checking might look something like this.

static void
example_chain (GstPad *pad, GstBuffer *buf)
{

...
gfloat *float_data;
int j;
GstExample *example = GST_EXAMPLE(GST_OBJECT_PARENT (pad));
int num_samples = GST_BUFFER_SIZE(buf)/sizeof(gfloat);
float_data = (gfloat *)GST_BUFFER_DATA(buf);
...
for (j = 0; j < num_samples; j++) {

float_data[j] *= example->volume;
}
...

}

To make this dparams aware, a couple of changes are needed.

static void
example_chain (GstPad *pad, GstBuffer *buf)
{

...
int j = 0;
GstExample *example = GST_EXAMPLE(GST_OBJECT_PARENT (pad));
int num_samples = GST_BUFFER_SIZE(buf)/sizeof(gfloat);
gfloat *float_data = (gfloat *)GST_BUFFER_DATA(buf);
int frame_countdown = GST_DPMAN_PREPROCESS(example->dpman, num_samples, GST_BUFFER_TIMESTAMP(buf));
...
while (GST_DPMAN_PROCESS_COUNTDOWN(example->dpman, frame_countdown, j)) {

float_data[j++] *= example->volume;
}
...

}

The biggest changes here are 2 new macros,GST_DPMAN_PREPROCESS and
GST_DPMAN_PROCESS_COUNTDOWN. You will also notice that the for loop has become a while loop.
GST_DPMAN_PROCESS_COUNTDOWN is called as the condition for the while loop so that any required
dparams can be updated in the middle of a buffer if required. This is because one of the required
behaviours of dparams is that they can besample accurate. This means that parameters change at the
exact timestamp that they are supposed to - not after the buffer has finished being processed.

66

Chapter 16. Supporting Dynamic Parameters

It may be alarming to see a macro as the condition for a while loop, but it is actually very efficient. The
macro expands to the following.

#define GST_DPMAN_PROCESS_COUNTDOWN(dpman, frame_countdown, frame_count) \
(frame_countdown-- || \
(frame_countdown = GST_DPMAN_PROCESS(dpman, frame_count)))

So as long asframe_countdown is greater than 0,GST_DPMAN_PROCESS will not be called at all. Also
in many cases,GST_DPMAN_PROCESS will do nothing and simply return 0, meaning that there is no more
data in the buffer to process.

The macroGST_DPMAN_PREPROCESS will do the following:

• Update any dparams which are due to be updated.

• Calculate how many samples should be processed before the next required update

• Return the number of samples until next update, or the numberof samples in the buffer - whichever is
less.

In factGST_DPMAN_PROCESS may do the same things asGST_DPMAN_PREPROCESS depending on the
mode that the dparam manager is running in (see below).

16.4.1. DParam Manager Modes

A brief explanation of dparam manager modes might be useful here even though it doesn’t generally
affect the way your element is written. There are different ways media applications will be used which
require that an element’s parameters be updated in differently. These include:

• Timelined- all parameter changes are known in advance before the pipeline is run.

• Realtime low-latency- Nothing is known ahead of time about when a parameter might change.
Changes need to be propagated to the element as soon as possible.

When a dparam-aware application gets the dparam manager foran element, the first thing it will do is set
the dparam manager mode. Current modes are"synchronous" and"asynchronous".

If you are in a realtime low-latency situation then the"synchronous" mode is appropriate. During
GST_DPMAN_PREPROCESS this mode will poll all dparams for required updates and propagate them.
GST_DPMAN_PROCESS will do nothing in this mode. To then achieve the desired latency, the size of the
buffers needs to be reduced so that the dparams will be polledfor updates at the desired frequency.

In a timelined situation, the"asynchronous" mode will be required. This mode hasn’t actually been
implemented yet but will be described anyway. TheGST_DPMAN_PREPROCESS call will precalculate
when and how often each dparam needs to update for the duration of the current buffer. From then on
GST_DPMAN_PROCESS will propagate the calculated updates each time it is calleduntil end of the buffer.
If the application is rendering to disk in non-realtime, therender could be sped up by increasing the

67

Chapter 16. Supporting Dynamic Parameters

buffer size. In the"asynchronous" mode this could be done without affecting the sample accuracy of
the parameter updates

16.4.2. Dynamic Parameters for Video

All of the explanation so far has presumed that the buffer contains audio data with many samples. Video
should be regarded differently since a video buffer often contains only 1 frame. In this case some of the
complexity of dparams isn’t required but the other benefits still make it useful for video parameters. If a
buffer only contains one frame of video, only a single call toGST_DPMAN_PREPROCESS should be
required. For more than one frame per buffer, treat it the same as the audio case.

68

Chapter 17. MIDI

WRITEME

69

Chapter 18. Interfaces

Previously, in the chapterAdding Arguments, we have introduced the concept of GObject properties of
controlling an element’s behaviour. This is very powerful,but it has two big disadvantages: first of all, it
is too generic, and second, it isn’t dynamic.

The first disadvantage is related to the customizability of the end-user interface that will be built to
control the element. Some properties are more important than others. Some integer properties are better
shown in a spin-button widget, whereas others would be better represented by a slider widget. Such
things are not possible because the UI has no actual meaning in the application. A UI widget that
represents a bitrate property is the same as a UI widget that represents the size of a video, as long as both
are of the sameGParamSpec type. Another problem, is that things like parameter grouping, function
grouping, or parameter coupling are not really possible.

The second problem with parameters are that they are not dynamic. In many cases, the allowed values for
a property are not fixed, but depend on things that can only be detected at runtime. The names of inputs
for a TV card in a video4linux source element, for example, can only be retrieved from the kernel driver
when we’ve opened the device; this only happens when the element goes into the READY state. This
means that we cannot create an enum property type to show thisto the user.

The solution to those problems is to create very specializedtypes of controls for certain often-used
controls. We use the concept of interfaces to achieve this. The basis of this all is the glib
GTypeInterface type. For each case where we think it’s useful, we’ve createdinterfaces which can be
implemented by elements at their own will. We’ve also created a small extension toGTypeInterface
(which is static itself, too) which allows us to query for interface availability based on runtime properties.
This extension is calledGstImplementsInterface
(../../gstreamer/html/GstImplementsInterface.html).

One important note: interfaces donot replace properties. Rather, interfaces should be builtnext to
properties. There are two important reasons for this. Firstof all, properties can be saved in XML files.
Second, properties can be specified on the commandline (gst-launch).

18.1. How to Implement Interfaces

Implementing interfaces is intiated in the_get_type () of your element. You can register one or more
interfaces after having registered the type itself. Some interfaces have dependencies on other interfaces
or can only be registered by certain types of elements. You will be notified of doing that wrongly when
using the element: it will quit with failed assertions, which will explain what went wrong. In the case of
GStreamer, the only dependency thatsomeinterfaces have isGstImplementsInterface
(../../gstreamer/html/GstImplementsInterface.html).Per interface, we will indicate clearly when it
depends on this extension. If it does, you need to register support for that interface before registering
support for the interface that you’re wanting to support. The example below explains how to add support

70

Chapter 18. Interfaces

for a simple interface with no further dependencies. For a small explanation on
GstImplementsInterface (../../gstreamer/html/GstImplementsInterface.html),see the next section
about the mixer interface:Mixer Interface.

static void gst_my_filter_some_interface_init (GstSomeInterface *iface);

GType
gst_my_filter_get_type (void)
{

static GType my_filter_type = 0;

if (!my_filter_type) {
static const GTypeInfo my_filter_info = {
sizeof (GstMyFilterClass),
(GBaseInitFunc) gst_my_filter_base_init,
NULL,
(GClassInitFunc) gst_my_filter_class_init,
NULL,
NULL,
sizeof (GstMyFilter),
0,
(GInstanceInitFunc) gst_my_filter_init

};
static const GInterfaceInfo some_interface_info = {
(GInterfaceInitFunc) gst_my_filter_some_interface_init,
NULL,
NULL

};

my_filter_type =
g_type_register_static (GST_TYPE_MY_FILTER,

"GstMyFilter",
&my_filter_info, 0);
g_type_add_interface_static (my_filter_type,
GST_TYPE_SOME_INTERFACE,

&some_interface_info);
}

return my_filter_type;
}

static void
gst_my_filter_some_interface_init (GstSomeInterface *iface)
{

/* here, you would set virtual function pointers in the interface */
}

71

Chapter 18. Interfaces

18.2. Mixer Interface

The goal of the mixer interface is to provide a simple yet powerful API to applications for audio
hardware mixer/volume control. Most soundcards have hardware mixers, where volume can be changed,
they can be muted, inputs can be modified to mix their content into what will be read from the device by
applications (in our case: audio source plugins). The mixerinterface is the way to control those. The
mixer interface can also be used for volume control in software (e.g. the “volume” element). The end
goal of this interface is to allow development of hardware volume control applications and for the control
of audio volume and input/output settings.

The mixer interface requires theGstImplementsInterface
(../../gstreamer/html/GstImplementsInterface.html) interface to be implemented by the element. The
example below will feature both, so it serves as an example for the GstImplementsInterface

(../../gstreamer/html/GstImplementsInterface.html),too. In this interface, it is required to set a function
pointer for the supported () function. If you don’t, this function will always return FALSE (default
implementation) and the mixer interface implementation will not work. For the mixer interface, the only
required function islist_tracks (). All other function pointers in the mixer interface are optional,
although it is strongly recommended to set function pointers for at least theget_volume () and
set_volume () functions. The API reference for this interface documents the goal of each function, so
we will limit ourselves to the implementation here.

The following example shows a mixer implementation for a software N-to-1 element. It does not show
the actual process of stream mixing, that is far too complicated for this guide.

#include <gst/mixer/mixer.h>

typedef struct _GstMyFilter {
[..]

gint volume;
GList *tracks;

} GstMyFilter;

static void gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface);
static void gst_my_filter_mixer_interface_init (GstMixerClass *iface);

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo implements_interface_info = {
(GInterfaceInitFunc) gst_my_filter_implements_interface_init,
NULL,
NULL

};
static const GInterfaceInfo mixer_interface_info = {
(GInterfaceInitFunc) gst_my_filter_mixer_interface_init,
NULL,
NULL

};

72

Chapter 18. Interfaces

[..]
g_type_add_interface_static (my_filter_type,
GST_TYPE_IMPLEMENTS_INTERFACE,
&implements_interface_info);
g_type_add_interface_static (my_filter_type,
GST_TYPE_MIXER,
&mixer_interface_info);

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{

GstMixerTrack *track = NULL;
[..]

filter->volume = 100;
filter->tracks = NULL;
track = g_object_new (GST_TYPE_MIXER_TRACK, NULL);
track->label = g_strdup ("MyTrack");
track->num_channels = 1;
track->min_volume = 0;
track->max_volume = 100;
track->flags = GST_MIXER_TRACK_SOFTWARE;
filter->tracks = g_list_append (filter->tracks, track);

}

static gboolean
gst_my_filter_interface_supported (GstImplementsInterface *iface,

GType iface_type)
{

g_return_val_if_fail (iface_type == GST_TYPE_MIXER, FALSE);

/* for the sake of this example, we’ll always support it. However, normally,

* you would check whether the device you’ve opened supports mixers. */
return TRUE;

}

static void
gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface)
{

iface->supported = gst_my_filter_interface_supported;
}

/*
* This function returns the list of support tracks (inputs, outputs)

* on this element instance. Elements usually build this list during

* _init () or when going from NULL to READY.

*/

static const GList *
gst_my_filter_mixer_list_tracks (GstMixer *mixer)
{

GstMyFilter *filter = GST_MY_FILTER (mixer);

73

Chapter 18. Interfaces

return filter->tracks;
}

/*
* Set volume. volumes is an array of size track->num_channels, and

* each value in the array gives the wanted volume for one channel

* on the track.

*/

static void
gst_my_filter_mixer_set_volume (GstMixer *mixer,

GstMixerTrack *track,
gint *volumes)

{
GstMyFilter *filter = GST_MY_FILTER (mixer);

filter->volume = volumes[0];

g_print ("Volume set to %d\n", filter->volume);
}

static void
gst_my_filter_mixer_get_volume (GstMixer *mixer,

GstMixerTrack *track,
gint *volumes)

{
GstMyFilter *filter = GST_MY_FILTER (mixer);

volumes[0] = filter->volume;
}

static void
gst_my_filter_mixer_interface_init (GstMixerClass *iface)
{

/* the mixer interface requires a definition of the mixer type:

* hardware or software? */
GST_MIXER_TYPE (iface) = GST_MIXER_SOFTWARE;

/* virtual function pointers */
iface->list_tracks = gst_my_filter_mixer_list_tracks;
iface->set_volume = gst_my_filter_mixer_set_volume;
iface->get_volume = gst_my_filter_mixer_get_volume;

}

The mixer interface is very audio-centric. However, with the software flag set, the mixer can be used to
mix any kind of stream in a N-to-1 element to join (not aggregate!) streams together into one output
stream. Conceptually, that’s called mixing too. You can always use the element factory’s “category” to
indicate type of your element. In a software element that mixes random streams, you would not be
required to implement the_get_volume () or _set_volume () functions. Rather, you would only

74

Chapter 18. Interfaces

implement the_set_record () to enable or disable tracks in the output stream. to make surethat a
mixer-implementing element is of a certain type, check the element factory’s category.

18.3. Tuner Interface

As opposed to the mixer interface, that’s used to join together N streams into one output stream by
mixing all streams together, the tuner interface is used in N-to-1 elements too, but instead of mixing the
input streams, it will select one stream and push the data of that stream to the output stream. It will
discard the data of all other streams. There is a flag that indicates whether this is a software-tuner (in
which case it is a pure software implementation, with N sink pads and 1 source pad) or a hardware-tuner,
in which case it only has one source pad, and the whole stream selection process is done in hardware.
The software case can be used in elements such asswitch. The hardware case can be used in elements
with channel selection, such as video source elements (v4lsrc, v4l2src, etc.). If you need a specific
element type, use the element factory’s “category” to make sure that the element is of the type that you
need. Note that the interface itself is highly analog-video-centric.

This interface requires theGstImplemensInterface
(../../gstreamer/html/GstImplementsInterface.html) interface to work correctly.

The following example shows how to implement the tuner interface in an element. It does not show the
actual process of stream selection, that is irrelevant for this section.

#include <gst/tuner/tuner.h>

typedef struct _GstMyFilter {
[..]

gint active_input;
GList *channels;

} GstMyFilter;

static void gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface);
static void gst_my_filter_tuner_interface_init (GstTunerClass *iface);

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo implements_interface_info = {
(GInterfaceInitFunc) gst_my_filter_implements_interface_init,
NULL,
NULL

};
static const GInterfaceInfo tuner_interface_info = {
(GInterfaceInitFunc) gst_my_filter_tuner_interface_init,
NULL,
NULL

};

75

Chapter 18. Interfaces

[..]
g_type_add_interface_static (my_filter_type,
GST_TYPE_IMPLEMENTS_INTERFACE,
&implements_interface_info);
g_type_add_interface_static (my_filter_type,
GST_TYPE_TUNER,
&tunerr_interface_info);

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{

GstTunerChannel *channel = NULL;
[..]

filter->active_input = 0;
filter->channels = NULL;
channel = g_object_new (GST_TYPE_TUNER_CHANNEL, NULL);
channel->label = g_strdup ("MyChannel");
channel->flags = GST_TUNER_CHANNEL_INPUT;
filter->channels = g_list_append (filter->channels, channel);

}

static gboolean
gst_my_filter_interface_supported (GstImplementsInterface *iface,

GType iface_type)
{

g_return_val_if_fail (iface_type == GST_TYPE_TUNER, FALSE);

/* for the sake of this example, we’ll always support it. However, normally,

* you would check whether the device you’ve opened supports tuning. */
return TRUE;

}

static void
gst_my_filter_implements_interface_init (GstImplementsInterfaceClass *iface)
{

iface->supported = gst_my_filter_interface_supported;
}

static const GList *
gst_my_filter_tuner_list_channels (GstTuner *tuner)
{

GstMyFilter *filter = GST_MY_FILTER (tuner);

return filter->channels;
}

static GstTunerChannel *
gst_my_filter_tuner_get_channel (GstTuner *tuner)
{

GstMyFilter *filter = GST_MY_FILTER (tuner);

76

Chapter 18. Interfaces

return g_list_nth_data (filter->channels,
filter->active_input);

}

static void
gst_my_filter_tuner_set_channel (GstTuner *tuner,

GstTunerChannel *channel)
{

GstMyFilter *filter = GST_MY_FILTER (tuner);

filter->active_input = g_list_index (filter->channels, channel);
g_assert (filter->active_input >= 0);

}

static void
gst_my_filter_tuner_interface_init (GstTunerClass *iface)
{

iface->list_channels = gst_my_filter_tuner_list_channels;
iface->get_channel = gst_my_filter_tuner_get_channel;
iface->set_channel = gst_my_filter_tuner_set_channel;

}

As said, the tuner interface is very analog video-centric. It features functions for selecting an input or
output, and on inputs, it features selection of a tuning frequency if the channel supports frequency-tuning
on that input. Likewise, it allows signal-strength-acquiring if the input supports that. Frequency tuning
can be used for radio or cable-TV tuning. Signal-strength isan indication of the signal and can be used
for visual feedback to the user or for autodetection. Next tothat, it also features norm selection, which is
only useful for analog video elements.

18.4. Color Balance Interface

WRITEME

18.5. Property Probe Interface

Property probing is a generic solution to the problem that properties’ value lists in an enumeration are
static. We’ve shown enumerations inAdding Arguments. Property probing tries to accomplish a goal
similar to enumeration lists: to have a limited, explicit list of allowed values for a property. There are two
differences between enumeration lists and probing. Firstly, enumerations only allow strings as values;
property probing works for any value type. Secondly, the contents of a probed list of allowed values may
change during the life of an element. The contents of an enumeration list are static. Currently, property
probing is being used for detection of devices (e.g. for OSS elements, Video4linux elements, etc.). It
could - in theory - be used for any property, though.

77

Chapter 18. Interfaces

Property probing stores the list of allowed (or recommended) values in aGValueArray and returns that
to the user. NULL is a valid return value, too. The process of property probing is separated over two
virtual functions: one for probing the property to create aGValueArray, and one to retrieve the current
GValueArray. Those two are separated because probing might take a long time (several seconds). Also,
this simpliies interface implementation in elements. For the application, there are functions that wrap
those two. For more information on this, have a look at the APIreference for theGstPropertyProbe
interface.

Below is a example of property probing for the audio filter element; it will probe for allowed values for
the “silent” property. Indeed, this value is a gboolean so itdoesn’t make much sense. Then again, it’s
only an example.

#include <gst/propertyprobe/propertyprobe.h>

static void gst_my_filter_probe_interface_init (GstPropertyProbeInterface *iface);

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo probe_interface_info = {
(GInterfaceInitFunc) gst_my_filter_probe_interface_init,
NULL,
NULL

};
[..]

g_type_add_interface_static (my_filter_type,
GST_TYPE_PROPERTY_PROBE,
&probe_interface_info);

[..]
}

static const GList *
gst_my_filter_probe_get_properties (GstPropertyProbe *probe)
{

GObjectClass *klass = G_OBJECT_GET_CLASS (probe);
static GList *props = NULL;

if (!props) {
GParamSpec *pspec;

pspec = g_object_class_find_property (klass, "silent");
props = g_list_append (props, pspec);

}

return props;
}

static gboolean
gst_my_filter_probe_needs_probe (GstPropertyProbe *probe,

guint prop_id,

78

Chapter 18. Interfaces

const GParamSpec *pspec)
{

gboolean res = FALSE;

switch (prop_id) {
case ARG_SILENT:
res = FALSE;
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (probe, prop_id, pspec);
break;

}

return res;
}

static void
gst_my_filter_probe_probe_property (GstPropertyProbe *probe,

guint prop_id,
const GParamSpec *pspec)

{
switch (prop_id) {

case ARG_SILENT:
/* don’t need to do much here... */
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (probe, prop_id, pspec);
break;

}
}

static GValueArray *
gst_my_filter_get_silent_values (GstMyFilter *filter)
{

GValueArray *array = g_value_array_new (2);
GValue value = { 0 };

g_value_init (&value, G_TYPE_BOOLEAN);

/* add TRUE */
g_value_set_boolean (&value, TRUE);
g_value_array_append (array, &value);

/* add FALSE */
g_value_set_boolean (&value, FALSE);
g_value_array_append (array, &value);

g_value_unset (&value);

return array;
}

static GValueArray *

79

Chapter 18. Interfaces

gst_my_filter_probe_get_values (GstPropertyProbe *probe,
guint prop_id,
const GParamSpec *pspec)

{
GstMyFilter *filter = GST_MY_FILTER (probe);
GValueArray *array = NULL;

switch (prop_id) {
case ARG_SILENT:
array = gst_my_filter_get_silent_values (filter);
break;

default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (probe, prop_id, pspec);
break;

}

return array;
}

static void
gst_my_filter_probe_interface_init (GstPropertyProbeInterface *iface)
{

iface->get_properties = gst_my_filter_probe_get_properties;
iface->needs_probe = gst_my_filter_probe_needs_probe;
iface->probe_property = gst_my_filter_probe_probe_property;
iface->get_values = gst_my_filter_probe_get_values;

}

You don’t need to support any functions for getting or setting values. All that is handled via the standard
GObject _set_property () and_get_property () functions.

18.6. X Overlay Interface

An X Overlay is basically a video output in a XFree86 drawable. Elements implementing this interface
will draw video in a X11 window. Through this interface, applications will be proposed 2 different
modes to work with a plugin implemeting it. The first mode is a passive mode where the plugin owns,
creates and destroys the X11 window. The second mode is an active mode where the application handles
the X11 window creation and then tell the plugin where it should output video. Let’s get a bit deeper in
those modes...

A plugin drawing video output in a X11 window will need to havethat window at one stage or another.
Passive mode simply means that no window has been given to theplugin before that stage, so the plugin
created the window by itself. In that case the plugin is responsible of destroying that window when it’s
not needed anymore and it has to tell the applications that a window has been created so that the
application can use it. This is done using thehave_xwindow_id signal that can be emitted from the
plugin with thegst_x_overlay_got_xwindow_idmethod.

80

Chapter 18. Interfaces

As you probably guessed already active mode just means sending a X11 window to the plugin so that
video output goes there. This is done using thegst_x_overlay_set_xwindow_idmethod.

It is possible to switch from one mode to another at any moment, so the plugin implementing this
interface has to handle all cases. There are only 2 methods that plugins writers have to implement and
they most probably look like that :

static void
gst_my_filter_set_xwindow_id (GstXOverlay *overlay, XID xwindow_id)
{

GstMyFilter *my_filter = GST_MY_FILTER (overlay);

if (my_filter->window)
gst_my_filter_destroy_window (my_filter->window);

my_filter->window = xwindow_id;
}

static void
gst_my_filter_get_desired_size (GstXOverlay *overlay,

guint *width, guint *height)
{

GstMyFilter *my_filter = GST_MY_FILTER (overlay);

*width = my_filter->width;

*height = my_filter->height;
}

static void
gst_my_filter_xoverlay_init (GstXOverlayClass *iface)
{

iface->set_xwindow_id = gst_my_filter_set_xwindow_id;
iface->get_desired_size = gst_my_filter_get_desired_size;

}

You will also need to use the interface methods to fire signalswhen needed such as in the pad link
function where you will know the video geometry and maybe create the window.

static MyFilterWindow *
gst_my_filter_window_create (GstMyFilter *my_filter, gint width, gint height)
{

MyFilterWindow *window = g_new (MyFilterWindow, 1);
...
gst_x_overlay_got_xwindow_id (GST_X_OVERLAY (my_filter), window->win);

}

static GstPadLinkReturn
gst_my_filter_sink_link (GstPad *pad, const GstCaps *caps)
{

GstMyFilter *my_filter = GST_MY_FILTER (overlay);

81

Chapter 18. Interfaces

gint width, height;
gboolean ret;
...
ret = gst_structure_get_int (structure, "width", &width);
ret &= gst_structure_get_int (structure, "height", &height);
if (!ret) return GST_PAD_LINK_REFUSED;

if (!my_filter->window)
my_filter->window = gst_my_filter_create_window (my_filter, width, height);

gst_x_overlay_got_desired_size (GST_X_OVERLAY (my_filter),
width, height);

...
}

18.7. Navigation Interface

WRITEME

82

Chapter 19. Tagging (Metadata and Streaminfo)

Tags are pieces of information stored in a stream that are notthe content itself, but they ratherdescribe
the content. Most media container formats support tagging in one way or another. Ogg uses
VorbisComment for this, MP3 uses ID3, AVI and WAV use RIFF’s INFO list chunk, etc. GStreamer
provides a general way for elements to read tags from the stream and expose this to the user. The tags (at
least the metadata) will be part of the stream inside the pipeline. The consequence of this is that
transcoding of files from one format to another will automatically preserve tags, as long as the input and
output format elements both support tagging.

Tags are separated in two categories in GStreamer, even though applications won’t notice anything of
this. The first are calledmetadata, the second are calledstreaminfo. Metadata are tags that describe the
non-technical parts of stream content. They can be changed without needing to re-encode the stream
completely. Examples are “author”, “title” or “album”. Thecontainer format might still need to be
re-written for the tags to fit in, though. Streaminfo, on the other hand, are tags that describe the stream
contents technically. To change them, the stream needs to bere-encoded. Examples are “codec” or
“bitrate”. Note that some container formats (like ID3) store various streaminfo tags as metadata in the
file container, which means that they can be changed so that they don’t match the content in the file
anymore. Still, they are called metadata becausetechnically, they can be changed without re-encoding
the whole stream, even though that makes them invalid. Fileswith such metadata tags will have the same
tag twice: once as metadata, once as streaminfo.

A tag reading element is calledTagGetter in GStreamer. A tag writer is calledTagSetter
(../../gstreamer/html/GstTagSetter.html). An element supporting both can be used in a tag editor for quick
tag changing.

19.1. Reading Tags from Streams

The basic object for tags is aGstTagList (../../gstreamer/html/gstreamer-GstTagList.html). An
element that is reading tags from a stream should create an empty taglist and fill this with individual tags.
Empty tag lists can be created withgst_tag_list_new (). Then, the element can fill the list using
gst_tag_list_add_values () . Note that an element probably reads metadata as strings, but values
might not necessarily be strings. Be sure to usegst_value_transform () to make sure that your data
is of the right type. After data reading, the application canbe notified of the new taglist by calling
gst_element_found_tags (). The tags should also be part of the datastream, so they should be
pushed over all source pads. The functiongst_event_new_tag () creates an event from a taglist. This
can be pushed over source pads usinggst_pad_push (). Simple elements with only one source pad
can combine all these steps all-in-one by using the functiongst_element_found_tags_for_pad ().

The following example program will parse a file and parse the data as metadata/tags rather than as actual
content-data. It will parse each line as “name:value”, where name is the type of metadata (title, author,
...) and value is the metadata value. The_getline () is the same as the one given inSometimes pads.

83

Chapter 19. Tagging (Metadata and Streaminfo)

static void
gst_my_filter_loopfunc (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);
GstBuffer *buf;
GstTagList *taglist = gst_tag_list_new ();

/* get each line and parse as metadata */
while ((buf = gst_my_filter_getline (filter))) {

gchar *line = GST_BUFFER_DATA (buf), *colon_pos, *type = NULL;a

/* get the position of the ’:’ and go beyond it */
if (!(colon_pos = strchr (line, ’:’)))
goto next:

/* get the string before that as type of metadata */
type = g_strndup (line, colon_pos - line);

/* content is one character beyond the ’:’ */
colon_pos = &colon_pos[1];
if (*colon_pos == ’\0’)
goto next;

/* get the metadata category, it’s value type, store it in that

* type and add it to the taglist. */
if (gst_tag_exists (type)) {
GValue from = { 0 }, to = { 0 };
GType to_type;

to_type = gst_tag_get_type (type);
g_value_init (&from, G_TYPE_STRING);
g_value_set_string (&from, colon_pos);
g_value_init (&to, to_type);
g_value_transform (&from, &to);
g_value_unset (&from);
gst_tag_list_add_values (taglist, GST_TAG_MERGE_APPEND,

type, &to, NULL);
g_value_unset (&to);

}

next:
g_free (type);
gst_buffer_unref (buf);

}

/* signal metadata */
gst_element_found_tags_for_pad (element, filter->srcpad, 0, taglist);
gst_tag_list_free (taglist);

/* send EOS */
gst_pad_send_event (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EOS)));
gst_element_set_eos (element);

84

Chapter 19. Tagging (Metadata and Streaminfo)

}

We currently assume the core to alreadyknowthe mimetype (gst_tag_exists ()). You can add new
tags to the list of known tags usinggst_tag_register (). If you think the tag will be useful in more
cases than just your own element, it might be a good idea to addit to gsttag.c instead. That’s up to you
to decide. If you want to do it in your own element, it’s easiest to register the tag in one of your class init
functions, preferrably_class_init ().

static void
gst_my_filter_class_init (GstMyFilterClass *klass)
{
[..]

gst_tag_register ("my_tag_name", GST_TAG_FLAG_META,
G_TYPE_STRING,
_("my own tag"),
_("a tag that is specific to my own element"),
NULL);

[..]
}

19.2. Writing Tags to Streams

Tag writers are the opposite of tag readers. Tag writers onlytake metadata tags into account, since that’s
the only type of tags that have to be written into a stream. Tagwriters can receive tags in three ways:
internal, application and pipeline. Internal tags are tagsread by the element itself, which means that the
tag writer is - in that case - a tag reader, too. Application tags are tags provided to the element via the
TagSetter interface (which is just a layer). Pipeline tags are tags provided to the element from within the
pipeline. The element receives such tags via the GST_EVENT_TAG event, which means that tags
writers should automatically be event aware. The tag writeris responsible for combining all these three
into one list and writing them to the output stream.

The example below will receive tags from both application and pipeline, combine them and write them to
the output stream. It implements the tag setter so applications can set tags, and retrieves pipeline tags
from incoming events.

GType
gst_my_filter_get_type (void)
{
[..]

static const GInterfaceInfo tag_setter_info = {
NULL,

85

Chapter 19. Tagging (Metadata and Streaminfo)

NULL,
NULL

};
[..]

g_type_add_interface_static (my_filter_type,
GST_TYPE_TAG_SETTER,
&tag_setter_info);

[..]
}

static void
gst_my_filter_init (GstMyFilter *filter)
{

GST_FLAG_SET (filter, GST_ELEMENT_EVENT_AWARE);
[..]
}

/*
* Write one tag.

*/

static void
gst_my_filter_write_tag (const GstTagList *taglist,

const gchar *tagname,
gpointer data)

{
GstMyFilter *filter = GST_MY_FILTER (data);
GstBuffer *buffer;
guint num_values = gst_tag_list_get_tag_size (list, tag_name), n;
const GValue *from;
GValue to = { 0 };

g_value_init (&to, G_TYPE_STRING);

for (n = 0; n < num_values; n++) {
from = gst_tag_list_get_value_index (taglist, tagname, n);
g_value_transform (from, &to);

buf = gst_buffer_new ();
GST_BUFFER_DATA (buf) = g_strdup_printf ("%s:%s", tagname,

g_value_get_string (&to));
GST_BUFFER_SIZE (buf) = strlen (GST_BUFFER_DATA (buf));
gst_pad_push (filter->srcpad, GST_DATA (buf));

}

g_value_unset (&to);
}

static void
gst_my_filter_loopfunc (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);
GstTagSetter *tagsetter = GST_TAG_SETTER (element);

86

Chapter 19. Tagging (Metadata and Streaminfo)

GstData *data;
GstEvent *event;
gboolean eos = FALSE;
GstTagList *taglist = gst_tag_list_new ();

while (!eos) {
data = gst_pad_pull (filter->sinkpad);

/* We’re not very much interested in data right now */
if (GST_IS_BUFFER (data))
gst_buffer_unref (GST_BUFFER (data));

event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_TAG:

gst_tag_list_insert (taglist, gst_event_tag_get_list (event),
GST_TAG_MERGE_PREPEND);
gst_event_unref (event);
break;

case GST_EVENT_EOS:
eos = TRUE;
gst_event_unref (event);
break;

default:
gst_pad_event_default (filter->sinkpad, event);
break;

}
}

/* merge tags with the ones retrieved from the application */
if (gst_tag_setter_get_list (tagsetter)) {

gst_tag_list_insert (taglist,
gst_tag_setter_get_list (tagsetter),
gst_tag_setter_get_merge_mode (tagsetter));

}

/* write tags */
gst_tag_list_foreach (taglist, gst_my_filter_write_tag, filter);

/* signal EOS */
gst_pad_push (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EOS)));
gst_element_set_eos (element);

}

Note that normally, elements would not read the full stream before processing tags. Rather, they would
read from each sinkpad until they’ve received data (since tags usually come in before the first data
buffer) and process that.

87

Chapter 20. Events: Seeking, Navigation and
More

There are many different event types but only 2 ways they can travel across the pipeline: downstream or
upstream. It is very important to understand how both of those methods work because if one element in
the pipeline is not handling them correctly the whole event system of the pipeline is broken. We will try
to explain here how these methods work and how elements are supposed to implement them.

20.1. Downstream events

Downstream events are received through the sink pad’s dataflow. Depending if your element is loop or
chain based you will receive events in your loop/chain function as a GstData withgst_pad_pull or
directly in the function call arguments. So when receiving dataflow from the sink pad you have to check
first if this data chunk is an event. If that’s the case you check what kind of event it is to react on relevant
ones and then forward others downstream usinggst_pad_event_default. Here is an example for
both loop and chain based elements.

/* Chain based element */
static void
gst_my_filter_chain (GstPad *pad,

GstData *data)
{

GstMyFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));
...
if (GST_IS_EVENT (data)) {

GstEvent *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOS:

/* end-of-stream, we should close down all stream leftovers here */
gst_my_filter_stop_processing (filter);
/* fall-through to default event handling */

default:
gst_pad_event_default (pad, event);
break;

}
return;

}
...

}

/* Loop based element */
static void
gst_my_filter_loop (GstElement *element)
{

GstMyFilter *filter = GST_MY_FILTER (element);

88

Chapter 20. Events: Seeking, Navigation and More

GstData *data = NULL;

data = gst_pad_pull (filter->sinkpad);

if (GST_IS_EVENT (data)) {
GstEvent *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOS:

/* end-of-stream, we should close down all stream leftovers here */
gst_my_filter_stop_processing (filter);
/* fall-through to default event handling */

default:
gst_pad_event_default (filter->sinkpad, event);
break;

}
return;

}
...

}

20.2. Upstream events

Upstream events are generated by an element somewhere in thepipeline and sent using the
gst_pad_send_event function. This function simply realizes the pad and call thedefault event handler
of that pad. The default event handler of pads isgst_pad_event_default , it basically sends the event
to the peer pad. So upstream events always arrive on the src pad of your element and are handled by the
default event handler except if you override that handler tohandle it yourself. There are some specific
cases where you have to do that :

• If you have multiple sink pads in your element. In that case you will have to decide which one of the
sink pads you will send the event to.

• If you need to handle that event locally. For example a navigation event that you will want to convert
before sending it upstream.

The processing you will do in that event handler does not really matter but there are important rules you
have to absolutely respect because one broken element eventhandler is breaking the whole pipeline
event handling. Here they are :

• Always forward events you won’t handle upstream using the defaultgst_pad_event_default
method.

• If you are generating some new event based on the one you received don’t forget to gst_event_unref
the event you received.

89

Chapter 20. Events: Seeking, Navigation and More

• Event handler function are supposed to return TRUE or FALSEindicating if the event has been
handled or not. Never simply return TRUE/FALSE in that handler except if you really know that you
have handled that event.

Here is an example of correct upstream event handling for a plugin that wants to modify navigation
events.

static gboolean
gst_my_filter_handle_src_event (GstPad *pad,

GstEvent *event)
{

GstMyFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_NAVIGATION:
GstEvent *new_event = gst_event_new (GST_EVENT_NAVIGATION);;
/* Create a new event based on received one and then send it */
...
gst_event_unref (event);
return gst_pad_event_default (pad, new_event);

default:
/* Falling back to default event handling for that pad */
return gst_pad_event_default (pad, event);

}
}

20.3. All Events Together

In this chapter follows a list of all defined events that are currently being used, plus how they should be
used/interpreted. Events are stored in aGstEvent (../../gstreamer/html/gstreamer-GstEvent.html)
structure, which is simply a big C union with the types for each event in it. For the next development
cycle, we intend to switch events over toGstStructure
(../../gstreamer/html/gstreamer-GstStructure.html),but you don’t need to worry about that too much for
now.

In this chapter, we will discuss the following events:

• End of Stream (EOS)

• Flush

• Stream Discontinuity

• Seek Request

• Stream Filler

• Interruption

90

Chapter 20. Events: Seeking, Navigation and More

• Navigation

• Tag (metadata)

20.3.1. End of Stream (EOS)

End-of-stream events are sent if the stream that an element sends out is finished. An element receiving
this event (from upstream, so it receives it on its sinkpad) will generally forward the event further
downstream and set itself to EOS (gst_element_set_eos ()). gst_pad_event_default () takes
care of all this, so most elements do not need to support this event. Exceptions are elements that explicitly
need to close a resource down on EOS, and N-to-1 elements. Note that the stream itself isnot a resource
that should be closed down on EOS! Applications might seek back to a point before EOS and set the
pipeline to PLAYING again. N-to-1 elements have been discussed previously inMulti-Input Elements.

The EOS event (GST_EVENT_EOS) has no properties, and that makes it one of the simplest events in
GStreamer. It is created usinggst_event_new (GST_EVENT_EOS);.

Some elements support the EOS event upstream, too. This signals the element to go into EOS as soon as
possible and signal the EOS event forward downstream. This is useful for elements that have no concept
of end-of-stream themselves. Examples are TV card sources,audio card sources, etc. This is not (yet)
part of the official specifications of this event, though.

20.3.2. Flush

The flush event is being sent downstream if all buffers and caches in the pipeline should be emptied.
“Queue” elements will empty their internal list of buffers when they receive this event, for example. File
sink elements (e.g. “filesink”) will flush the kernel-to-disk cache (fdatasync () or fflush ()) when
they receive this event. Normally, elements receiving thisevent will simply just forward it, since most
filter or filter-like elements don’t have an internal cache ofdata.gst_pad_event_default () does
just that, so for most elements, it is enough to forward the event using the default event handler.

The flush event is created withgst_event_new (GST_EVENT_FLUSH);. Like the EOS event, it has no
properties.

20.3.3. Stream Discontinuity

A discontinuity event is sent downstream to indicate a discontinuity in the data stream. This can happen
because the application used the seek event to seek to a different position in the stream, but it can also be
because a real-time network source temporarily lost the connection. After the connection is restored, the
data stream will continue, but not at the same point where it got lost. Therefore, a discontinuity event is
being sent downstream, too.

91

Chapter 20. Events: Seeking, Navigation and More

Depending on the element type, the event can simply be forwarded usinggst_pad_event_default
(), or it should be parsed and a modified event should be sent on. The last is true for demuxers, which
generally have a byte-to-time conversion concept. Their input is usually byte-based, so the incoming
event will have an offset in byte units (GST_FORMAT_BYTES),too. Elements downstream, however,
expect discontinuity events in time units, so that it can be used to update the pipeline clock. Therefore,
demuxers and similar elements should not forward the event,but parse it, free it and send a new
discontinuity event (in time units, GST_FORMAT_TIME) further downstream.

The discontinuity event is created using the functiongst_event_new_discontinuous (). It should
set a boolean value which indicates if the discontinuity event is sent because of a new media type (this
can happen if - during iteration - a new location was set on a network source or on a file source). then, it
should give a list of formats and offsets in that format. The list should be terminated by 0 as format.

static void
my_filter_some_function (GstMyFilter *filter)
{

GstEvent *event;
[..]

event = gst_event_new_discontinuous (FALSE,
GST_FORMAT_BYTES, 0,
GST_FORMAT_TIME, 0,
0);

gst_pad_push (filter->srcpad, GST_DATA (event));
[..]
}

Elements parsing this event can use macros and functions to access the various properties.
GST_EVENT_DISCONT_NEW_MEDIA (event) checks the new-media boolean value.
gst_event_discont_get_value (event, format, &value) gets the offset of the new stream
position in the specified format. If that format was not specified when creating the event, the function
returns FALSE.

20.3.4. Seek Request

Seek events are meant to request a new stream position to elements. This new position can be set in
several formats (time, bytes or “units” [a term indicating frames for video, samples for audio, etc.]).
Seeking can be done with respect to the end-of-file, start-of-file or current position, and can happen in
both upstream and downstream direction. Elements receiving seek events should, depending on the
element type, either forward it (filters, decoders), changethe format in which the event is given and
forward it (demuxers), handle the event by changing the file pointer in their internal stream resource (file
sources) or something else.

Seek events are, like discontinuity events, built up using positions in specified formats (time, bytes,
units). They are created using the functiongst_event_new_seek (), where the first argument is the
seek type (indicating with respect to which position [current, end, start] the seek should be applied, and

92

Chapter 20. Events: Seeking, Navigation and More

the format in which the new position is given (time, bytes, units), and an offset which is the requested
position in the specified format.

static void
my_filter_some_function (GstMyFilter *filter)
{

GstEvent *event;
[..]

/* seek to the start of a resource */
event = gst_event_new_seek (GST_SEEK_SET | GST_FORMAT_BYTES, 0);
gst_pad_push (filter->srcpad, GST_DATA (event));

[..]
}

Elements parsing this event can use macros and functions to access the properties. The seek type can be
retrieved usingGST_EVENT_SEEK_TYPE (event). This seek type contains both the indicator of with
respect to what position the seek should be applied, and the format in which the seek event is given. To
get either one of these properties separately, useGST_EVENT_SEEK_FORMAT (event) or
GST_EVENT_SEEK_METHOD (event). The requested position is available through
GST_EVENT_SEEK_OFFSET (event), and is given in the specified format.

20.3.5. Stream Filler

The filler event is, as the name says, a “filler” of the stream which has no special meaning associated
with itself. It is used to provide data to downstream elements and should be interpreted as a way of
assuring that the normal data flow will continue further downstream. The event is especially intended for
real-time MIDI source elements, which only generate data when somethingchanges. MIDI decoders will
therefore stall if nothing changes for several seconds, andtherefore playback will stop. The filler event is
sent downstream to assure the MIDI decoder that nothing changed, so that the normal decoding process
will continue and playback will, too. Unless you intend to work with MIDI or other
control-language-based data types, you don’t need this event. You can mostly simply forward it with
gst_pad_event_default ().

The stream filler is created usinggst_event_new (GST_EVENT_FILLER);. It has no properties.

20.3.6. Interruption

The interrupt event is generated by queue elements and sent downstream if a timeout occurs on the
stream. The scheduler will use this event to get back in its own main loop and schedule other elements.
This prevents deadlocks or a stream stall if no data is generated over a part of the pipeline for a
considerable amount of time. The scheduler will process this event internally, so any normal elements do
not need to generate or handle this event at all.

93

Chapter 20. Events: Seeking, Navigation and More

The difference between the filler event and the interrupt event is that the filler event is a real part of a
pipeline, so it will reach fellow elements, which can use it to "do nothing else than what I used to do".
The interrupt event never reaches fellow elements.

The interrupt event (gst_event_new (GST_EVENT_INTERRUPT);) has no properties.

20.3.7. Navigation

WRITEME

20.3.8. Tag (metadata)

Tagging events are being sent downstream to indicate the tags as parsed from the stream data. This is
currently used to preserve tags during stream transcoding from one format to the other. Tags are
discussed extensively inChapter 19. Most elements will simply forward the event by calling
gst_pad_event_default ().

The tag event is created using the functiongst_event_new_tag (). It requires a filled taglist as
argument.

Elements parsing this event can use the functiongst_event_tag_get_list (event) to acquire the
taglist that was parsed.

94

IV. Other Element Types
By now, we have looked at pretty much any feature that can be embedded into a GStreamer element.
However, we have limited ourselves to the simple model of a filter element. In this chapter, we will look
at the specific difficulties and things to keep in mind when writing specific types of elements. We will
discuss output elements (sinks), input elements (sources), 1-to-N elements, N-to-1 elements, N-to-N
elements, autopluggers and managers. Some of these represent elements that don’t actually exist. Rather,
they represent a general concept.

Chapter 21. Writing a Source

Source elements are the start of a data streaming pipeline. Source elements have no sink pads and have
one or more source pads. We will focus on single-sourcepad elements here, but the concepts apply
equally well to multi-sourcepad elements. This chapter will explain the essentials of source elements,
which features it should implement and which it doesn’t haveto, and how source elements will interact
with other elements in a pipeline.

21.1. The get()-function

Source elements have the special option of having a_get ()-function rather than a_loop ()- or
_chain ()-function. A_get ()-function is called by the scheduler every time the next elements needs
data. Apart from corner cases, every source element will want to be_get ()-based.

static GstData * gst_my_source_get (GstPad *pad);

static void
gst_my_source_init (GstMySource *src)
{
[..]

gst_pad_set_get_function (src->srcpad, gst_my_source_get);
}

static GstData *
gst_my_source_get (GstPad *pad)
{

GstBuffer *buffer;

buffer = gst_buffer_new ();
GST_BUFFER_DATA (buf) = g_strdup ("hello pipeline!");
GST_BUFFER_SIZE (buf) = strlen (GST_BUFFER_DATA (buf));
/* terminating ’/0’ */
GST_BUFFER_MAZSIZE (buf) = GST_BUFFER_SIZE (buf) + 1;

return GST_DATA (buffer);
}

21.2. Events, querying and converting

One of the most important functions of source elements is to implement correct query, convert and event
handling functions. Those will continuously describe the current state of the stream. Query functions can
be used to get stream properties such as current position andlength. This can be used by fellow elements
to convert this same value into a different unit, or by appliations to provide information about the

96

Chapter 21. Writing a Source

length/position of the stream to the user. Conversion functions are used to convert such values from one
unit to another. Lastly, events are mostly used to seek to positions inside the stream. Any function is
essentially optional, but the element should try to provideas much information as it knows. Note that
elements providing an event function should also list theirsupported events in an_get_event_mask
() function. Elements supporting query operations should list the supported operations in a
_get_query_types () function. Elements supporting either conversion or query operations should
also implement a_get_formats () function.

An example source element could, for example, be an element that continuously generates a wave tone at
44,1 kHz, mono, 16-bit. This element will generate 44100 audio samples per second or 88,2 kB/s. This
information can be used to implement such functions:

static GstFormat * gst_my_source_format_list (GstPad *pad);
static GstQueryType * gst_my_source_query_list (GstPad *pad);

static gboolean gst_my_source_convert (GstPad *pad,
GstFormat from_fmt,
gint64 from_val,
GstFormat *to_fmt,
gint64 *to_val);

static gboolean gst_my_source_query (GstPad *pad,
GstQueryType type,
GstFormat *to_fmt,
gint64 *to_val);

static void
gst_my_source_init (GstMySource *src)
{
[..]

gst_pad_set_convert_function (src->srcpad, gst_my_source_convert);
gst_pad_set_formats_function (src->srcpad, gst_my_source_format_list);
gst_pad_set_query_function (src->srcpad, gst_my_source_query);
gst_pad_set_query_type_function (src->srcpad, gst_my_source_query_list);

}

/*
* This function returns an enumeration of supported GstFormat

* types in the query() or convert() functions. See gst/gstformat.h

* for a full list.

*/

static GstFormat *
gst_my_source_format_list (GstPad *pad)
{

static const GstFormat formats[] = {
GST_FORMAT_TIME,
GST_FORMAT_DEFAULT, /* means "audio samples" */
GST_FORMAT_BYTES,
0

};

97

Chapter 21. Writing a Source

return formats;
}

/*
* This function returns an enumeration of the supported query()

* operations. Since we generate audio internally, we only provide

* an indication of how many samples we’ve played so far. File sources

* or such elements could also provide GST_QUERY_TOTAL for the total

* stream length, or other things. See gst/gstquery.h for details.

*/

static GstQueryType *
gst_my_source_query_list (GstPad *pad)
{

static const GstQueryType query_types[] = {
GST_QUERY_POSITION,
0,

};

return query_types;
}

/*
* And below are the logical implementations.

*/

static gboolean
gst_my_source_convert (GstPad *pad,

GstFormat from_fmt,
gint64 from_val,
GstFormat *to_fmt,
gint64 *to_val)

{
gboolean res = TRUE;
GstMySource *src = GST_MY_SOURCE (gst_pad_get_parent (pad));

switch (from_fmt) {
case GST_FORMAT_TIME:
switch (*to_fmt) {

case GST_FORMAT_TIME:
/* nothing */
break;

case GST_FORMAT_BYTES:

*to_val = from_val / (GST_SECOND / (44100 * 2));
break;

case GST_FORMAT_DEFAULT:

*to_val = from_val / (GST_SECOND / 44100);
break;

default:
res = FALSE;

98

Chapter 21. Writing a Source

break;
}
break;

case GST_FORMAT_BYTES:
switch (*to_fmt) {

case GST_FORMAT_TIME:

*to_val = from_val * (GST_SECOND / (44100 * 2));
break;

case GST_FORMAT_BYTES:
/* nothing */
break;

case GST_FORMAT_DEFAULT:

*to_val = from_val / 2;
break;

default:
res = FALSE;
break;

}
break;

case GST_FORMAT_DEFAULT:
switch (*to_fmt) {

case GST_FORMAT_TIME:

*to_val = from_val * (GST_SECOND / 44100);
break;

case GST_FORMAT_BYTES:

*to_val = from_val * 2;
break;

case GST_FORMAT_DEFAULT:
/* nothing */
break;

default:
res = FALSE;
break;

}
break;

default:
res = FALSE;
break;

}

return res;
}

static gboolean

99

Chapter 21. Writing a Source

gst_my_source_query (GstPad *pad,
GstQueryType type,
GstFormat *to_fmt,
gint64 *to_val)

{
GstMySource *src = GST_MY_SOURCE (gst_pad_get_parent (pad));
gboolean res = TRUE;

switch (type) {
case GST_QUERY_POSITION:
res = gst_pad_convert (pad, GST_FORMAT_BYTES, src->total_bytes,

to_fmt, to_val);
break;

default:
res = FALSE;
break;

}

return res;
}

Be sure to increase src->total_bytes after each call to your_get () function.

Event handling has already been explained previously in theevents chapter.

21.3. Time, clocking and synchronization

The above example does not provide any timing info, but will suffice for elementary data sources such as
a file source or network data source element. Things become slightly more complicated, but still very
simple, if we create artificial video or audio data sources, such as a video test image source or an
artificial audio source (e.g.sinesrc or silence). It will become more complicated if we want the
element to be a realtime capture source, such as a video4linux source (for reading video frames from a
TV card) or an ALSA source (for reading data from soundcards supported by an ALSA-driver). Here, we
will need to make the element aware of timing and clocking.

Timestamps can essentially be generated from all the information given above without any difficulty. We
could add a very small amount of code to generate perfectly timestamped buffers from our_get
()-function:

static void
gst_my_source_init (GstMySource *src)
{
[..]

src->total_bytes = 0;
}

100

Chapter 21. Writing a Source

static GstData *
gst_my_source_get (GstPad *pad)
{

GstMySource *src = GST_MY_SOURCE (gst_pad_get_parent (pad));
GstBuffer *buf;
GstFormat fmt = GST_FORMAT_TIME;

[..]
GST_BUFFER_DURATION (buf) = GST_BUFFER_SIZE (buf) * (GST_SECOND / (44100 * 2));
GST_BUFFER_TIMESTAMP (buf) = src->total_bytes * (GST_SECOND / (44100 * 2));
src->total_bytes += GST_BUFFER_SIZE (buf);

return GST_DATA (buf);
}

static GstStateReturn
gst_my_source_change_state (GstElement *element)
{

GstMySource *src = GST_MY_SOURCE (element);

switch (GST_STATE_PENDING (element)) {
case GT_STATE_PAUSED_TO_READY:
src->total_bytes = 0;
break;

default:
break;

}

if (GST_ELEMENT_CLASS (parent_class)->change_state)
return GST_ELEMENT_CLASS (parent_class)->change_state (element);

return GST_STATE_SUCCESS;
}

That wasn’t too hard. Now, let’s assume real-time elements.Those can either have hardware-timing, in
which case we can rely on backends to provide sync for us (in which case you probably want to provide
a clock), or we will have to emulate that internally (e.g. to acquire sync in artificial data elements such as
sinesrc). Let’s first look at the second option (software sync). The first option (hardware sync +
providing a clock) does not require any special code with respect to timing, and the clocking section
already explained how to provide a clock.

enum {
ARG_0,

[..]
ARG_SYNC,

[..]
};

static void
gst_my_source_class_init (GstMySourceClass *klass)

101

Chapter 21. Writing a Source

{
GObjectClass *object_class = G_OBJECT_CLASS (klass);

[..]
g_object_class_install_property (object_class, ARG_SYNC,

g_param_spec_boolean ("sync", "Sync", "Synchronize to clock",
FALSE, G_PARAM_READWRITE));

[..]
}

static void
gst_my_source_init (GstMySource *src)
{
[..]

src->sync = FALSE;
}

static GstData *
gst_my_source_get (GstPad *pad)
{

GstMySource *src = GST_MY_SOURCE (gst_pad_get_parent (pad));
GstBuffer *buf;

[..]
if (src->sync) {

/* wait on clock */
gst_element_wait (GST_ELEMENT (src), GST_BUFFER_TIMESTAMP (buf));

}

return GST_DATA (buf);
}

static void
gst_my_source_get_property (GObject *object,

guint prop_id,
GParamSpec *pspec,
GValue *value)

{
GstMySource *src = GST_MY_SOURCE (gst_pad_get_parent (pad));

switch (prop_id) {
[..]

case ARG_SYNC:
g_value_set_boolean (value, src->sync);
break;

[..]
}

}

static void
gst_my_source_get_property (GObject *object,

guint prop_id,
GParamSpec *pspec,
const GValue *value)

{

102

Chapter 21. Writing a Source

GstMySource *src = GST_MY_SOURCE (gst_pad_get_parent (pad));

switch (prop_id) {
[..]

case ARG_SYNC:
src->sync = g_value_get_boolean (value);
break;

[..]
}

}

Most of this is GObject wrapping code. The actual code to do software-sync (in the_get ()-function)
is relatively small.

21.4. Using special memory

In some cases, it might be useful to use specially allocated memory (e.g.mmap ()’ed DMA’able
memory) in your buffers, and those will require special handling when they are being dereferenced. For
this, GStreamer uses the concept of buffer-free functions.Those are special functions pointers that an
element can set on buffers that it created itself. The given function will be called when the buffer has
been dereferenced, so that the element can clean up or re-usememory internally rather than using the
default implementation (which simply callsg_free () on the data pointer).

static void
gst_my_source_buffer_free (GstBuffer *buf)
{

GstMySource *src = GST_MY_SOURCE (GST_BUFFER_PRIVATE (buf));

/* do useful things here, like re-queueing the buffer which

* makes it available for DMA again. The default handler will

* not free this buffer because of the GST_BUFFER_DONTFREE

* flag. */
}

static GstData *
gst_my_source_get (GstPad *pad)
{

GstMySource *src = GST_MY_SOURCE (gst_pad_get_parent (pad));
GstBuffer *buf;

[..]
buf = gst_buffer_new ();
GST_BUFFER_FREE_DATA_FUNC (buf) = gst_my_source_buffer_free;
GST_BUFFER_PRIVATE (buf) = src;
GST_BUFFER_FLAG_SET (buf, GST_BUFFER_READONLY | GST_BUFFER_DONTFREE);

[..]

return GST_DATA (buf);
}

103

Chapter 21. Writing a Source

Note that this concept shouldnot be used to decrease the number of calls made to functions suchas
g_malloc () inside your element. We have better ways of doing that elsewhere (GStreamer core, Glib,
Glibc, Linux kernel, etc.).

104

Chapter 22. Writing a Sink

Sinks are output elements that, opposite to sources, have nosource pads and one or more (usually one)
sink pad. They can be sound card outputs, disk writers, etc. This chapter will discuss the basic
implementation of sink elements.

22.1. Data processing, events, synchronization and
clocks

Except for corner cases, sink elements will be_chain ()-based elements. The concept of such
elements has been discussed before in detail, so that will beskipped here. What is very important in sink
elements, specifically in real-time audio and video sources(such asosssink or ximagesink), is event
handling in the_chain ()-function, because most elements rely on EOS-handling of the sink element,
and because A/V synchronization can only be perfect if the element takes this into account.

How to achieve synchronization between streams depends on whether you’re a clock-providing or a
clock-receiving element. If you’re the clock provider, youcan do with time whatever you want. Correct
handling would mean that you check whether the end of the previous buffer (if any) and the start of the
current buffer are the same. If so, there’s no gap between thetwo and you can continue playing right
away. If there is a gap, then you’ll need to wait for your clockto reach that time. How to do that depends
on the element type. In the case of audio output elements, youwould output silence for a while. In the
case of video, you would show background color. In case of subtitles, show no subtitles at all.

In the case that the provided clock and the received clock arenot the same (or in the case where your
element provides no clock, which is the same), you simply wait for the clock to reach the timestamp of
the current buffer and then you handle the data in it.

A simple data handling function would look like this:

static void
gst_my_sink_chain (GstPad *pad,

GstData *data)
{

GstMySink *sink = GST_MY_SINK (gst_pad_get_parent (pad));
GstBuffer *buf;
GstClockTime time;

/* only needed if the element is GST_EVENT_AWARE */
if (GST_IS_EVENT (data)) {

GstEvent *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOS:

[if your element provides a clock, disable (inactivate) it here]

105

Chapter 22. Writing a Sink

/* pass-through */

default:
/* the default handler handles discontinuities, even if your

* element provides a clock! */
gst_pad_event_default (pad, event);
break;

}

return;
}

buf = GST_BUFFER (data);
if (GST_BUFFER_TIME_IS_VALID (buf))

time = GST_BUFFER_TIMESTAMP (buf);
else

time = sink->expected_next_time;

/* Synchronization - the property is only useful in case the

* element has the option of not syncing. So it is not useful

* for hardware-sync (clock-providing) elements. */
if (sink->sync) {

/* This check is only needed if you provide a clock. Else,

* you can always execute the ’else’ clause. */
if (sink->provided_clock == sink->received_clock) {
/* GST_SECOND / 10 is 0,1 sec, it’s an arbitrary value. The

* casts are needed because else it’ll be unsigned and we

* won’t detect negative values. */
if (llabs ((gint64) sink->expected_next_time - (gint64) time) >

(GST_SECOND / 10)) {
/* so are we ahead or behind? */
if (time > sink->expected_time) {

/* we need to wait a while... In case of audio, output

* silence. In case of video, output background color.

* In case of subtitles, display nothing. */
[..]

} else {
/* Drop data. */
[..]

}
}

} else {
/* You could do more sophisticated things here, but we’ll

* keep it simple for the purpose of the example. */
gst_element_wait (GST_ELEMENT (sink), time);

}
}

/* And now handle the data. */
[..]
}

106

Chapter 22. Writing a Sink

22.2. Special memory

Like source elements, sink elements can sometimes provide externally allocated (such as X-provided or
DMA’able) memory to elements earlier in the pipeline, and thereby prevent the need formemcpy () for
incoming data. We do this by providing a pad-allocate-buffer function.

static GstBuffer * gst_my_sink_buffer_allocate (GstPad *pad,
guint64 offset,
guint size);

static void
gst_my_sink_init (GstMySink *sink)
{
[..]

gst_pad_set_bufferalloc_function (sink->sinkpad,
gst_my_sink_buffer_allocate);

}

static void
gst_my_sink_buffer_free (GstBuffer *buf)
{

GstMySink *sink = GST_MY_SINK (GST_BUFFER_PRIVATE (buf));

/* Do whatever is needed here. */
[..]
}

static GstBuffer *
gst_my_sink_buffer_allocate (GstPad *pad,

guint64 offset,
guint size)

{
GstBuffer *buf = gst_buffer_new ();

/* So here it’s up to you to wrap your private buffers and

* return that. */
GST_BUFFER_FREE_DATA_FUNC (buf) = gst_my_sink_buffer_free;
GST_BUFFER_PRIVATE (buf) = sink;
GST_BUFFER_FLAG_SET (buf, GST_BUFFER_DONTFREE);

[..]

return buf;
}

107

Chapter 23. Writing a 1-to-N Element, Demuxer
or Parser

1-to-N elements don’t have much special needs or requirements that haven’t been discussed already. The
most important thing to take care of in 1-to-N elements (things liketee-elements or so) is to use proper
buffer refcounting and caps negotiation. If those two are taken care of (see thetee element if you need
example code), there’s little that can go wrong.

Demuxers are the 1-to-N elements that need very special care, though. They are responsible for
timestamping raw, unparsed data into elementary video or audio streams, and there are many things that
you can optimize or do wrong. Here, several culprits will be mentioned and common solutions will be
offered. Parsers are demuxers with only one source pad. Also, they only cut the stream into buffers, they
don’t touch the data otherwise.

23.1. Demuxer Caps Negotiation

Demuxers will usually contain several elementary streams,and each of those streams’ properties will be
defined in a stream header at the start of the file (or, rather, stream) that you’re parsing. Since those are
fixed and there is no possibility to negotiate stream properties with elements earlier in the pipeline, you
should always use explicit caps on demuxer source pads. Thisprevents a whole lot of caps negotiation or
re-negotiation errors.

23.2. Data processing and downstream events

Data parsing, pulling this into subbuffers and sending thatto the source pads of the elementary streams is
the one single most important task of demuxers and parsers. Usually, an element will have a_loop ()

function using thebytestream object to read data. Try to have a single point of data readingfrom the
bytestream object. In this single point, doproperevent handling (in case there is any) andpropererror
handling in case that’s needed. Make your element as fault-tolerant as possible, but do not go further than
possible.

23.3. Parsing versus interpreting

One particular convention that GStreamer demuxers follow is that of separation of parsing and
interpreting. The reason for this is maintainability, clarity and code reuse. An easy example of this is
something like RIFF, which has a chunk header of 4 bytes, thena length indicator of 4 bytes and then the
actual data. We write special functions to read one chunk, topeek a chunk ID and all those; that’s the

108

Chapter 23. Writing a 1-to-N Element, Demuxer or Parser

parsingpart of the demuxer. Then, somewhere else, we like to write the main data processing function,
which calls this parse function, reads one chunk and then does with the data whatever it needs to do.

Some example code for RIFF-reading to illustrate the above two points:

static gboolean
gst_my_demuxer_peek (GstMyDemuxer *demux,

guint32 *id,
guint32 *size)

{
guint8 *data;

while (gst_bytestream_peek_bytes (demux->bs, &data, 4) != 4) {
guint32 remaining;
GstEvent *event;

gst_bytestream_get_status (demux->bs, &remaining, &event);
if (event) {
GstEventType type = GST_EVENT_TYPE (event);

/* or maybe custom event handling, up to you - we lose reference! */
gst_pad_event_default (demux->sinkpad, event);

if (type == GST_EVENT_EOS)
return FALSE;

} else {
GST_ELEMENT_ERROR (demux, STREAM, READ, (NULL), (NULL));
return FALSE;

}
}

*id = GUINT32_FROM_LE (((guint32 *) data)[0]);

*size = GUINT32_FROM_LE (((guint32 *) data)[0]);

return TRUE;
}

static void
gst_my_demuxer_loop (GstElement *element)
{

GstMyDemuxer *demux = GST_MY_DEMUXER (element);
guint32 id, size;

if (!gst_my_demuxer_peek (demux, &id, &size))
return;

switch (id) {
[.. normal chunk handling ..]

}
}

109

Chapter 23. Writing a 1-to-N Element, Demuxer or Parser

Reason for this is that event handling is now centralized in one place and the_loop () function is a lot
cleaner and more readable. Those are common code practices,but since the mistake ofnot using such
common code practices has been made too often, we explicitely mention this here.

23.4. Simple seeking and indexes

Sources will generally receive a seek event in the exact supported format by the element. Demuxers,
however, can not seek in themselves directly, but need to convert from one unit (e.g. time) to the other
(e.g. bytes) and send a new event to its sink pad. Given this, the_convert ()-function (or, more
general: unit conversion) is the most important function ina demuxer. Some demuxers (AVI, Matroska)
and parsers will keep an index of all chunks in a stream, firstly to improve seeking precision and
secondly so they won’t lose sync. Some other demuxers will seek the stream directly without index (e.g.
MPEG, Ogg) - usually based on something like a cumulative bitrate - and then find the closest next
chunk from their new position. The best choice depends on theformat.

Note that it is recommended for demuxers to implement event,conversion and query handling functions
(using time units or so), in addition to the ones (usually in byte units) provided by the pipeline source
element.

110

Chapter 24. Writing a N-to-1 Element or Muxer

N-to-1 elements have been previously mentioned and discussed in bothChapter 14and inChapter 12.
The main noteworthy thing about N-to-1 elements is that theyshouldalways, without any single
exception, be_loop ()-based. Apart from that, there is not much general that you need to know. We
will discuss one special type of N-to-1 elements here, thesebeing muxers. The first two of these sections
apply to N-to-1 elements in general, though.

24.1. The Data Loop Function

As previously mentioned inChapter 12, N-to-1 elements generally try to have one buffer from each sink
pad and then handle the one with the earliest timestamp. There’s some exceptions to this rule, we will
come to those later. This only works if all streams actually continuously provide input. There might be
cases where this is not true, for example subtitles (there might be no subtitle for a while), overlay images
and so forth. For this purpose, there is a_select () function in GStreamer. It checks whether input is
available on a (list of) pad(s). In this way, you can skip overthe pads that are ’non- continuous’.

/* Pad selection is currently broken, FIXME some day */

24.2. Events in the Loop Function

N-to-1 elements using a cache will sometimes receive events, and it is often unclear how to handle those.
For example, how do you seek to a frame in anoutputfile (and what’s the point of it anyway)? So, do
discontinuity or seek events make sense, and should you use them?

24.2.1. Discontinuities and flushes

Don’t do anything. They specify a discontinuity in the output, and you should continue to playback as
you would otherwise. You generally do not need to put a discontinuity in the output stream in muxers;
you would have to manually start adapting timestamps of output frames (if appliccable) to match the
previous timescale, though. Note that the output data stream should be continuous. For other types of
N-to-1-elements, it is generally fine to forward the discontinuity once it has been received from all pads.
This depends on the specific element.

24.2.2. Seeks

Depends on the element. Muxers would generally not implement this, because the concept of seeking in
anoutputstream at frame level is not very useful. Seeking at byte level can be useful, but that is more

111

Chapter 24. Writing a N-to-1 Element or Muxer

generally donebymuxersonsink elements.

24.2.3. End-of-Stream

Speaks for itself.

24.3. Negotiation

Most container formats will have a fair amount of issues withchanging content on an elementary stream.
Therefore, you should not allow caps to be changed once you’ve started using data from them. The
easiest way to achieve this is by using explicit caps, which have been explained before. However, we’re
going to use them in a slightly different way then what you’reused to, having the core do all the work for
us.

The idea is that, as long as the stream/file headers have not been written yet and no data has been
processed yet, a stream is allowed to renegotiate. After that point, the caps should be fixed, because we
can only use a stream once. Caps may then only change within anallowed range (think MPEG, where
changes in FPS are allowed), or sometimes not at all (such as AVI audio). In order to do that, we will,
after data retrieval and header writing, set an explicit caps on each sink pad, that is the minimal caps
describing the properties of the format that may not change.As an example, for MPEG audio inside an
MPEG system stream, this would mean a wide caps of audio/mpegwith mpegversion=1 and layer=[1,2].
For the same audio type in MPEG, though, the samplerate, bitrate, layer and number of channels would
become static, too. Since the (request) pads will be removedwhen the stream ends, the static caps will
cease to exist too, then. While the explicit caps exist, the_link ()- function will not be called, since
the core will do all necessary checks for us. Note that the property of using explicit caps should be added
along with the actual explicit caps, not any earlier.

Below here follows the simple example of an AVI muxer’s audiocaps negotiation. The_link
()-function is fairly normal, but the-Loop ()-function does some of the tricks mentioned above. There
is no_getcaps ()- function since the pad template contains all that information already (not shown).

static GstPadLinkReturn
gst_avi_mux_audio_link (GstPad *pad,

const GstCaps *caps)
{

GstAviMux *mux = GST_AVI_MUX (gst_pad_get_parent (pad));
GstStructure *str = gst_caps_get_structure (caps, 0);
const gchar *mime = gst_structure_get_name (str);

if (!strcmp (str, "audio/mpeg")) {
/* get version, make sure it’s 1, get layer, make sure it’s 1-3,

* then create the 2-byte audio tag (0x0055) and fill an audio

* stream structure (strh/strf). */
[..]

112

Chapter 24. Writing a N-to-1 Element or Muxer

return GST_PAD_LINK_OK;
} else if !strcmp (str, "audio/x-raw-int")) {

/* See above, but now with the raw audio tag (0x0001). */
[..]
return GST_PAD_LINK_OK;

} else [..]
[..]
}

static void
gst_avi_mux_loop (GstElement *element)
{

GstAviMux *mux = GST_AVI_MUX (element);
[..]

/* As we get here, we should have written the header if we hadn’t done

* that before yet, and we’re supposed to have an internal buffer from

* each pad, also from the audio one. So here, we check again whether

* this is the first run and if so, we set static caps. */
if (mux->first_cycle) {

const GList *padlist = gst_element_get_pad_list (element);
GList *item;

for (item = padlist; item != NULL; item = item->next) {
GstPad *pad = item->data;
GstCaps *caps;

if (!GST_PAD_IS_SINK (pad))
continue;

/* set static caps here */
if (!strncmp (gst_pad_get_name (pad), "audio_", 6)) {

/* the strf is the struct you filled in the _link () function. */
switch (strf->format) {

case 0x0055: /* mp3 */
caps = gst_caps_new_simple ("audio/mpeg",

"mpegversion", G_TYPE_INT, 1,
"layer", G_TYPE_INT, 3,
"bitrate", G_TYPE_INT, strf->av_bps,
"rate", G_TYPE_INT, strf->rate,
"channels", G_TYPE_INT, strf->channels,
NULL);

break;
case 0x0001: /* pcm */
caps = gst_caps_new_simple ("audio/x-raw-int",

[..]);
break;

[..]
}

} else if (!strncmp (gst_pad_get_name (pad), "video_", 6)) {
[..]

} else {
g_warning ("oi!");
continue;

113

Chapter 24. Writing a N-to-1 Element or Muxer

}

/* set static caps */
gst_pad_use_explicit_caps (pad);
gst_pad_set_explicit_caps (pad, caps);

}
}

[..]
/* Next runs will never be the first again. */
mux->first_cycle = FALSE;

}

Note that there are other ways to achieve that, which might beuseful for more complex cases. This will
do for the simple cases, though. This method is provided to simplify negotiation and renegotiation in
muxers, it is not a complete solution, nor is it a pretty one.

24.4. Markup vs. data processing

As we noted on demuxers before, we love common programming paradigms such as clean, lean and
mean code. To achieve that in muxers, it’s generally a good idea to separate the actual data stream
markup from the data processing. To illustrate, here’s how AVI muxers should write out RIFF tag chunks:

static void
gst_avi_mux_write_chunk (GstAviMux *mux,

guint32 id,
GstBuffer *data)

{
GstBuffer *hdr;

hdr = gst_buffer_new_and_alloc (8);
((guint32 *) GST_BUFFER_DATA (buf))[0] = GUINT32_TO_LE (id);
((guint32 *) GST_BUFFER_DATA (buf))[1] = GUINT32_TO_LE (GST_BUFFER_SIZE (data));

gst_pad_push (mux->srcpad, hdr);
gst_pad_push (mux->srcpad, data);

}

static void
gst_avi_mux_loop (GstElement *element)
{

GstAviMux *mux = GST_AVI_MUX (element);
GstBuffer *buf;

[..]
buf = gst_pad_pull (mux->sinkpad[0]);

[..]
gst_avi_mux_write_chunk (GST_MAKE_FOURCC (’0’,’0’,’d’,’b’), buf);

}

114

Chapter 24. Writing a N-to-1 Element or Muxer

In general, try to program clean code, that should cover pretty much everything.

115

Chapter 25. Writing a N-to-N element

FIXME: write.

116

Chapter 26. Writing an Autoplugger

FIXME: write.

117

Chapter 27. Writing a Manager

Managers are elements that add a function or unify the function of another (series of) element(s).
Managers are generally aGstBin with one or more ghostpads. Inside them is/are the actual element(s)
that matters. There is several cases where this is useful. For example:

• To add support for private events with custom event handlingto another element.

• To add support for custom pad_query () or _convert () handling to another element.

• To add custom data handling before or after another element’s data handler function (generally its
_chain () function).

This chapter will explain the setup of managers. As a specificexample, we will try to add EOS event
support to source elements. This can be used to finish capturing an audio stream to a file. Source
elements normally don’t do any EOS handling at all, so a manager is perfect to extend those element’s
functionalities.

Specifically, this element will contain two child elements:the actual source element and a “helper
element” that implement an event handler on its source pad. This event handler will respond to EOS
events by storing them internally and returning the event (rather than data) on the next call to the_get
() function. After that, it will go into EOS and set the parent (and thereby the contained source element)
to EOS as well. Other events will be forwarded to the source element, which will handle them as usual.

..

118

V. Appendices
This chapter contains things that don’t belong anywhere else.

Chapter 28. Things to check when writing an
element

This chapter contains a fairly random selection of things totake care of when writing an element. It’s up
to you how far you’re going to stick to those guidelines. However, keep in mind that when you’re writing
an element and hope for it to be included in the mainstream GStreamer distribution, ithas tomeet those
requirements. As far as possible, we will try to explain why those requirements are set.

28.1. About states
• Make sure the state of an element gets reset when going toNULL. Ideally, this should set all object

properties to their original state. This function should also be called from _init.

• Make sure an element forgetseverythingabout its contained stream when going fromPAUSED to
READY. In READY, all stream states are reset. An element that goes fromPAUSED to READY and back to
PAUSED should start reading the stream from he start again.

• People that usegst-launch for testing have the tendency to not care about cleaning up. This iswrong.
An element should be tested using various applications, where testing not only means to “make sure it
doesn’t crash”, but also to test for memory leaks using toolssuch asvalgrind. Elements have to be
reusable in a pipeline after having been reset.

28.2. Debugging
• Elements shouldneveruse their standard output for debugging (using functions such asprintf ()

or g_print ()). Instead, elements should use the logging functions provided by GStreamer, named
GST_DEBUG (), GST_LOG (), GST_INFO (), GST_WARNING () andGST_ERROR (). The various
logging levels can be turned on and off at runtime and can thusbe used for solving issues as they turn
up. Instead ofGST_LOG () (as an example), you can also useGST_LOG_OBJECT () to print the
object that you’re logging output for.

• Ideally, elements should use their own debugging category.Most elements use the following code to
do that:

GST_DEBUG_CATEGORY_STATIC (myelement_debug);
#define GST_CAT_DEFAULT myelement_debug

[..]

static void
gst_myelement_class_init (GstMyelementClass *klass)
{
[..]

GST_DEBUG_CATEGORY_INIT (myelement_debug, "myelement",
0, "My own element");

}

120

Chapter 28. Things to check when writing an element

At runtime, you can turn on debugging using the commandline option --gst-debug=myelement:5.

28.3. Querying, events and the like
• All elements to which it applies (sources, sinks, demuxers)should implement query functions on their

pads, so that applications and neighbour elements can request the current position, the stream length
(if known) and so on.

• All elements that are event-aware (theirGST_ELEMENT_EVENT_AWARE flag is set) should implement
event handling forall events, either specifically or usinggst_pad_event_default (). Elements
that you should handle specifically are the interrupt event,in order to properly bail out as soon as
possible if state is changed. Events may never be dropped unless specifically intended.

• Loop-based elements should always implement event handling, in order to prevent hangs (infinite
loop) on state changes.

28.4. Testing your element
• gst-launch is not a good tool to show that your element is finished. Applications such as Rhythmbox

and Totem (for GNOME) or AmaroK (for KDE)are. gst-launch will not test various things such as
proper clean-up on reset, interrupt event handling, querying and so on.

• Parsers and demuxers should make sure to check their input. Input cannot be trusted. Prevent possible
buffer overflows and the like. Feel free to error out on unrecoverable stream errors. Test your demuxer
using stream corruption elements such asbreakmydata (included in gst-plugins). It will randomly
insert, delete and modify bytes in a stream, and is thereforea good test for robustness. If your element
crashes when adding this element, your element needs fixing.If it errors out properly, it’s good
enough. Ideally, it’d just continue to work and forward dataas much as possible.

• Demuxers should not assume that seeking works. Be prepared to work with unseekable input streams
(e.g. network sources) as well.

• Sources and sinks should be prepared to be assigned another clock then the one they expose
themselves. Always use the provided clock for synchronization, else you’ll get A/V sync issues.

121

Chapter 29. GStreamer licensing

29.1. How to license the code you write for GStreamer

GStreamer is a plugin-based framework licensed under the LGPL. The reason for this choice in licensing
is to ensure that everyone can use GStreamer to build applications using licenses of their choice.

To keep this policy viable, the GStreamer community has madea few licensing rules for code to be
included in GStreamer’s core or GStreamer’s official modules, like our plugin packages. We require that
all code going into our core package is LGPL. For the plugin code, we require the use of the LGPL for
all plugins written from scratch or linking to external libraries. The only exception to this is when
plugins contain older code under more liberal licenses (like the MPL or BSD). They can use those
licenses instead and will still be considered for inclusion. We do not accept GPL code to be added to our
plugins module, but we do accept LGPL-licensed plugins using an external GPL library. The reason for
demanding plugins be licensed under the LGPL, even when using a GPL library, is that other developers
might want to use the plugin code as a template for plugins linking to non-GPL libraries.

We also plan on splitting out the plugins using GPL librariesinto a separate package eventually and
implement a system which makes sure an application will not be able to access these plugins unless it
uses some special code to do so. The point of this is not to block GPL-licensed plugins from being used
and developed, but to make sure people are not unintentionally violating the GPL license of said plugins.

This advisory is part of a bigger advisory with a FAQ which youcan find on the GStreamer website
(http://gstreamer.freedesktop.org/documentation/licensing.html)

122

	GStreamer Plugin Writer's Guide (0.8.11)
	Table of Contents
	List of Tables
	I. Introduction
	Chapter 1. Preface
	1.1. Who Should Read This Guide?
	1.2. Preliminary Reading
	1.3. Structure of This Guide

	Chapter 2. Basic Concepts
	2.1. Elements and Plugins
	2.2. Pads
	2.3. Data, Buffers and Events
	2.3.1. Buffer Allocation

	2.4. Mimetypes and Properties
	2.4.1. The Basic Types

	II. Building a Plugin
	Chapter 3. Constructing the Boilerplate
	3.1. Getting the GStreamer Plugin Templates
	3.2. Using the Project Stamp
	3.3. Examining the Basic Code
	3.4. GstElementDetails
	3.5. GstStaticPadTemplate
	3.6. Constructor Functions
	3.7. The plugininit function

	Chapter 4. Specifying the pads
	4.1. The link function
	4.2. The getcaps function
	4.3. Explicit caps

	Chapter 5. The chain function
	Chapter 6. What are states?
	6.1. Managing filter state

	Chapter 7. Adding Arguments
	Chapter 8. Signals
	Chapter 9. Building a Test Application
	Chapter 10. Creating a Filter with a Filter Factory
	III. Advanced Filter Concepts
	Chapter 11. How scheduling works
	11.1. The Basic Scheduler
	11.2. The Optimal Scheduler

	Chapter 12. How a loopfunc works
	12.1. MultiInput Elements
	12.2. The Bytestream Object
	12.3. Adding a second output
	12.4. Modifying the test application

	Chapter 13. Types and Properties
	13.1. Building a Simple Format for Testing
	13.2. Typefind Functions and Autoplugging
	13.3. List of Defined Types

	Chapter 14. Request and Sometimes pads
	14.1. Sometimes pads
	14.2. Request pads

	Chapter 15. Clocking
	15.1. Types of time
	15.2. Clocks
	15.3. Flow of data between elements and time
	15.4. Obligations of each element.
	15.4.1. Source elements
	15.4.2. Sink elements

	Chapter 16. Supporting Dynamic Parameters
	16.1. Comparing Dynamic Parameters with GObject Properties
	16.2. Getting Started
	16.3. Defining Parameter Specifications
	16.3.1. Direct Method
	16.3.2. Callback Method
	16.3.3. Array Method

	16.4. The Data Processing Loop
	16.4.1. DParam Manager Modes
	16.4.2. Dynamic Parameters for Video

	Chapter 17. MIDI
	Chapter 18. Interfaces
	18.1. How to Implement Interfaces
	18.2. Mixer Interface
	18.3. Tuner Interface
	18.4. Color Balance Interface
	18.5. Property Probe Interface
	18.6. X Overlay Interface
	18.7. Navigation Interface

	Chapter 19. Tagging (Metadata and Streaminfo)
	19.1. Reading Tags from Streams
	19.2. Writing Tags to Streams

	Chapter 20. Events: Seeking, Navigation and More
	20.1. Downstream events
	20.2. Upstream events
	20.3. All Events Together
	20.3.1. End of Stream (EOS)
	20.3.2. Flush
	20.3.3. Stream Discontinuity
	20.3.4. Seek Request
	20.3.5. Stream Filler
	20.3.6. Interruption
	20.3.7. Navigation
	20.3.8. Tag (metadata)

	IV. Other Element Types
	Chapter 21. Writing a Source
	21.1. The get()function
	21.2. Events, querying and converting
	21.3. Time, clocking and synchronization
	21.4. Using special memory

	Chapter 22. Writing a Sink
	22.1. Data processing, events, synchronization and clocks
	22.2. Special memory

	Chapter 23. Writing a 1toN Element, Demuxer or Parser
	23.1. Demuxer Caps Negotiation
	23.2. Data processing and downstream events
	23.3. Parsing versus interpreting
	23.4. Simple seeking and indexes

	Chapter 24. Writing a Nto1 Element or Muxer
	24.1. The Data Loop Function
	24.2. Events in the Loop Function
	24.2.1. Discontinuities and flushes
	24.2.2. Seeks
	24.2.3. EndofStream

	24.3. Negotiation
	24.4. Markup vs. data processing

	Chapter 25. Writing a NtoN element
	Chapter 26. Writing an Autoplugger
	Chapter 27. Writing a Manager
	V. Appendices
	Chapter 28. Things to check when writing an element
	28.1. About states
	28.2. Debugging
	28.3. Querying, events and the like
	28.4. Testing your element

	Chapter 29. GStreamer licensing
	29.1. How to license the code you write for GStreamer

