GStreamer Application Development
Manual (0.8.11)

Wim Taymans
Steve Baker
Andy Wingo

Ronald S. Bultje

GStreamer Application Development Manual (0.8.11)
by Wim Taymans, Steve Baker, Andy Wingo, and Ronald S. Bultje

This material may be distributed only subject to the ternts @nditions set forth in the Open Publication License, \dt.later (the latest version
is presently available at http://www.opencontent.org&pml (http://www.opencontent.org/opl.shtml)).

Table of Contents

L. OVEIVIBW .ttt et ettt e ettt e e e a ettt e s e mt et e e 4 et eens bt e e e e n et e e e e ntn e e e s annneeas Vi
R L1 0T [T 1 o] o PRSP 1.
IO I Y P S 1] 11T 10 = oSO SPR P 1

1.2. Structure of this ManUaL............ccceiiiiiiiiii e 1.
2. MOEIVALION & GOAIS.....cei ittt ettt e et e ettt s nne e e nne e e s 3
P22 I O U [=T o1 o] o]] [T 1 U= 3
2.2. The deSIGN QOAIS.......cceiiiiiiiie e err et e e e e s s te e e e e e s et e e e eneennes 5
I o 10 Lo T 1P RR PP 8.
0 I 1= T | (PP 8
3.2. BiNS and PIPEIINES.......uuuiieiieiie ittt e e s 8
IR N - To [OSSP PPRPPRPRRT 8.
1 =T] (o @0 g Tod =T o £SO UT R TUPPPPPPRRTR 10
4. INItTALIZING GSIIEAMEL.ceiii i ittt e e ettt et e e e e s e st e et e e e e e e e nnabaeeaeaennees 11
4.1, Simple iNtAlIZAtION ... 11
4.2. The POPLINTEITACE ... e 11
T = =T 0 1T o £ PSSP PPRTRTN 13
5.1. What are €lementS2... ...t 13
5.2. Creating @35t Bl EITBNT ...eeiiiiiiiiiiiiieit ettt e e e e e e e e e e e e e e e e e nneees 15.
5.3. Using an element aSGD0j ©Ctuvviiiiiiiiiiiiiie st ee et sn e 17
5.4. More about element fACIONES.oooii i 18
5.5, LINKING @lEMENTS.....ciiieee et e e e e e 19
5.6, ElBMENE SEALESeeiiiiieiiei ettt et e e e e e e e e s 20
LS =710 TR U TP PPRPPPPP 22
B.1. What @re DINS.......ooeeeeeee et 22
7 O == 1] o - T 1 R 22
6.3, CUSLOM DINS.....itiiiiiiieiice ettt ettt e e s st ee e s st e e e eseeeeean 23
7. Pads and Capabilitie®s..........uuuiiiieeeiiiiiiiie et e e e e e e 25
40 R - To L3P RPRUPRR 25
7.2. Capabilities Of @ Pad.........cccociiiiiiie e 27
7.3. What capabilities are Used fQr.............oevviiiiiiiiiiiiiic et 29
A €] 1o 1) B o = T SR 31
8. BUfErS @NA EVENTS......oiiiiiiiiiii ittt ettt et esene e enees 34
8. L. BUF IS .ttt 34
B2 EVBNES. ..ottt n e e e e e 34
1S I (o TN T 115 A=Y o] o] o 11 o] « RS PRER 36
9.1 HEHO WO e e e e e e 36
9.2. Compiling and Running helloworld.C..........covvviiiee e 38
1S RS I @70 [od 111 T o H PP PRSPPI 39
[l ADVANCE G StrEAMEI CONCEPLS. .. uuiiitiiiieae e e ettt eeee e e e s et e e e e essstesbeeeeaeeaeaaabbbbeeeaaaaeesaannnnn 40
10. Position tracking and SEEKINGuuueiiiiiieee it e e 41.
10.1. Querying: getting the position or length of a stream.............cccccooiiiiiiis 41
10.2. Events: seeking (AN MOE).......cooi i 42
IV 1= 7= To - | - TSR POPPPPPPPPRR 43
11.1. Stream iNfOrMAatiQN............eeiiiiiii it 43
2 - To J == Lo 1o To TP PPRPPRRP 43

(RS T = To IV 111 Vo TR P U PP UPPRRPRURPY 43

2 10 (=] 1 7= o L ST PPRR P 44
12.1. The MiXer INTEITACE.....ceeeiiie e 44
12.2. The TUNEE INTEITACE. ettt e e e e 44
12.3. The Color Balance interface...............cii i 44
12.4. The Property Probe interface.........ccccoviiiiieeeeeiieeeee e 45
12.5. The X Overlay INTErface.........ccuuieeiiiiiei et 45

13. ClOCKS IN GSIrBAIMEN ...ttt eeee ettt e ettt e et b et e e e e e e s e e nb bt eeee e e e eenneaeas 46

14. DYNAMIC PAramMELtEIS.ceiiiiiieiie ettt ettt e e e e e e s nb bt e e e e e e e eenneeeas 47
I I €= 1 1] g [0 RS = T (=T DU PPT TR PPPURPPTRN a7
14.2. Creating and Attaching Dynamic Parameters...........ooouviiiiiiiiiiiiiiiiiieee e a7
14.3. Changing Dynamic Parameter ValUS............coooiiiiiiieiieieeieeeee e 48
14.4. Different Types of Dynamic Parameter.............coooiioriiiiiiiiiiiiieeee e 49

ST I 0127 Vo S PUT TP 51
15.1. When would you want to use a thread?...........cccccee oo 51
15.2. Constraints placed on the pipeline by the GstThread.............ccccccvevveeeiene, 52
15.3. Athreaded example appliCation.............eeveeeeeiiiiiiiiiiiie e 53

16. SCHEAUIING......eiiiiii e e st e e 56
16.1. Managing elements and data throughput.............ccccociiiii e, 56

R U 7o) o118 e o 11 o FO PO PPRPTTP 58
17.1. MIME-types as a way to identity Streams...........ccoevvvvveieireees e e e e e 58
17.2. Media stream type deteCHON...........uuuiiiieeeiiiciiiiiee e e e e e e e 59
17.3. Plugging together dynamic pipelines..........cevvvveeeiii i 61

18. Pipeline ManipUIAtiON...........cccuuviiieiie et ee e et e e e e e e e s e sne e e e e eennanees 67
18.1. DAt@ PrODES ... e e 67
18.2. Manually adding or removing data from/to a pipeline...........cccccceveeiiiiivieennnenn. 67.
18.3. Embedding static elements in your application..............cccoocveviiiiiiiiiiiiineee. 69

IV. Higher-level interfaces for GStreamer applicationS...........ccuvuiiiiiiiiiiiiiiee e 71

19, COMPONENTS. ...ttt e e b s e e e e e e e e e e e e e e e e eeeee e e e e as 12
L TR o = 1Y o P USURTOTP 72
19.2. DECOAEDIN. ...ttt e e e e nnne e 73
L TR ST o] (o [TR UOTTPUPPPRT 75
19,4, GSEPIAY. ... eeeee ettt e et s e e eeaae s 16
LS R T €111 =To [oY SO UUT R UUUPRRPRRRRRROY 4 o

20. XML IN G StrBAIMEttt ettt e e e ettt e e e ekttt e e e e e e e s s e s bbb e e et e e e e e e aannnneaaeeeas 77
20.1. Turning GStEIemMents iNt0 XIML........ooiiiiiiiiiiiie e 77
20.2. Loading a GstElement from an XML file..........ccocie e L8
20.3. Adding custom XML tags into the core XML data...........cccceeeeiiiiiiiiiiiiiiiiinie 79

RV AN o] o 1T o [o [Tt T TSP PUPPPRTTT 82

21. Things to check when writing an application............ccccceeeeviiiiieiiee e 33
21.1. Good programming NabitS..........oooiiiiiiiiiie e 83
P2 A B = oW o o |1 o PSP PRTRPPPRPR 83
21.3. CONVErSION PIUGINSeoiiiiiiiiie ettt b e e enees 84
21.4. Utility applications provided with GStreamer..........cccceveevieiiiviiieeie e creeeeeee e 84

P70 |01 (To | = 110 o IR PP TPTPPRN 85
22.1. Linux and UNIX-like operating SYStEMIS........ccceviiiirriiiiieieeeieeiereesseseeseeaeeeeeens 85
22.2. GNOME AESKIOP. ... eeeieiiiiiie ettt ettt e e e e e e naee e 85

22.3. KDE AESKEOP. .. ettieeeeiiititt ettt e e e ettt e e e e e e e e eee b eeaaeanreee 86

22,4, O8 X ettt b et b et e e b et st e e neanre e s bt e e aneeean 86
22.5. WINUOWS. ...ttt et e et e e skt e e st e e e e s ameeenasbe e e e e 86
A T W (o1 = o Y g To Jr=To AVZ LS o Y U UUPPR RSP 88
23.1. How to license the applications you build with GStream...............c.ccceeeviiieeens 88
24, WINUOWS SUPPOIL .. ceeieeeeiieit ettt e ettt e e et e e et e e e e e s e babbe e e e e e e e s e e annnbeseeaaaannnseseees 90
24.1. Building GStreamer under WIN32...........uuiiiiiiiiiiiiiiee et 20
24.2. Installation 0N the SYSEEIML.........coiiiiiii et a0
25. QUOLES from the DEVEIOPELS......coi et 92

List of Figures

5-1. Visualisation of a SOUICE EIEMENL...........oiiii it e e e e e e e e e e e 13
5-2. Visualisation of a filter @I8MENL...........oviiii i 14
5-3. Visualisation of a filter element with more than one @ifpad................ccccvvvvevieeee e 14
5-4. Visualisation of a SiNK €I8MENT...........ccuiiiiiiii e e e eee e 14
5-5. Visualisation of three [inked elemMentS...........ccciiiiiiiie e 19
6-1. Visualisation of a bin with some elements iN.it............occoiiiiieie e 22
7-1. Visualisation of a&st Bi n (../../gstreamer/html/GstBin.html) element without ghpads............ 31
7-2. Visualisation of a&st Bi n (../../gstreamer/html/GstBin.html) element with a ghoesl................ 31
9-1. The "hello World" PIPEINE........c.ueiiiii e e srmee e 38
S NS 1 | (=T Vo 51
15-2. a two-threaded decoder With @ QUEUE.eiii it 52
17-1. The Hello world pipeling With MIME tYPES.....cc.uuviiiiiiiiiiiiiiiie et eesieee e 58

Vi

. Overview

GStreamer is an exremely powerful and versatile frameworicfeating streaming media applications.
Many of the virtues of the GStreamer framework come from itgloiarity: GStreamer can seamlessly
incorporate new plugin modules. But because modularitymoveer often come at a cost of greater
complexity (consider, for example, CORBA (http://www.orag/)), writing new applications is not
always easy.

This guide is intended to help you understand the GStrearaerdwork (version 0.8.11) so you can
develop applications based on it. The first chapters wilufoon development of a simple audio player,
with much effort going into helping you understand GStreaocumcepts. Later chapters will go into
more advanced topics related to media playback, but alsthat tbrms of media processing (capture,
editing, etc.).

Chapter 1. Introduction

This chapter gives you an overview of the technologies desdiin this book.

1.1. What is GStreamer?

GStreamer is a framework for creating streaming media agptins. The fundamental design comes
from the video pipeline at Oregon Graduate Institute, as$ agesome ideas from DirectShow.

GStreamer’s development framework makes it possible ttevany type of streaming multimedia
application. The GStreamer framework is designed to madasy to write applications that handle audio
or video or both. It isn’t restricted to audio and video, aad process any kind of data flow. The pipeline
design is made to have little overhead above what the apifilles induce. This makes GStreamer a
good framework for designing even high-end audio applicegtiwhich put high demands on latency.

One of the the most obvious uses of GStreamer is using it td bunedia player. GStreamer already
includes components for building a media player that capstia very wide variety of formats,
including MP3, Ogg/Vorbis, MPEG-1/2, AVI, Quicktime, maahd more. GStreamer, however, is much
more than just another media player. Its main advantagebat¢he pluggable components can be
mixed and matched into arbitrary pipelines so that it's pjmedo write a full-fledged video or audio
editing application.

The framework is based on plugins that will provide the vasicodec and other functionality. The
plugins can be linked and arranged in a pipeline. This pigstiefines the flow of the data. Pipelines can
also be edited with a GUI editor and saved as XML so that pigdlbraries can be made with a
minimum of effort.

The GStreamer core function is to provide a framework fogpis, data flow and media type
handling/negotiation. It also provides an API to write apggiions using the various plugins.

1.2. Structure of this Manual

This book is about GStreamer from a developer’s point of yiedescribes how to write a GStreamer
application using the GStreamer libraries and tools. Fagianation about writing plugins, we suggest
the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html).

Part | inGStreamer Application Development Manual (0.8.di¥es you an overview of GStreamer’s
motivation design goals.

Chapter 1. Introduction

Part Il in GStreamer Application Development Manual (0.8 /Bpjdly covers the basics of GStreamer
application programming. At the end of that chapter, youssthbe able to build your own audio player
using GStreamer

In Part 11l in GStreamer Application Development Manual (0.8, 11¢ will move on to complicated
subjects which make GStreamer stand out of its competigeswill discuss application-pipeline
interaction using dynamic parameters and interfaces, Wealiscuss threading and threaded pipelines,
scheduling and clocks (and synchronization). Most of tiop&s are not just there to introduce you to
their API, but primarily to give a deeper insight in solvingication programming problems with
GStreamer and understanding their concepts.

Next, inPart IV in GStreamer Application Development Manual (0.8, g will go into higher-level
programming APIs for GStreamer. You don’t exactly need towll the details from the previous parts
to understand this, but you will need to understand basicgaSter concepts nevertheless. We will,
amongst others, discuss XML, playbin and autopluggers.

In Part V inGStreamer Application Development Manual (0.8, ¥/bu will find some random
information on integrating with GNOME, KDE, OS X or Windowsyme debugging help and general
tips to improve and simplify GStreamer programming.

In order to understand this manual, you will need to have a&haglerstanding of the C language. Since
GStreamer uses GLib 2.0 (http://developer.gnome.org/gti/glib.html), the reader is assumed to
understand the basics of the GObject object model
(http://developer.gnome.org/doc/API/2.0/gobjectérdhtml). It is recommended to have skimmed
through the introduction of the GObject tutorial (httpWw.le-hacker.org/papers/gobject/index.html)
before reading this. You may also want to have a look at Eriddwéas book Developing Linux
Applications with GTK+ and GDK

Chapter 2. Motivation & Goals

Linux has historically lagged behind other operating systén the multimedia arena. Microsoft’s
Windows™ and Apple’s MacOS™ both have strong support fortimealdia devices, multimedia content
creation, playback, and realtime processing. Linux, orother hand, has a poorly integrated collection
of multimedia utilities and applications available, whicdn hardly compete with the professional level
of software available for MS Windows and MacOS.

GStreamer was designed to provide a solution to the curiientkimedia problems.

2.1. Current problems

We describe the typical problems in today’s media handlimdtioux.

2.1.1. Multitude of duplicate code

The Linux user who wishes to hear a sound file must hunt thrélugjh collection of sound file players in
order to play the tens of sound file formats in wide use todayst\vf these players basically
reimplement the same code over and over again.

The Linux developer who wishes to embed a video clip in thepligation must use crude hacks to run
an external video player. There is no library available thdeveloper can use to create a custom media
player.

2.1.2. '0One goal’ media players/libraries

Your typical MPEG player was designed to play MPEG video anti@ Most of these players have
implemented a complete infrastructure focused on achigViair only goal: playback. No provisions
were made to add filters or special effects to the video oradadia.

If you want to convert an MPEG-2 video stream into an AVI filepy best option would be to take all of
the MPEG-2 decoding algorithms out of the player and dufditaem into your own AVI encoder.
These algorithms cannot easily be shared across applisatio

Attempts have been made to create libraries for handlingvamedia types. Because they focus on a
very specific media type (avifile, libmpeg2, ...), significaork is needed to integrate them due to a lack
of a common API. GStreamer allows you to wrap these librakigis a common API, which significantly
simplifies integration and reuse.

Chapter 2. Motivation & Goals

2.1.3. Non unified plugin mechanisms

Your typical media player might have a plugin for differen¢dia types. Two media players will
typically implement their own plugin mechanism so that tbdecs cannot be easily exchanged. The
plugin system of the typical media player is also very ta&itbto the specific needs of the application.

The lack of a unified plugin mechanism also seriously hintlereation of binary only codecs. No
company is willing to port their code to all the different gin mechanisms.

While GStreamer also uses it own plugin system it offers & vieh framework for the plugin developer
and ensures the plugin can be used in a wide range of apphsatransparently interacting with other
plugins. The framework that GStreamer provides for the jpisiis flexible enough to host even the most
demanding plugins.

2.1.4. Poor user experience

Because of the problems mentioned above, application eultawe so far often been urged to spend a
considerable amount of time in writing their own backendisgim mechanisms and so on. The result has
often been, unfortunately, that both the backend as weliasiser interface were only half-finished.
Demotivated, the application authors would start rewgitine whole thing and complete the circle. This
leads to gpoor end user experience

2.1.5. Provision for network transparency

No infrastructure is present to allow network transpareatim handling. A distributed MPEG encoder
will typically duplicate the same encoder algorithms foumd non-distributed encoder.

No provisions have been made for technologies such as theM@\@bject embedding using Bonobo
(http://developer.gnome.org/arch/component/bondbd)h

The GStreamer core does not use network transparent texieslat the lowest level as it only adds
overhead for the local case. That said, it shouldn’t be hateaate a wrapper around the core
components. There are tcp plugins now that implement a @iee Data Protocol that allows pipelines
to be slit over TCP. These are located in the gst-plugins rieodivectory gst/tcp.

2.1.6. Catch up with the Windows™ world

We need solid media handling if we want to see Linux succedti®@desktop.

Chapter 2. Motivation & Goals

We must clear the road for commercially backed codecs antimedia applications so that Linux can
become an option for doing multimedia.

2.2. The design goals

We describe what we try to achieve with GStreamer.

2.2.1. Clean and powerful
GStreamer wants to provide a clean interface to:
- The application programmer who wants to build a media pi@elirhe programmer can use an

extensive set of powerful tools to create media pipelingbauit writing a single line of code.
Performing complex media manipulations becomes very easy.

« The plugin programmer. Plugin programmers are provide@archnd simple API to create
self-contained plugins. An extensive debugging and taoiechanism has been integrated.
GStreamer also comes with an extensive set of real-lifeiptutihat serve as examples too.

2.2.2. Object oriented

GStreamer adheres to the GLib 2.0 object model. A progranfeneitiar with GLib 2.0 or older versions
of GTK+ will be comfortable with GStreamer.

GStreamer uses the mechanism of signals and object pregerti
All objects can be queried at runtime for their various pmtips and capabilities.

GStreamer intends to be similar in programming methodotody TK+. This applies to the object
model, ownership of objects, reference counting, ...

2.2.3. Extensible

All GStreamer Objects can be extended using the GObjectitahee methods.

All plugins are loaded dynamically and can be extended agdaged independently.

Chapter 2. Motivation & Goals

2.2.4. Allow binary only plugins

Plugins are shared libraries that are loaded at runtimeeSati the properties of the plugin can be set
using the GObject properties, there is no need (and in fastay) to have any header files installed for
the plugins.

Special care has been taken to make plugins completelgsatiined. All relevant aspects of plugins
can be queried at run-time.

2.2.5. High performance

High performance is obtained by:

using GLib’sg_nmem chunk and fast non-blocking allocation algorithms where possiblminimize
dynamic memory allocation.

extremely light-weight links between plugins. Data canétdahe pipeline with minimal overhead.
Data passing between plugins only involves a pointer dezate in a typical pipeline.

providing a mechanism to directly work on the target memarplugin can for example directly write
to the X server’s shared memory space. Buffers can also pmarbitrary memory, such as a sound
card’s internal hardware buffer.

refcounting and copy on write minimize usage of memcpy. Bufbers efficiently split buffers into
manageable pieces.

the use of cothreads to minimize the threading overheadr€ads are a simple and fast user-space
method for switching between subtasks. Cothreads wereureghd consume as little as 600 cpu
cycles.

allowing hardware acceleration by using specialized plsgi

using a plugin registry with the specifications of the pliegsio that the plugin loading can be delayed
until the plugin is actually used.

all critical data passing is free of locks and mutexes.

2.2.6. Clean core/plugins separation

The core of GStreamer is essentially media-agnostic. it knbws about bytes and blocks, and only
contains basic elements. The core of GStreamer is fundtimmagh to even implement low-level
system tools, like cp.

All of the media handling functionality is provided by plugi external to the core. These tell the core
how to handle specific types of media.

Chapter 2. Motivation & Goals

2.2.7. Provide a framework for codec experimentation

GStreamer also wants to be an easy framework where codelbgev@can experiment with different
algorithms, speeding up the development of open and freémadia codecs like Theora and Vorbis
(http://www.xiph.org/ogg/index.html).

Chapter 3. Foundations

This chapter of the guide introduces the basic concepts tie@®er. Understanding these concepts will

be important in reading any of the rest of this guide, all @thassume understanding of these basic
concepts.

3.1. Elements

An elements the most important class of objects in GStreamer. Youwsllally create a chain of
elements linked together and let data flow through this chb@lements. An element has one specific
function, which can be the reading of data from a file, decgaifthis data or outputting this data to
your sound card (or anything else). By chaining togetheesshsuch elements, you creatpipelinethat
can do a specific task, for example media playback or capBB&reamer ships with a large collection of
elements by default, making the development of a large tyapiemedia applications possible. If needed,
you can also write new elements. That topic is explainedé&agdeal in the Plugin Writer's Guide.

3.2. Bins and pipelines

A binis a container for a collection of elements. A pipeline is acal subtype of a bin that allows
execution of all of its contained child elements. Since liresssubclasses of elements themselves, you
can mostly control a bin as if it where an element, therebyrabng away a lot of complexity for your
application. You can, for example change state on all elésiara bin by changing the state of that bin
itself. Bins also forward some signals from their contaichdds (such as errors and tags).

A pipeline is a bin that allows toun (technically referred to as “iterating”) its contained Idsi. By
iterating a pipeline, data flow will start and media procegsiill take place. A pipeline requires

iterating for anything to happen. you can also use threadshwautomatically iterate the contained
childs in a newly created threads. We will go into this in ddéer on.

3.3. Pads

Padsare used to negotiate links and data flow between elementStre@mer. A pad can be viewed as a
“plug” or “port” on an element where links may be made withatklements, and through which data
can flow to or from those elements. Pads have specific datdihgrapabilities: A pad can restrict the
type of data that flows through it. Links are only allowed begw two pads when the allowed data types
of the two pads are compatible. Data types are negotiatetleetpads using a process calteghs
negotiation Data types are described a&st Caps.

Chapter 3. Foundations

An analogy may be helpful here. A pad is similar to a plug okjan a physical device. Consider, for
example, a home theater system consisting of an amplifiey;[a [@ayer, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed becausetbdévices have audio jacks, and linking
the projector to the DVD player is allowed because both d=s/iave compatible video jacks. Links
between the projector and the amplifier may not be made bec¢hagprojector and amplifier have
different types of jacks. Pads in GStreamer serve the sampope as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way througtkdetween elements. Data flows out
of one element through one or maseurce padsand elements accept incoming data through one or
moresink padsSource and sink elements have only source and sink pagectasly. Data is embodied
in aGst Dat a structure.

ll. Basic Concepts

In these chapters, we will discuss the basic concepts ofe@®ier and the most-used objects, such as
elements, pads and buffers. We will use a visual representat these objects so that we can visualize
the more complex pipelines you will learn to build later oiwuXvill get a first glance at the GStreamer
API, which should be enough for building elementary appiaes. Later on in this part, you will also
learn to build a basic command-line application.

Note that this part will give a look into the low-level API ardncepts of GStreamer. Once you're going
to build applications, you might want to use higher-level&F hose will be discussed later on in this
manual.

Chapter 4. Initializing GStreamer

When writing a GStreamer application, you can simply inelgdt / gst . h to get access to the library
functions. Besides that, you will also need to intialize @®&treamer library.

4.1. Simple initialization

Before the GStreamer libraries can be uggd, i ni t has to be called from the main application. This
call will perform the necessary initialization of the lilbyeas well as parse the GStreamer-specific
command line options.

A typical program' would have code to initialize GStreamer that looks like:this

#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{

guint najor, mnor, mcro;

gst_init (&rgc, &argv);

gst _version (&mjor, &nmnor, &mcro);

printf ("This programis |inked agai nst GStreaner %d.%d. %d\n",

maj or, mnor, mcro);

return O;

Use the GST_VERSION_MAJOR, GST_VERSION_MINOR and GST_8ER_MICRO macros to
get the GStreamer version you are building against, or wséutictiongst _ver si on to get the version
your application is linked against. GStreamer currentlyua scheme where versions with the same
major and minor versions are API-/ and ABI-compatible.

It is also possible to call thgst _i ni t function with two NULL arguments, in which case ho command
line options will be parsed by GStreamer.

11

Chapter 4. Initializing GStreamer

4.2. The popt interface

You can also use a popt table to initialize your own paranseiershown in the next example:

#i ncl ude <gst/gst.h>

i nt
main (int ar gc,
char xargv[])

{
gbool ean silent = FALSE;
gchar *savefile = NULL;
struct poptOption options[] = {
{"silent", 's', POPT_ARG NONE| POPT_ARGFLAG STRI P, &silent, 0,
"do not output status information", NULL},
{"output", "o, POPT_ARG STRI NG POPT_ARGFLAG STRI P, &savefile, O,
"save xnm representation of pipeline to FILE and exit", "FILE"},
POPT_TABLEEND
i
gst_init_with_popt_table (&rgc, &argv, options);
printf ("Run me with --help to see the Application options appended.\n");
return O;
}

As shown in this fragment, you can use a popt (http://deveigpome.org/doc/guides/popt/) table to
define your application-specific command line options, aabfihis table to the function
gst_init_w th_popt_tabl e. Yourapplication options will be parsed in addition to therslard
GStreamer options.

Notes

1. The code for this example is automatically extracted ftbendocumentation and built under
exanpl es/ manual in the GStreamer tarball.

12

Chapter 5. Elements

The most important object in GStreamer for the applicatimgpmmer is th&st El ement
(../..Igstreamer/html/GstElement.html) object. An edarnis the basic building block for a media
pipeline. All the different high-level components you wike are derived frorgst El ement . Every
decoder, encoder, demuxer, video or audio output is in fast & enent

5.1. What are elements?

For the application programmer, elements are best visedbs black boxes. On the one end, you might
put something in, the element does something with it and #unteelse comes out at the other side. For
a decoder element, ifor example, you'd put in encoded dathttze element would output decoded data.
In the next chapter (sé@ads and capabilitigsyou will learn more about data input and output in
elements, and how you can set that up in your application.

5.1.1. Source elements

Source elements generate data for use by a pipeline, for@rasading from disk or from a sound card.
Figure 5-1shows how we will visualise a source element. We always draauace pad to the right of
the element.

Figure 5-1. Visualisation of a source element

source_element

Src

Source elements do not accept data, they only generateYdataan see this in the figure because it only
has a source pad (on the right). A source pad can only gercatde

5.1.2. Filters, convertors, demuxers, muxers and codecs

Filters and filter-like elements have both input and outjpaids. They operate on data that they receive
on their input (sink) pads, and will provide data on theirputt(source) pads. Examples of such elements
are a volume element (filter), a video scaler (convertorQgg demuxer or a Vorbis decoder.

13

Chapter 5. Elements

Filter-like elements can have any number of source or sispA video demuxer, for example, would
have one sink pad and several (1-N) source pads, one for &amkmary stream contained in the
container format. Decoders, on the other hand, will onlyehawe source and sink pads.

Figure 5-2. Visualisation of a filter element

filter

sink Src

Figure 5-2shows how we will visualise a filter-like element. This sffiecélement has one source and
one sink element. Sink pads, receiving input data, are tlpat the left of the element; source pads are
still on the right.

Figure 5-3. Visualisation of a filter element with more than me output pad

demuxer

video

sink

audio

Figure 5-3shows another filter-like element, this one having more thramoutput (source) pad. An
example of one such element could, for example, be an Oggxkarfar an Ogg stream containing both
audio and video. One source pad will contain the elementagovstream, another will contain the
elementary audio stream. Demuxers will generally fire digmndoen a new pad is created. The
application programmer can then handle the new elementiaars in the signal handler.

5.1.3. Sink elements

Sink elements are end points in a media pipeline. They actaptbut do not produce anything. Disk
writing, soundcard playback, and video output would alliogliemented by sink element&igure 5-4
shows a sink element.

14

Chapter 5. Elements

Figure 5-4. Visualisation of a sink element

sink_element

sink

5.2. Creating a Gst El enent

The simplest way to create an elementis togisie el enent _factory_make ()
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstElementFactory.html#gst-
element-factory-make). This function takes a factory namean element name for the newly created
element. The name of the element is something you can usefate look up the element in a bin, for
example. The name will also be used in debug output. You cas gBILL as the name argumentto get a
unique, default name.

When you don’t need the element anymore, you need to unrsiritigst _obj ect _unref ()
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstObject.html#gst-object-
unref). This decreases the reference count for the elenyehtAn element has a refcount of 1 when it
gets created. An element gets destroyed completely wheett@unt is decreased to 0.

The following examplé shows how to create an element narsedrcefrom the element factory named
fakesrc It checks if the creation succeeded. After checking, iefsithe element.

#i ncl ude <gst/gst.h>

i nt
main (int argc,
char xargv[])

{

Gst El enent xel enent;

[+ init GStreamer =*/
gst_init (&rgc, &argv);

[+ create el ement =*/
el ement = gst_el enent _factory_make ("fakesrc", "source");
if (lelement) {
g_print ("Failed to create el enent of type 'fakesrc'\n");
return -1;

}

15

Chapter 5. Elements

gst _obj ect _unref (GST_OBJECT (el enent));

return O;

}

gst _el enent _f act ory_make is actually a shorthand for a combination of two functions. A

Gst El enent
(http://gstreamer.freedesktop.org/data/doc/gstreamtadle/gstreamer/html/GstElement.html) object is
created from a factory. To create the element, you have tagpss to &st El enent Fact ory
(http://gstreamer.freedesktop.org/data/doc/gstrettadle/gstreamer/html/GstElementFactory.html)
object using a unique factory name. This is done wih_el enent _factory_find ()
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstElementFactory.html#gst-
element-factory-find).

The following code fragment is used to get a factory that canded to create tHfakesrcelement, a fake
data source. The functiarst _el enent _factory create ()
(http://gstreamer.freedesktop.org/data/doc/gstreatadle/gstreamer/html/GstElementFactory.html#gst-
element-factory-create) will use the element factory &ate an element with the given

name.

#i ncl ude <gst/gst.h>

i nt
main (int ar gc,
char xargv[])
{
Gst El enent Factory *factory;
Gst El ement = el enent;

/* init GStreaner =*/
gst_init (&rgc, &argv);

/* create el ement, nethod #2 */
factory = gst_element_factory_find ("fakesrc");
if (!factory) {
g print ("Failed to find factory of type ’'fakesrc’'\n");
return -1;
}
el ement = gst_el enent _factory_create (factory, "source");
if ('element) {
g_print ("Failed to create el enent, even though its factory exists!\n");
return -1,

}
gst _obj ect _unref (GST_OBJECT (el ement));

return O;

16

Chapter 5. Elements

5.3. Using an element as a Gbj ect

A Gst El enent
(http://gstreamer.freedesktop.org/data/doc/gstreamtadle/gstreamer/html/GstElement.html) can have
several properties which are implemented using stan@dasflect properties. The usu&bj ect
methods to query, set and get property values@ut anSpecs are therefore supported.

EveryGst El enent inherits at least one property from its par@st Obj ect : the "name" property. This
is the name you provide to the functiogst _el enent _f act ory_make () or

gst_el enent _factory_create (). Youcan getand set this property using the functions

gst _obj ect _set _name andgst _obj ect _get _nane or use theSbj ect property mechanism as
shown below.

#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{

Gst El enent xel enent;
const gchar =*nane;

[+ init GStreamer x/
gst_init (&rgc, &argv);

/* create elenment =*/
el ement = gst_el enent _factory_make ("fakesrc", "source");

/* get nanme */
g_obj ect _get (G OBJECT (el enment), "nane", &niane, NULL);
g_print ("The nanme of the elenent is "%’ .\n", nane);

gst _obj ect _unref (GST_OBJECT (el enent));

return O;

Most plugins provide additional properties to provide misf@rmation about their configuration or to
configure the elemengst-inspectis a useful tool to query the properties of a particular eletie will
also use property introspection to give a short explanattmyut the function of the property and about
the parameter types and ranges it supports. See the apgendetails abougst-inspect

17

Chapter 5. Elements

For more information abou®bj ect properties we recommend you read the GObject manual
(http://developer.gnome.org/doc/API/2.0/gobjectérdhtml) and an introduction to The Glib Object
system (http://le-hacker.org/papers/gobject/indemlht

A Gst El enent
(http://gstreamer.freedesktop.org/data/doc/gstremtadle/gstreamer/html/gstreamer/html/GstElemectttg. html)
also provides variouebj ect signals that can be used as a flexible callback mechanism, tber, you

can usegyst-inspectto see which signals a specific elements supports. Togsigeals and properties

are the most basic way in which elements and applicatioesant.

5.4. More about element factories

In the previous section, we briefly introduced tBst El enent Fact ory
(http://gstreamer.freedesktop.org/data/doc/gstreamtadle/gstreamer/html/GstElement.html) object
already as a way to create instances of an element. Elenwtotiés, however, are much more than just
that. Element factories are the basic types retrieved ftmr@Streamer registry, they describe all plugins
and elements that GStreamer can create. This means tharel&otories are useful for automated
element instancing, such as what autopluggers do, anddating lists of available elements, such as
what pipeline editing applications (e.g. GStreamer Editor
(http://gstreamer.freedesktop.org/modules/gst-editml)) do.

5.4.1. Getting information about an element using a factory

Tools likegst-inspectwill provide some generic information about an elementhsasthe person that
wrote the plugin, a descriptive name (and a shorthame),lkaaad a category. The category can be used
to get the type of the element that can be created using #misesit factory. Examples of categories
includeCodec/ Decoder / Vi deo (video decoder)codec/ Encoder / Vi deo (video encoder),

Sour ce/ Vi deo (a video generatori nk/ Vi deo (a video output), and all these exist for audio as well,
of course. Then, there’s alsvdec/ Denuxer andCodec/ Muxer and a whole lot moregst-inspectwill
give a list of all factories, angst-inspect <factory-name>will list all of the above information, and a

lot more.

#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{
Gst El enent Factory =factory;

/* init GStreaner =*/
gst_init (&rgc, &argv);

/* get factory */
factory = gst_element_factory_find ("sinesrc");

18

Chapter 5. Elements

if (!factory) {
g_print ("You don’t have the ’sinesrc’ elenent installed, go get it!\n");
return -1;

}

/* display information */

g_print ("The "%’ elenent is a nenber of the category %.\n"
"Description: %\n",
gst _plugi n_feature_get_nanme (GST_PLUG N_FEATURE (factory)),
gst _elenment _factory_get_klass (factory),
gst _el ement _factory_get _description (factory));

return O;

You can useyst _regi stry_pool _feature_list (GST_TYPE_ELEMENT_FACTORY) to get a list of
all the element factories that GStreamer knows about.

5.4.2. Finding out what pads an element can contain

Perhaps the most powerful feature of element factoriesaisttiey contain a full description of the pads
that the element can generate, and the capabilities of fhed® (in layman words: what types of media
can stream over those pads), without actually having to tbase plugins into memory. This can be used
to provide a codec selection list for encoders, or it can leldisr autoplugging purposes for media
players. All current GStreamer-based media players armptuggers work this way. We'll look closer at
these features as we learn abasit Pad andGst Caps in the next chapteiPads and capabilities

5.5. Linking elements

By linking a source element with zero or more filter-like elembs and finally a sink element, you set up a
media pipeline. Data will flow through the elements. Thisis basic concept of media handling in
GStreamer.

Figure 5-5. Visualisation of three linked elements

source_element filter sink_element

src sink src sink

19

Chapter 5. Elements

By linking these three elements, we have created a very sigfin of elements. The effect of this will
be that the output of the source element (“elementl1”) wilubed as input for the filter-like element
(“element2”). The filter-like element will do something Withe data and send the result to the final sink
element (“element3”).

Imagine the above graph as a simple Ogg/Vorbis audio decdhersource is a disk source which reads
the file from disc. The second element is a Ogg/Vorbis audomder. The sink element is your
soundcard, playing back the decoded audio data. We willhisesimple graph to construct an
Ogg/Vorbis player later in this manual.

In code, the above graph is written like this:

#i ncl ude <gst/gst.h>

i nt
main (int argc,
char xargv[])

{

Gst El enent xsource, *filter, =sink;

[+ init */
gst_init (&rgc, &argv);

/* create elenments */

source = gst_el enent _factory_make ("fakesrc", "source");
filter = gst_elenent_factory_nake ("identity", "filter");
sink = gst_el ement _factory_nake ("fakesink", "sink");

[+ link */

gst _el ement _l i nk_nany (source, filter, sink, NULL);

[--]

For more specific behaviour, there are also the functigns el ement _| i nk () and
gst _el enent _I i nk_pads (). You can also obtain references to individual pads and lials¢ using
variousgst _pad_I| i nk_* () functions. See the API references for more details.

5.6. Element States

After being created, an element will not actually perforny aations yet. You need to change elements
state to make it do something. GStreamer knows four elentatatss each with a very specific meaning.
Those four states are:

« GST_STATE_NULL: this is the default state. This state will deallocate adbrrces held by the element.

20

Chapter 5. Elements

« GST_STATE_READY: in the ready state, an element has allocated all of its ¢l@saurces, that is,
resources that can be kept within streams. You can thinktadgmning devices, allocating buffers and
so on. However, the stream is not opened in this state, sdréens positions is automatically zero. If
a stream was previously opened, it should be closed in this,sind position, properties and such
should be reset.

« GST_STATE_PAUSED: in this state, an element has opened the stream, but is tivglggrocessing it.
An element should not modify the stream’s position, datangtlaing else in this state. When set back
to PLAYING, it should continue processing at the point whieteft off as soon as possible.

« GST_STATE_PLAYI NG in the PLAYING state, an element does exactly the same dwiRPAUSED
state, except that it actually processes data.

You can change the state of an element using the fungtionel enent _set _state (). If you setan
element to another state, GStreamer will internally trageall intermediate states. So if you set an
element from NULL to PLAYING, GStreamer will internally stite element to READY and PAUSED
in between.

Even though an element 88T_STATE_PLAYI NGis ready for data processing, it will not necessarily do
that. If the element is placed in a thread (&F&apter 1%, it will process data automatically. In other
cases, however, you will neediteratethe element’s container.

Notes

1. The code for this example is automatically extracted ftbendocumentation and built under
exanpl es/ manual in the GStreamer tarball.

21

Chapter 6. Bins

A bin is a container element. You can add elements to a birteSarbin is an element itself, a bin can be
handled in the same way as any other element. Therefore ltbke\previous chapteE{ement$ applies

to bins as well.

6.1. What are bins

Bins allow you to combine a group of linked elements into agidal element. You do not deal with the
individual elements anymore but with just one element, the\We will see that this is extremely
powerful when you are going to construct complex pipelinesesit allows you to break up the pipeline

in smaller chunks.

The bin will also manage the elements contained in it. It figlire out how the data will flow in the bin
and generate an optimal plan for that data flow. Plan gemeratione of the most complicated
procedures in GStreamer. You will learn more about this pss¢called scheduling, @hapter 16

Figure 6-1. Visualisation of a bin with some elements in it

bin

elementl

Src

element2

sink

Src

element3

sink

There are two specialized types of bins available to the €s&ter programmer:

- A pipeline: a generic container that allows scheduling ef¢bntaining elements. The toplevel bin has
to be a pipeline. Every application thus needs at least otfgesk. Applications can iterate pipelines

usinggst _bin_iterate () to make it process data while in the playing state.

- Athread: a bin that will be run in a separate execution thr&ad will have to use this bin if you have
to carefully synchronize audio and video, or for bufferiiygu will learn more about threads in

Chapter 15

22

Chapter 6. Bins

6.2. Creating a bin

Bins are created in the same way that other elements aredréat using an element factory. There are
also convenience functions availabds{_bi n_new (), gst _t hread_new () and

gst _pi pel i ne_new ()). To add elements to a bin or remove elements from a bin, yowsa

gst _bin_add () andgst _bi n_renove (). Note that the bin that you add an element to will take
ownership of that element. If you destroy the bin, the elemeéihbe dereferenced with it. If you remove
an element from a bin, it will be dereferenced automatically

#i ncl ude <gst/gst.h>

int
main (int ar gc,
char xargv[])

{

Gst El enent *hbin, *pipeline, *source, =sink;

[+ init */
gst_init (&rgc, &argv);

/* create */

pi peline = gst_pipeline_new ("ny_pipeline");

bin = gst_pipeline_new ("ny_bin");

source = gst_el enent _factory_make ("fakesrc", "source");
sink = gst_elenent_factory_nake ("fakesink", "sink");

/* set up pipeline */

gst _bin_add_many (GST_BIN (bin), source, sink, NULL);
gst _bin_add (GST_BIN (pipeline), bin);

gst _element _link (source, sink);

[--]

There are various functions to lookup elements in a bin. Moualso get a list of all elements that a bin
contains using the functiagst _bi n_get _l i st (). See the API references Gt Bi n
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstBin.html) for details.

6.3. Custom bins

The application programmer can create custom bins packibdaléments to perform a specific task.
This allows you, for example, to write an Ogg/Vorbis decodih just the following lines of code:
int
main (int argc

char xargv[])

23

Chapter 6. Bins

Gst El enent =pl ayer;

[* init =/
gst_init (&rgc, &argv);

[+ create player =/
pl ayer = gst_elenment_factory_nake ("oggvorbisplayer", "player");

/+ set the source audio file =/
g_obj ect _set (G OBJECT (player), "location", "helloworld.ogg", NULL);

/* start playback */
gst _el ement _set_state (GST_ELEMENT (pl ayer), GST_STATE _PLAYI NG ;

[--]
}

Custom bins can be created with a plugin or an XML descriptiu will find more information about
creating custom bin in the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html).

24

Chapter 7. Pads and capabilities

As we have seen iRlementsthe pads are the element’s interface to the outside wowdth Bireams

from one element’s source pad to another element’s sink @l specific type of media that the element
can handle will be exposed by the pad’s capabilities. Wetalil more on capabilities later in this
chapter (se&ection 7.2

7.1. Pads

A pad type is defined by two properties: its direction andviailability. As we've mentioned before,
GStreamer defines two pad directions: source pads and sitsk phis terminology is defined from the
view of within the element: elements receive data on thek piads and generate data on their source
pads. Schematically, sink pads are drawn on the left side efement, whereas source pads are drawn
on the right side of an element. In such graphs, data flows fefto right.*

Pad directions are very simple compared to pad availabflifyad can have any of three availabilities:
always, sometimes and on request. The meaning of thosetjfpreeis exactly as it says: always pads
always exist, sometimes pad exist only in certain casescandlisappear randomly), and on-request
pads appear only if explicitely requested by applications.

7.1.1. Dynamic (or sometimes) pads

Some elements might not have all of their pads when the eleimereated. This can happen, for
example, with an Ogg demuxer element. The element will readXgg stream and create dynamic pads
for each contained elementary stream (vorbis, theora) ithdatects such a stream in the Ogg stream.
Likewise, it will delete the pad when the stream ends. Thisqgiple is very useful for demuxer elements,
for example.

Running gst-inspect oggdemux will show that the elemenboinésone pad: a sink pad called 'sink’. The
other pads are “dormant”. You can see this in the pad tempktause there is an “Exists: Sometimes”
property. Depending on the type of Ogg file you play, the paiide created. We will see that this is
very important when you are going to create dynamic pipslitveu can attach a signal handler to an
element to inform you when the element has created a new paddne of its “sometimes” pad
templates. The following piece of code is an example of hodatthis:

#i ncl ude <gst/gst.h>

static void

cb_new pad (GstEl enent =*el ement,
Gst Pad *pad,
gpoi nt er dat a)

{

g_print ("A new pad % was created\n", gst_pad_get_nane (pad));

25

[..

}

Chapter 7. Pads and capabilities

/* here, you would setup a new pad link for the newy created pad */

]

int
mai n(int argc, char *argv[])

{

Gst El enent =*pi pel i ne, *source, =*denux;

[+ init */
gst_init (&rgc, &argv);

/+ create elenments =/
pi peline = gst_pipeline_new ("ny_pipeline");

source = gst_elenent _factory_nake ("filesrc", "source");
g_obj ect _set (source, "location", argv[1], NULL);
denmux = gst_el enment _factory_nake ("oggdenux", "denuxer");

/+* you would nornally check that the el enents were created properly =/

/* put together a pipeline */
gst _bin_add_many (GST_BIN (pipeline), source, dermux, NULL);
gst _el ement _|ink (source, demux);

/* listen for newly created pads =*/
g_si gnal _connect (denux, "new pad", G CALLBACK (cb_new pad), NULL);

/+ start the pipeline */
gst _el ement _set_state (GST_ELEVMENT (pi peline), GST_STATE_PLAYI NG ;
while (gst_bin_iterate (GST_BIN (pipeline)));

-]

7.1.2. Request pads

An element can also have request pads. These pads are rtetdcaetomatically but are only created on
demand. This is very useful for multiplexers, aggregatostee elements. Aggregators are elements
that merge the content of several input streams togeth@pimé output stream. Tee elements are the
reverse: they are elements that have one input stream agdhisistream to each of their output pads,
which are created on request. Whenever an application regexdker copy of the stream, it can simply
request a new output pad from the tee element.

The following piece of code shows how you can request a nepubyiad from a “tee” element:

26

Chapter 7. Pads and capabilities

static void
sonme_function (GstEl ement *tee)

{
Gst Pad * pad;

pad = gst_el enent _get _request _pad (tee, "src%d");
g_print ("A new pad % was created\n", gst_pad_get_nane (pad));

/* here, you would link the pad */
[..]
}

Thegst _el ement _get _request _pad () method can be used to get a pad from the element based on
the name of the pad template. It is also possible to requesd &hat is compatible with another pad
template. This is very useful if you want to link an elemenatmultiplexer element and you need to
request a pad that is compatible. The methsd_el enment _get _conpati bl e_pad () can be used to
request a compatible pad, as shown in the next example.lltegiiest a compatible pad from an Ogg
multiplexer from any input.

static void
link_to_multiplexer (GstPad +xt ol i nk_pad,
Gst El enent *nux)

{
Gst Pad *pad;

pad = gst_el enent _get _conpati bl e_pad (mux, tolink_pad);
gst _pad_link (tolinkpad, pad);

g_print ("A new pad % was created and |inked to %\n",
gst _pad_get _name (pad), gst_pad_get_nane (tolink_pad));

7.2. Capabilities of a pad

Since the pads play a very important role in how the elemevitised by the outside world, a
mechanism is implemented to describe the data that can flowrcently flows through the pad by using
capabilities. Here,w e will briefly describe what capakabtare and how to use them, enough to get an
understanding of the concept. For an in-depth look into biitias and a list of all capabilities defined in
GStreamer, see the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html).

Capabilities are attached to pad templates and to padsaéademplates, it will describe the types of
media that may stream over a pad created from this templatgddls, it can either be a list of possible

27

Chapter 7. Pads and capabilities

caps (usually a copy of the pad template’s capabilities)Hich case the pad is not yet negotiated, or it is
the type of media that currently streams over this pad, irctvibase the pad has been negotiated already.

7.2.1. Dissecting capabilities

A pads capabilities are described ii&st Caps object. Internally, &st Caps
(../../gstreamer/html/gstreamer-GstCaps.html) wilitedn one or mor&st St r uct ur e
(../..Igstreamer/html/gstreamer-GstStructure.hthdj will describe one media type. A negotiated pad
will have capabilities set that contain exaabliyestructure. Also, this structure will contain orfixed
values. These constraints are not true for unnegotiatesl @aplad templates.

As an example, below is a dump of the capabilities of the “igatec” element, which you will get by
runninggst-inspect vorbisdec You will see two pads: a source and a sink pad. Both of theds aie
always available, and both have capabilities attachedetimtf he sink pad will accept vorbis-encoded
audio data, with the mime-type “audio/x-vorbis”. The saipad will be used to send raw (decoded)
audio samples to the next element, with a raw audio mime-{tyipleer “audio/x-raw-int” or
“audio/x-raw-float”). The source pad will also contain pesfes for the audio samplerate and the
amount of channels, plus some more that you don’t need tonedrout for now.

Pad Tenpl at es:
SRC tenplate: 'src’
Avai l ability: Al ways
Capabi lities:
audi o/ x-raw f | oat
rate: [8000, 50000]
channels: [1, 2]
endi anness: 1234
wi dt h: 32
buffer-franes: 0

SINK tenpl ate: ’sink’
Avail ability: Al ways
Capabi lities:

audi o/ x-vorbi s

7.2.2. Properties and values

Properties are used to describe extra information for céipeb. A property consists of a key (a string)
and a value. There are different possible value types thmbeaised:

- Basic types, this can be pretty much &y pe registered with Glib. Those properties indicate a
specific, non-dynamic value for this property. Exampledlde:

- Aninteger valueG_TYPE_I NT): the property has this exact value.
- Aboolean value@ TYPE_BOOLEAN): the property is either TRUE or FALSE.

28

Chapter 7. Pads and capabilities

- Afloat value G_TYPE_FLQAT): the property has this exact floating point value.
- Astring value G_TYPE_STRI NG): the property contains a UTF-8 string.

Range types aréTypes registered by GStreamer to indicate a range of possiblesalhey are used
for indicating allowed audio samplerate values or suppbvtdeo sizes. The two types defined in
GStreamer are:

- Aninteger range valuedST_TYPE_| NT_RANGE): the property denotes a range of possible integers,
with a lower and an upper boundary. The “vorbisdec” elemfentexample, has a rate property that
can be between 8000 and 50000.

. Afloat range value@ST_TYPE_FLOAT_RANGE): the property denotes a range of possible floating
point values, with a lower and an upper boundary.

A list value (GST_TYPE_LI ST): the property can take any value from a list of basic valuesrgin
this list.

7.3. What capabilities are used for

Capabilities describe the type of data that is streameddstwwo pads, or that one pad (template)
supports. This makes them very useful for various purposes:

Autoplugging: automatically finding elements to link to aldzased on its capabilities. All
autopluggers use this method.

Compatibility detection: when two pads are linked, GStreaoan verify if the two pads are talking
about the same media type. The process of linking two padslcking if they are compatible is
called “caps negotiation”.

Metadata: by reading the capabilities from a pad, appboatcan provide information about the type
of media that is being streamed over the pad, which is inftonabout the stream thatis currently
being played back.

Filtering: an application can use capabilities to limit hessible media types that can stream between
two pads to a specific subset of their supported stream typeapplication can, for example, use
“filtered caps” to set a specific (non-fixed) video size thdt stream between two pads.

7.3.1. Using capabilities for metadata

A pad can have a set (i.e. one or more) of capabilities atththi. You can get values of propertiesin a
set of capabilities by querying individual properties okmtructure. You can get a structure from a caps
usinggst _caps_get _structure ():

static void
read_vi deo_props (GstCaps *caps)

29

Chapter 7. Pads and capabilities

gint wi dth, height;
const GstStructure =*str;

str = gst_caps_get_structure (caps, 0);
if (!gst_structure_get_int (str, "width", & dth) ||
lgst_structure_get_int (str, "height", &height)) {
g_print ("No w dth/height avail able\n");
return;

}

g_print ("The video size of this set of capabilities is %x%\n",
wi dt h, height);

7.3.2. Creating capabilities for filtering

While capabilities are mainly used inside a plugin to déscthe media type of the pads, the application
programmer also has to have basic understanding of capeiti order to interface with the plugins,
especially when using filtered caps. When you're using élieraps or fixation, you're limiting the
allowed types of media that can stream between two pads thsesaf their supported media types. You
do this by filtering using your own set of capabilities. In erdo do this, you need to create your own
Gst Caps. The simplest way to do this is by using the convenience fangfst _caps_new_si npl e

()

static void
link_pads_with filter (GstPad *one,

{

Gst Pad *ot her)
Gst Caps *caps;

caps = gst_caps_new sinple ("video/x-raw yuv",
"width", G TYPE_INT, 384,
"height", G TYPE_INT, 288,
"franerate", G _TYPE DOUBLE, 25.,
NULL) ;
gst_pad_link_filtered (one, other, caps);

In some cases, you will want to create a more elaborate seipaftilities to filter a link between two
pads. Then, this function is too simplistic and you'll wamtise the methodst _caps_new ful | ():

static void
link _pads_with filter (GstPad *one,

{

Gst Pad *ot her)

Gst Caps *caps;

30

Chapter 7. Pads and capabilities

caps = gst_caps_new full (
gst _structure_new ("video/ x-raw yuv",
"wi dth", G TYPE_INT, 384,
"height", G TYPE_INT, 288,
"franmerate", G TYPE DOUBLE, 25.,
NULL) ,
gst _structure_new ("vi deo/ x-rawrgbh",
"wi dth", G TYPE_INT, 384,
"height", G TYPE_INT, 288,
"franmerate", G TYPE DOUBLE, 25.,
NULL) ,
NULL) ;

gst_pad_link_filtered (one, other, caps);

}

See the API references for the full API Gt St r uct ur e andGst Caps.

7.4. Ghost pads

You can see fronfrigure 7-1how a bin has no pads of its own. This is where "ghost pads" dotoglay.

Figure 7-1. Visualisation of aGst Bi n (../../gstreamer/html/GstBin.html) element without ghcst

pads

bin

elementl element2

sink Src sink

Src

element3

sink

A ghost pad is a pad from some element in the bin that can besedairectly from the bin as well.
Compare it to a symbolic link in UNIX filesystems. Using ghpats on bins, the bin also has a pad and

can transparently be used as an element in other parts otpader

31

Chapter 7. Pads and capabilities

Figure 7-2. Visualisation of aGst Bi n (../../gstreamer/html/GstBin.html) element with a ghosipad

bin

elementl element2 element3

| sink src sink src sink

sink

Figure 7-2is a representation of a ghost pad. The sink pad of elemerisorev also a pad of the bin.
Obviously, ghost pads can be added to any type of elemerttgisido aGst Bi n.

A ghostpad is created using the functigst _el enent _add_ghost _pad ():

#i ncl ude <gst/gst.h>

i nt
main (int ar gc,
char xargv[])

{

Gst El enent *bin, *sink;

[+ init */
gst_init (&rgc, &argv);

/* create elenment, add to bin, add ghostpad =*/
sink = gst_elenent_factory_nake ("fakesink", "sink");
bin = gst_bi n_new ("mybin");
gst _bin_add (GST_BIN (bin), sink);
gst _el ement _add_ghost _pad (bin,
gst _el ement _get _pad (sink, "sink"), "sink");

In the above example, the bin now also has a pad: the pad ¢aligd of the given element. The bin
can, from here on, be used as a substitute for the sink eleMantould, for example, link another
element to the bin.

32

Chapter 7. Pads and capabilities

Notes

1. Inreality, there is no objection to data flowing from a smupad to the sink pad of an element
upstream (to the left of this element in drawings). Data,widwever, always flow from a source pad
of one element to the sink pad of another.

33

Chapter 8. Buffers and Events

The data flowing through a pipeline consists of a combinatidsuffers and events. Buffers contain the
actual pipeline data. Events contain control informatguch as seeking information and end-of-stream
notifiers. All this will flow through the pipeline automatitawhen it's running. This chapter is mostly
meant to explain the concept to you; you don’t need to do amgtior this.

8.1. Buffers

Buffers contain the data that will flow through the pipelirmiyhave created. A source element will
typically create a new buffer and pass it through a pad to &x¢ @lement in the chain. When using the
GStreamer infrastructure to create a media pipeline younsil have to deal with buffers yourself; the
elements will do that for you.

A buffer consists, amongst others, of:

- A pointer to a piece of memory.
« The size of the memory.
- A timestamp for the buffer.

- Arefcount that indicates how many elements are using thfeb his refcount will be used to
destroy the buffer when no element has a reference to it.

The simple case is that a buffer is created, memory allocdegd put in it, and passed to the next
element. That element reads the data, does something (@kérmy a new buffer and decoding into it),
and unreferences the buffer. This causes the data to bedraad the buffer to be destroyed. A typical
video or audio decoder works like this.

There are more complex scenarios, though. Elements carfyrimdfers in-place, i.e. without allocating
a new one. Elements can also write to hardware memory (suithrasrideo-capture sources) or
memory allocated from the X-server using XShm). Buffers bamead-only, and so on.

8.2. Events

Events are control particles that are sent both up- and dogars in a pipeline along with buffers.
Downstream events notify fellow elements of stream std&essible events include discontinuities,
flushes, end-of-stream notifications and so on. Upstreamt&aee used both in application-element
interaction as well as event-event interaction to requieahges in stream state, such as seeks. For
applications, only upstream events are important. Dowastrevents are just explained to get a more
complete picture of the data concept.

34

Chapter 8. Buffers and Events

Since most applications seek in time units, our examplevbdlmes so too:

static void
seek_to_time (GstEl enent xel enent,

gui nt 64 ti me_ns)
{
Gst Event *event;
event = gst_event _new seek (GST_SEEK METHOD_SET |
GST_FORMAT_TI ME,
time_ns);
gst _el ement _send_event (el enent, event);
}

The functiongst _el ement _seek () is a shortcut for this. This is mostly just to show how it allnks.

35

Chapter 9. Your first application

This chapter will summarize everything you've learned ia fitevious chapters. It describes all aspects
of a simple GStreamer application, including initializiigraries, creating elements, packing elements
together in a pipeline and playing this pipeline. By doinglaik, you will be able to build a simple
Ogg/Vorbis audio player.

9.1. Hello world

We're going to create a simple first application, a simple @gthis command-line audio player. For
this, we will use only standard GStreamer components. Tégeplwill read a file specified on the
command-line. Let’s get started!

We've learned, irChapter 4that the first thing to do in your application is to initisdiZsStreamer by
callinggst _init (). Also, make sure that the application inclu@gs/ gst . h so all function names
and objects are properly defined. Usencl ude <gst/ gst. h>to do that.

Next, you'll want to create the different elements usysg _el enent _factory_make (). Foran
Ogg/Vorbis audio player, we’'ll need a source element thadisdiles from a disk. GStreamer includes
this element under the name “filesrc”. Next, we’'ll need sdnmgf to parse the file and decoder it into
raw audio. GStreamer has two elements for this: the firstgsagg streams into elementary streams
(video, audio) and is called “oggdemux”. The second is a ioalndio decoder, it's conveniently called
“vorbisdec”. Since “oggdemux” creates dynamic pads foheslementary stream, you'll need to set a
“new-pad” event handler on the “oggdemux” element, like'yelearned inSection 7.1.1to link the
Ogg parser and the Vorbis decoder elements together. Atadt also need an audio output element,
we will use “alsasink”, which outputs sound to an ALSA audavite.

The last thing left to do is to add all elements into a conta@ement, &Gst Pi pel i ne, and iterate this
pipeline until we've played the whole song. We've previgusirned how to add elements to a container
bin in Chapter 6and we've learned about element stateSéction 5.6\We will use the function
gst_bin_sync_children_state () tosynchronize the state of a bin on all of its contained chitd

Let's now add all the code together to get our very first audtyer:

#i ncl ude <gst/gst.h>

| *

* @ obal objects are usually a bad thing. For the purpose of this
* exanple, we will use them however.

*/

Gst El enent =*pi peline, *source, =*parser, *decoder, *conv, xscale, xsink;

36

Chapter 9. Your first application

static void
new_pad (GstEl ement =*el enent,

}

Gst Pad *pad,
gpoi nter dat a)
/+ We can now link this pad with the audi o decoder and
* add both decoder and audi o output to the pipeline. =*/
gst _pad_link (pad, gst_elenment_get_pad (decoder, "sink"));
gst _bin_add_many (GST_BIN (pipeline), decoder, conv, scale, sink, NULL);
/+* This function synchronizes a bins state on all of its
* contained children. =/
gst _bin_sync_children_state (GST_BIN (pipeline));

int
main (int argc,

{

char xargv[])

[+ initialize GStreamer =/
gst_init (&rgc, &argv);

/* check input argunents =/

if (argc '= 2) {
g_print ("Usage: % <QOgg/ Vorbis filenanme>\n", argv[O0]);
return -1;

}

/+ create elenments =/
pi pel i ne = gst_pi peline_new ("audi o-pl ayer");

source = gst_elenent_factory_make ("filesrc", "file-source");
parser = gst_elenent_factory_nake ("oggdenux", "ogg-parser");
decoder = gst_el enent _factory_make ("vorbisdec", "vorbis-decoder");
conv = gst_el enent _factory_nmake ("audi oconvert"”, "conv");

scal e = gst_el ement _factory_make ("audi oscal e", "scale");

sink = gst_elenment _factory_nake ("al sasi nk", "al sa-output");

/* set filename property on the file source */
g_obj ect _set (G OBJECT (source), "location", argv[1l], NULL);

/* link together - note that we cannot |ink the parser and

* decoder yet, becuse the parser uses dynami c pads. For that,

* we set a new pad signal handler. =/

gst _el ement _link (source, parser);

gst _el ement _| i nk_nmany (decoder, conv, scale, sink, NULL);

g_si gnal _connect (parser, "new pad", G CALLBACK (new_pad), NULL);

/+* put all elenents in a bin - or at |east the ones we will use
* instantly. =/

gst _bin_add_many (GST_BIN (pipeline), source, parser, NULL);

/* Now set to playing and iterate. W will set the decoder and

37

Chapter 9. Your first application

* audio output to ready so they initialize their menory already.
* This will decrease the anmount of time spent on |linking these
* el enents when the Ogg parser enmits the new pad signal. =/

gst _el ement _set_state (decoder, GST_STATE_READY);

gst _el ement _set_state (conv, GST_STATE_READY);

gst _el ement _set_state (scal e, GST_STATE READY);

gst _el ement _set_state (sink, GST_STATE_READY);

gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;

/+ and now iterate - the rest will be autonatic from here on.
* When the file is finished, gst_bin_iterate () will return
* FALSE, thereby terminating this |oop. */

while (gst_bin_iterate (GST_BIN (pipeline))) ;

/* clean up nicely x/
gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

We now have created a complete pipeline. We can visualisgipledine as follows:

Figure 9-1. The "hello world" pipeline

pipeline

disk_source decoder play_audio

Src sink Src sink

9.2. Compiling and Running helloworld.c

To compile the helloworld example, usgcc -Wall $(pkg-config --cflags --libs gstreamer-0.8)
helloworld.c -o helloworld. GStreamer makes use jgkg-configto get compiler and linker flags needed
to compile this application. If you're running a non-stardiestallation, make sure the

38

Chapter 9. Your first application

PKG_CONFI G_PATHenvironment variable is set to the correct locati$hi(bdi r / pkgconfi g).
application against the uninstalled location.

You can run this example application wittnelloworld file.ogg Substituté i | e. ogg with your
favourite Ogg/Vorbis file.

9.3. Conclusion

This concludes our first example. As you see, setting up dipgis very low-level but powerful. You

will see later in this manual how you can create a more powearédia player with even less effort using
higher-level interfaces. We will discuss all that in

Part IV in GStreamer Application Development Manual (0.8.19@ will first, however, go more
in-depth into more advanced GStreamer internals.

It should be clear from the example that we can very easillacepthe “filesrc” element with some other
element that reads data from a network, or some other dataeselement that is better integrated with
your desktop environment. Also, you can use other decodelparsers to support other media types.
You can use another audio sink if you’re not running Linux, lllac OS X, Windows or FreeBSD, or
you can instead use a filesink to write audio files to disk mstef playing them back. By using an audio
card source, you can even do audio capture instead of playB#dchis shows the reusability of
GStreamer elements, which is its greatest advantage.

39

Ill. Advanced GStreamer concepts

In this part we will cover the more advanced features of GBtrer. With the basics you learned in the
previous part you should be able to creatmapleapplication. However, GStreamer provides much
more candy than just the basics of playing back audio filethitnchapter, you will learn more of the
low-level features and internals of GStreamer, such astigiescheduling, synchronization, metadata,
interfaces and dynamic parameters.

Chapter 10. Position tracking and seeking

So far, we've looked at how to create a pipeline to do mediagssing and how to make it run
("iterate™). Most application developers will be interdin providing feedback to the user on media
progress. Media players, for example, will want to show deslishowing the progress in the song, and
usually also a label indicating stream length. Transcodjmglications will want to show a progress bar
on how much % of the task is done. GStreamer has built-in stijfadoing all this using a concept
known asquerying Since seeking is very similar, it will be discussed here a.\Beeking is done using
the concept oévents

10.1. Querying: getting the position or length of a stream

Querying is defined as requesting a specific stream-propaletied to progress tracking. This includes
getting the length of a stream (if available) or getting therent position. Those stream properties can be
retrieved in various formats such as time, audio sampléego/frames or bytes. The functions used are
gst _el enent _query () andgst _pad_query ().

Obviously, using either of the above-mentioned functi@tgiires the application to knowhichelement
or pad to run the query on. This is tricky, but there are sonmgides to the story. The good thing is
that elements (or, rather, pads - sinee _el ement _query () internally callsgst _pad_query ())
forward (“dispatch”) events and queries to peer pads (anel#s) if they don’t handle it themselves. The
bad side is that some elements (or pads) will handle evemtsidt the specific formats that you want,
and therefore it still won't work.

Most queries will, fortunately, work fine. Queries are alwalspatched backwards. This means,
effectively, that it's easiest to run the query on your vide@udio output element, and it will take care of
dispatching the query to the element that knows the answeh @s the current position or the media
length; usually the demuxer or decoder).

#i ncl ude <gst/gst.h>

gi nt

mai n (gint argc,
gchar xargv[])

{

Gst El enent *sink, =pipeline;

[-.]
/* run pipeline =/
do {
gint64 |l en, pos;
Gst Format fnt = GST_FORMAT_TI ME;

if (gst_element_query (sink, GST_QUERY_POSITION, & nt, &pos) &&

41

Chapter 10. Position tracking and seeking

gst _el ement _query (sink, GST_QUERY_TOTAL, & mt, & en)) {
g_print ("Tinme: % GST_TIME_FORMAT " / % GST_TI ME_FORMAT "\r",
GST_TI ME_ARGS (pos), GST_TIME_ARGS (len));

}
} while (gst_bin_iterate (GST_BIN (pipeline)));

[--]
}

If you are having problems with the dispatching behavioagnbest bet is to manually decide which
element to start running the query on. You can get a list opsued formats and query-types with
gst _el enent _get _query_types () andgst_el ement _get _formats ().

10.2. Events: seeking (and more)

Events work in a very similar way as queries. Dispatchingefample, works exactly the same for
events (and also has the same limitations). Although therenare ways in which applications and
elements can interact using events, we will only focus okisgehere. This is done using the seek-event.
A seek-event contains a seeking offset, a seek method (Widatates relative to what the offset was
given), a seek format (which is the unit of the offset, exgej audio samples, video frames or bytes) and
optionally a set of seeking-related flags (e.g. whetheriatiebuffers should be flushed). The behaviour
of a seek is also wrapped in the functigst _el ement _seek ().

static void
seek_to_tinme (GstElenent xaudi osink,
gi nt 64 t i me_nanonseconds)
{
gst _el ement _seek (audi osi nk,
GST_SEEK_METHOD_SET | GST_FORVAT_TI ME |
GST_SEEK_FLAG FLUSH, tine_nanoseconds);

42

Chapter 11. Metadata

GStreamer makes a clear distinction between two types adaatd, and has support for both types. The
first is stream tags, which describe the content of a streaamion-technical way. Examples include the
author of a song, the title of that very same song or the altiusrei part of. The other type of metadata is
stream-info, which is a somewhat technical descriptiorhefgroperties of a stream. This can include
video size, audio samplerate, codecs used and so on. Tagaratked using the GStreamer tagging
system. Stream-info can be retrieved fror@sa Pad.

11.1. Stream information

Stream information can most easily be read by reading them &Gst Pad. This has already been
discussed before iBection 7.3.1Therefore, we will skip it here.

11.2. Tag reading

Tag reading is remarkably simple in GStreamer Every elersgpports the “found-tag” signal, which
will be fired each the time the element reads tags from thaustré Gst Bi n will conveniently forward
tags found by its childs. Therefore, in most applicatiorma will only need to connect to the “found-tag”
signal on the top-most bin in your pipeline, and you will anttically retrieve all tags from the stream.

Note, however, that the “found-tag” might be fired multiglaé¢s and by multiple elements in the
pipeline. It is the application’s responsibility to put tibse tags together and display them to the user in
a nice, coherent way.

11.3. Tag writing

WRITEME

43

Chapter 12. Interfaces

In Section 5.3you have learned how to ugebj ect properties as a simple way to do interaction
between applications and elements. This method sufficabémimple’n’straight settings, but fails for
anything more complicated than a getter and setter. For thre somplicated use cases, GStreamer uses
interfaces based on the Gl nt er f ace type.

Most of the interfaces handled here will not contain any eplencode. See the API references for
details. Here, we will just describe the scope and purposaci interface.

12.1. The Mixer interface

The mixer interface provides a uniform way to control theuwrok on a hardware (or software) mixer.
The interface is primarily intended to be implemented byredats for audio inputs and outputs that talk
directly to the hardware (e.g. OSS or ALSA plugins).

Using this interface, it is possible to control a list of tkkadsuch as Line-in, Microphone, etc.) from a
mixer element. They can be muted, their volume can be chaagedor input tracks, their record flag
can be set as well.

Example plugins implementing this interface include theS@%ments (osssrc, osssink, ossmixer) and
the ALSA plugins (alsasrc, alsasink and alsamixer).

12.2. The Tuner interface

The tuner interface is a uniform way to control inputs andooits on a multi-input selection device. This
is primarily used for input selection on elements for TV- axagbture-cards.

Using this interface, it is possible to select one track fhst of tracks supported by that tuner-element.
The tuner will than select that track for media-processirigrnally. This can, for example, be used to
switch inputs on a TV-card (e.g. from Composite to S-video).

This interface is currently only implemented by the Vidéndk and Video4linux2 elements.

12.3. The Color Balance interface

The colorbalance interface is a way to control video-relgperties on an element, such as brightness,

44

Chapter 12. Interfaces

contrast and so on. It's sole reason for existance is thdaras its authors know, there’s no way to
dynamically register properties usi®@bj ect .

The colorbalance interface is implemented by several pkjgncluding xvimagesink and the
Video4linux and Video4linux2 elements.

12.4. The Property Probe interface

The property probe is a way to autodetect allowed values @ig ect property. It's primary use (and
the only thing that we currently use it for) is to autodetestides in several elements. For example, the
OSS elements use this interface to detect all OSS devicesystem. Applications can then “probe”
this property and get a list of detected devices. Given tteglag between HAL and the practical
implementations of this interface, this might in time be @sated in favour of HAL.

This interface is currently implemented by many elememisuiding the ALSA, OSS, Video4linux and
Video4linux2 elements.

12.5. The X Overlay interface

The X Overlay interface was created to solve the problem dfentding video streams in an application
window. The application provides an X-window to the elememilementing this interface to draw on,
and the element will then use this X-window to draw on rathantcreating a new toplevel window. This
is useful to embed video in video players.

This interface is implemented by, amongst others, the \VAdeox and Video4linux2 elements and by
ximagesink, xvimagesink and sdlvideosink.

45

Chapter 13. Clocks in GStreamer

WRITEME

46

Chapter 14. Dynamic Parameters

14.1. Getting Started

The Dynamic Parameters subsystem is contained withiggheont r ol library. You need to include
the header in your application’s source file:

#i ncl ude <gst/gst.h>
#i ncl ude <gst/control/control.h>

Your application should link to the shared libraygt cont r ol .

Thegst cont rol library needs to be initialized when your application is.rlihis can be done after the
the GStreamer library has been initialized.

gst _init(&argc, &argv);
gst_control _init(&argc, &rgv);

14.2. Creating and Attaching Dynamic Parameters

Once you have created your elements you can create and dftacdims to them. First you need to get
the element’s dparams manager. If you know exactly what &frelement you have, you may be able to
get the dparams manager directly. However if this is notiptessyou can get the dparams manager by
callinggst _dpman_get _manager .

Once you have the dparams manager, you must set the modedhmanhager will run in. There is
currently only one mode implemented calteglynchr onous" - this is used for real-time applications
where the dparam value cannot be known ahead of time (suchkl@eain a GUI). The mode is called
"synchronous" because the dparams are polled by the element for changee leefch buffer is
processed. Another yet-to-be-implemented modeis/nchr onous” . This is used when parameter
changes are known ahead of time - such as with a timelinedred@le mode is called

"asynchr onous" because parameter changes may happen in the middle of a Ibeiffigg processed.

Gst El enent *si nesrc;
Gst DPar amvanager *dpman;

a7

Chapter 14. Dynamic Parameters
sinesrc = gst_el enent _factory_make("sinesrc", "sine-source");

dpman = gst _dpnan_get _manager (sinesrc);
gst _dpnan_set _node(dpman, "synchronous");

If you don’t know the names of the required dparams for yoanaint you can call

gst _dpman_l i st_dpar am specs(dpnan) to get a NULL terminated array of param specs. This
array should be freed after use. You can find the name of theremtjdparam by calling

g_param spec_get _nane on each param spec in the array. In our example) ume" will be the
name of our required dparam.

Each type of dparam currently has its ongw function. This may eventually be replaced by a factory
method for creating new instances. A default dparam ingtaaa be created with thgst _dpar am new
function. Once it is created it can be attached to a requipedaim in the element.

Gst DPar am *vol une;

vol une = gst_dparam new(G_TYPE_DOUBLE) ;
if (gst_dpnan_attach_dparam (dpman, "vol une", vol une)){
/+* the dparam was successfully attached =/

14.3. Changing Dynamic Parameter Values

All interaction with dparams to actually set the dparam eakidone through simple GObject properties.
There is a property value for each type that dparams supptiése currently beingval ue_doubl e",
"val ue_float","val ue_i nt" and"val ue_i nt 64". To set the value of a dparam, simply set the
property which matches the type of your dparam instance.

#defi ne ZERQ(nen) nenset (&em 0, sizeof (nmem)

gdoubl e set _to_val ue;

Gst DPar am *vol une;

Gval ue set val;

ZER(Q(set _val) ;

g_value_init(&set_val, G TYPE_DOUBLE);

g_val ue_set _doubl e(&set_val, set_to_val ue);
g_obj ect _set _property(G OBJECT(vol une), "val ue_doubl e", &set_val);

Or if you create an actual GValue instance:

48

Chapter 14. Dynamic Parameters

gdoubl e set _to_val ue;

Gst DPar am xvol une;

Gval ue *set _val;

set _val = g_new0O(Gval ue, 1);
g_value_init(set_val, G TYPE DOUBLE);

g_val ue_set _doubl e(set _val, set_to_val ue);
g_obj ect _set _property(G OBJECT(vol une), "val ue_double", set_val);

14.4. Different Types of Dynamic Parameter

There are currently only two implementations of dparamsasoTthey are both for real-time use so
should be run in thésynchr onous" mode.

14.4.1. GstDParam - the base dparam type

All dparam implementations will subclass from this typepiovides a basic implementation which
simply propagates any value changes as soon as it can. A seam@e can be created with the function
Gst DPar amx gst _dparam new (GType type) . It has the following object properties:

« "val ue_doubl e" - the property to set and get if it is a double dparam

- "value_float" -the property to set and get ifit is a float dparam

- "val ue_i nt" -the property to set and get if it is an integer dparam

- "val ue_i nt 64" -the property to set and get if it is a 64 bit integer dparam

- "is_log" -readonly boolean which is TRUE if the param should be diggdeon a log scale

- "is_rate" - readonly boolean which is TRUE if the value is a proportiothe sample rate. For
example with a sample rate of 44100, 0.5 would be 22050 Hz afivdould be 11025 Hz.

14.4.2. GstDParamSmooth - smoothing real-time dparam

Some parameter changes can create audible artifacts itH@ge too rapidly. The GstDParamSmooth

implementation can greatly reduce these artifacts byilmithe rate at which the value can change. This

is currently only supported for double and float dparams -atther types fall back to the default
implementation. A new instance can be created with the fonGst DPar am+ gst _dpsnoot h_new
(GType type) . It has the following object properties:

« "updat e_period" - anint64 value specifying the number nanoseconds betweeéates. This will
be ignored in' synchr onous" mode since the buffer size dictates the update period.

- "slope_time" -an int64 value specifying the time period to use in the maxmslope calculation

49

Chapter 14. Dynamic Parameters

- "sl ope_del t a_doubl e" - a double specifying the amount a double value can chandeeigiven
slope_time.

- "slope_delta_float" - a float specifying the amount a float value can change in trengi
slope_time.

Audible artifacts may not be completely eliminated by udimg dparam. The only way to eliminate
artifacts such as "zipper noise" would be for the elementjplément its required dparams using the
array method. This would allow dparams to change paramateéh& sample rate which should eliminate
any artifacts.

14.4.3. Timelined dparams

A yet-to-be-implemented subclass of GstDParam will add Bhwhich allows the creation and
manipulation of points on a timeline. This subclass wilbgisovide a dparam implementation which
uses linear interpolation between these points to find tlagadp value at any given time. Further
subclasses can extend this functionality to implement rerodic interpolation algorithms such as
splines.

50

Chapter 15. Threads

GStreamer has support for multithreading through the ugkesfst Thr ead
(http://gstreamer.freedesktop.org/data/doc/gstreamtadle/gstreamer/html/GstThread.html) object. This
object is in fact a speciadst Bi n
(http://gstreamer.freedesktop.org/data/doc/gstremtadle/gstreamer/html/GstBin.html) that will start a
new thread (using Glib’€Thr ead system) when started.

To create a new thread, you can simply gse_t hr ead_new (). From then on, you can use it similar
to how you would use &st Bi n. You can add elements to it, change state and so on. Thetarges
difference between a thread and other bins is that the tideas not require iteration. Once set to the
GST_STATE_PLAYI NGstate, it will iterate its contained children elements auatically.

Figure 15-1shows how a thread can be visualised.

Figure 15-1. A thread

thread

disk_source parse decoder play_audio

\4
\4
\4

src sink src sink src sink

15.1. When would you want to use a thread?

There are several reasons to use threads. However, this@'same reasons to limit the use of threads as
much as possible. We will go into the drawbacks of threadin@ $treamer in the next section. Let’s first
list some situations where threads can be useful:

- Data buffering, for example when dealing with network stnsaor when recording data from a live
stream such as a video or audio card. Short hickups elsewh#re pipeline will not cause data loss.
SeeFigure 15-2for a visualization of this idea.

- Synchronizing output devices, e.g. when playing a streamagoing both video and audio data. By
using threads for both outputs, they will run independeatig their synchronization will be better.

- Data pre-rolls. You can use threads and queues (thread hdasjyito cache a few seconds of data
before playing. By using this approach, the whole pipeliileailready be setup and data will already

51

be decoded. When activating the rest of the pipeline, theebviliom PAUSED to PLAYING will be

instant.

Figure 15-2. a two-threaded decoder with a queue

disk_source

queue

Chapter 15. Threads

thread

Src

parse

sink

Src

decoder

sink

Above, we've mentioned the “queue” element several timeg Aoqueue is a thread boundary element.

It does so by using a classic provider/receiver model asiéshin threading classes at universities all
around the world. By doing this, it acts both as a means to rdakethroughput between threads

threadsafe, and it can also act as a buffer. Queues haveake@ey ect properties to be configured for
specific uses. For example, you can set lower and upper tossfuo the element. If there’s less data than
the lower treshold (default: disabled), it will block outplf there’s more data than the upper treshold, it

will block input or (if configured to do so) drop data.

15.2. Constraints placed on the pipeline by the

GstThread

Within the pipeline, everything is the same as in any other Bhe difference lies at the thread boundary,
at the link between the thread and the outside world (coimginin). Since GStreamer is fundamentally

buffer-oriented rather than byte-oriented, the naturhitsan to this problem is an element that can

"buffer" the buffers between the threads, in a thread-saghibn. This element is the “queue” element. A
gueue should be placed in between any two elements whosapalilsked together while the elements

live in different threads. It doesn’t matter if the queuelisged in the containing bin or in the thread
itself, but it needs to be present on one side or the otherdblernnter-thread communication.

If you are writing a GUI application, making the top-levehla thread will make your GUI more

responsive. If it were a pipeline instead, it would have tdteeated by your application’s event loop,
which increases the latency between events (say, keyboesdgs) and responses from the GUI. In
addition, any slight hang in the GUI would delay iteratiorttoé pipeline, which (for example) could

cause pops in the output of the sound card, if it is an audielipie.

Chapter 15. Threads

A problem with using threads is, however, thread contextgol connect to a signal that is emitted
inside a thread, then the signal handler for this thredidbe executed in that same threathis is very
important to remember, because many graphical toolkitsxoanun multi-threaded. Gtk+, for example,
only allows threaded access to Ul objects if you explicitedg mutexes. Not doing so will result in
random crashes and X errors. A solution many people use igte @n idle handler in the signal
handler, and have the actual signal emission code be extautee idle handler, which will be executed
from the mainloop.

Generally, if you use threads, you will encounter some motd. Don't hesistate to ask us for help in
case of problems.

15.3. A threaded example application

As an example we show the helloworld program that we codézhiapter Qsing a thread. Note that the
whole application lives in a thread (as opposed to half ofgglication living in a thread and the other
half being another thread or a pipeline). Therefore, it dosseed a queue element in this specific case.

#i ncl ude <gst/gst.h>
Gst El enent *t hread, *source, *decodebin, =*audi osink;

static gbool ean
idl e_eos (gpointer data)

{
g_print ("Have idle-func in thread %\n", g _thread_self ());
gst_main_quit ();
/+* do this function only once */
return FALSE;
}
| *
+ EOS will be called when the src el enent has an end of stream
* Note that this function will be called in the thread context.

* W will place an idle handler to the function that really

* quits the application.

*/

static void

cb_eos (GstEl enent =*thread,

gpoi nter dat a)

{
g_print ("Have eos in thread %\n", g_thread_self ());
g_idl e_add ((GSourceFunc) idle_eos, NULL);

}
| *

* On error, too, you'll want to forward signals to the nain
* thread, especially when using GU applications.

53

Chapter 15. Threads
*/
static void

cb_error (GstElenment +thread,
Gst El enent *source,

CGError xerror,
gchar *debug,
gpoi nter dat a)
{
g print ("Error in thread %: %\n", g_thread_self (), error->nmessage);
g_idl e_add ((GSourceFunc) idle_eos, NULL);
}
| *

* Link new pad from decodebin to audi osi nk.
* Contains no further error checking.
*/

static void
cb_newpad (GstEl enent *decodebi n,

Gst Pad *pad,
gbool ean | ast,
gpoi nter dat a)
{
gst _pad_link (pad, gst_elenment_get_pad (audi osi nk, "sink"));
gst _bin_add (GST_BIN (thread), audiosink);
gst _bin_sync_children_state (GST_BIN (thread));
}
gi nt

mai n (gint argc,
gchar =xargv[])
{
[+ init GStreanmer =/
gst_init (&rgc, &argv);

/+* make sure we have a fil enane argunment =*/

if (argc '= 2) {
g_print ("usage: % <QOgg/Vorbis filename>\n", argv[O0]);
return -1;

}

/* create a new thread to hold the el ements =*/

thread = gst_thread_new ("thread");

g_si gnal _connect (thread, "eos", G CALLBACK (cb_eos), NULL);
g_signal _connect (thread, "error", G CALLBACK (cb_error), NULL);

/+ create el enents */

source = gst_elenent _factory_naeke ("filesrc", "source");
g_obj ect _set (G OBJECT (source), "location", argv[1l], NULL);
decodebi n = gst _el enent _factory_nake ("decodebi n", "decoder");

g_si gnal _connect (decodebin, "new decoded-pad",
G _CALLBACK (cb_newpad), NULL);

54

Chapter 15. Threads
audi osi nk = gst_el ement _factory_nake ("al sasi nk", "audi osink");

[+ setup =*/

gst _bin_add_many (GST_BIN (thread), source, decodebin, NULL);
gst _element _link (source, decodebin);

gst _el ement _set _state (audi osi nk, GST_STATE_PAUSED) ;

gst _el ement _set_state (thread, GST_STATE_PLAYI NG ;

/* no need to iterate. W can now use a mai nl oop */
gst_main ();

[+ unset x/
gst _el ement _set_state (thread, GST_STATE_NULL);
gst _obj ect _unref (GST_OBJECT (thread));

return O;

55

Chapter 16. Scheduling

By now, you've seen several example applications. All ofitheould set up a pipeline and call
gst_bin_iterate () to start media processing. You might have started wondevimat happens
during pipeline iteration. This whole process of media jps®ing is called scheduling. Scheduling is
considered one of the most complex parts of GStreamer. Mergyill do no more than give a global
overview of scheduling, most of which will be purely inforthe. It might help in understanding the
underlying parts of GStreamer.

The scheduler is responsible for managing the plugins dimen Its main responsibilities are:

- Managing data throughput between pads and elements in ngipEhis might sometimes imply
temporary data storage between elements.

« Calling functions in elements that do the actual data pisings
- Monitoring state changes and enabling/disabling elemarite chain.

- Selecting and distributing the global clock.

The scheduler is a pluggable component; this means thatatiee schedulers can be written and
plugged into GStreamer. There is usually no need for intemadn the process of choosing the
scheduler, though. The default scheduler in GStreametledcapt”. Some of the concepts discussed
here are specific to opt.

16.1. Managing elements and data throughput

To understand some specifics of scheduling, it is importakhbw how elements work internally.
Largely, there are four types of elementshai n () -based elements) oop () -based elementsget

() -based elements and decoupled elements. Each of those batvefdeatures and limitations that are
important for how they are scheduled.

- _chain ()-based elements are elements that haverai n () -function defined for each of their
sinkpads. Those functions will receive data whenever igjata is available. In those functions, the
element capushdata over its source pad(s) to peer elementhai n () -based elements canrqmill
additional data from their sinkpad(s). Most elements inr€&8ner are chai n () -based.

« _loop ()-based elements are elements that havieamp () -function defined for the whole
element. Inside this function, the element can pull bufferm its sink pad(s) and push data over its
source pad(s) as it sees fit. Such elements usually requc#ispcontrol over their input. Muxers and
demuxers are usuallyl oop () -based.

« _get ()-based elements are elements with only source pads. Foseaote pad, aget
() -function is defined, which is called whenever the peer efgmeeds additional input data. Most
source elements are, in facyget () -based. Such an element cannot actively push data.

56

Chapter 16. Scheduling

- Decoupled elements are elements whose source padgetre() -based and whose sink pads are
_chain ()-based. Thechai n () -function cannot push data over its source pad(s), howEres.
such element is the “queue” element, which is a thread bayred@ament. Since only one side of such
elements are interesting for one particular scheduler,avesafely handle those elements as if they
were either get ()-or_chai n ()-based. Therefore, we will further omit this type of elenseint
the discussion.

Obviously, the type of elements that are linked togetheehiaplications for how the elements will be
scheduled. If a get-based element is linked to a loop-bdsetkat and the loop-based element requests
data from its sinkpad, we can just call the get-function aadibne with it. However, if two loop-based
elements are linked to each other, it's a lot more complata®milarly, a loop-based element linked to a
chain-based element is a lot easier than two loop-basedealsrinked to each other.

The default GStreamer scheduler, “opt”, uses a conceptaifstand groups. A group is a series of
elements that do not require any context switches or intdiaite data stores to be executed. In practice,
this implies zero or one loop-based elements, one get-tesewent (at the beginning) and an infinite
amount of chain-based elements. If there is a loop-basetkelt then the scheduler will simply call this
elements loop-function to iterate. If there is no loop-ltbsiement, then data will be pulled from the
get-based element and will be pushed over the chain-basetets.

A chain is a series of groups that depend on each other for Bata&xample, two linked loop-based
elements would end up in different groups, but in the samackighenever the first loop-based element
pushes data over its source pad, the data will be tempostohed inside the scheduler until the
loop-function returns. When it's done, the loop-functidritee second element will be called to process
this data. If it pulls data from its sinkpad while no data isitable, the scheduler will “emulate” a
get-function and, in this function, iterate the first grougilidata is available.

The above is roughly how scheduling works in GStreamer. hgssome implications for ideal pipeline
design. An pipeline would ideally contain at most one lo@sdd element, so that all data processing is
immediate and no data is stored inside the scheduler dursgpgwitches. You would think that this
decreases overhead significantly. In practice, this is adiesl, however. It's something to keep in the
back of your mind, nothing more.

57

Chapter 17. Autoplugging

In Chapter 9you've learned to build a simple media player for Ogg/Veilies. By using alternative
elements, you are able to build media players for other miygies, such as Ogg/Speex, MP3 or even
video formats. However, you would rather want to build anlaapion that can automatically detect the
media type of a stream and automatically generate the besifjpe pipeline by looking at all available
elements in a system. This process is called autopluggmbGstreamer contains high-quality
autopluggers. If you're looking for an autoplugger, doe'ad any further and go ©hapter 19This
chapter will explain theonceptof autoplugging and typefinding. It will explain what system
GStreamer includes to dynamically detect the type of a m&tdéam, and how to generate a pipeline of
decoder elements to playback this media. The same prisaiple also be used for transcoding. Because
of the full dynamicity of this concept, GStreamer can be madtcally extended to support new media
types without needing any adaptations to its autopluggers.

We will first introduce the concept of MIME types as a dynanmid @xtendible way of identifying media
streams. After that, we will introduce the concept of typéifing to find the type of a media stream.
Lastly, we will explain how autoplugging and the GStreansgjistry can be used to setup a pipeline that
will convert media from one mimetype to another, for exanfptamedia decoding.

17.1. MIME-types as a way to identity streams

We have previously introduced the concept of capabilitiea way for elements (or, rather, pads) to
agree on a media type when streaming data from one elemédrd t@ekt (seSection 7.2 We have
explained that a capability is a combination of a mimetypa @set of properties. For most container
formats (those are the files that you will find on your hard g8gg, for example, is a container format),
no properties are needed to describe the stream. Only a MiME&is needed. A full list of MIME-types
and accompanying properties can be found in the Plugin Y&i&uide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/section-types-definitions.html).

An element must associate a MIME-type to its source and saals pvhen it is loaded into the system.
GStreamer knows about the different elements and what ti/gata they expect and emit through the
GStreamer registry. This allows for very dynamic and extaeslement creation as we will see.

In Chapter Qwe've learned to build a music player for Ogg/Vorbis fileet’s look at the MIME-types
associated with each pad in this pipelifggure 17-1shows what MIME-type belongs to each pad in this
pipeline.

58

Chapter 17. Autoplugging

Figure 17-1. The Hello world pipeline with MIME types

bin

disk_source parse decoder play_

—> ——» —»
src sink src sink src sink
T T T T T T				
audio/mpeg [audio/mpeg [|
R N audi
audio/mpeg audio/raw

Now that we have an idea how GStreamer identifies known médiares, we can look at methods
GStreamer uses to setup pipelines for media handling andédia type detection.

17.2. Media stream type detection

Usually, when loading a media stream, the type of the streamtiknown. This means that before we
can choose a pipeline to decode the stream, we first needdotdle¢ stream type. GStreamer uses the
concept of typefinding for this. Typefinding is a normal pdragipeline, it will read data for as long as
the type of a stream is unknown. During this period, it wilbpide data to all plugins that implement a
typefinder. when one of the typefinders recognizes the striantypefind element will emit a signal and
act as a passthrough module from that point on. If no type wasd, it will emit an error and further
media processing will stop.

Once the typefind element has found a type, the applicatiomsa this to plug together a pipeline to
decode the media stream. This will be discussed in the netibse

Plugins in GStreamer can, as mentioned before, implemeefityder functionality. A plugin
implementing this functionality will submit a mimetype,tamally a set of file extensions commonly
used for this media type, and a typefind function. Once thpefind function inside the plugin is called,
the plugin will see if the data in this media stream matchgseaific pattern that marks the media type
identified by that mimetype. If it does, it will notify the tefind element of this fact, telling which
mediatype was recognized and how certain we are that tieiarstis indeed that mediatype. Once this
run has been completed for all plugins implementing a tyjgfimctionality, the typefind element will

59

Chapter 17. Autoplugging

tell the application what kind of media stream it thinks tedaecognized.

The following code should explain how to use the typefind et will print the detected media type,
or tell that the media type was not found. The next sectiohimtloduce more useful behaviours, such as
plugging together a decoding pipeline.

#i ncl ude <gst/gst.h>

static void
cb_typefound (GstEl ement *typefind,

gui nt probability,
Gst Caps *caps,
gpoi nter dat a)

gchar =type;

type = gst_caps_to_string (caps);
g _print ("Media type % found, probability %%An", type, probability);
g_free (type);

[+ done x/
(* (gbool ean *) data) = TRUE;
}

static void
cb_error (GstEl enment xpipeline,
Gst El ement *source,

CGError xerror,
gchar *debug,
gpoi nter dat a)
{
g print ("Error: %\n", error->nmessage);
[+ done x/
(* (gbool ean *) data) = TRUE;
}
gi nt

mai n (gint argc,
gchar =xargv[])
{
Gst El enent =pipeline, *xfilesrc, *typefind;
gbool ean done = FALSE;

/* init GStreaner =*/
gst_init (&rgc, &argv);

/+* check args =*/

if (argc '= 2) {
g_print ("Usage: % <filename>\n", argv[O0]);
return -1;

}

60

Chapter 17. Autoplugging

/* create a new pipeline to hold the el enents */
pi peline = gst_pi peline_new ("pipe");
g_si gnal _connect (pipeline, "error", G CALLBACK (cb_error), &done);

/* create file source and typefind el ement x/

filesrc = gst_elenment_factory_nake ("filesrc", "source");

g_object_set (G OBJECT (filesrc), "location", argv[1], NULL);

typefind = gst_el enment _factory_nake ("typefind", "typefinder");

g_si gnal _connect (typefind, "have-type", G CALLBACK (cb_typefound), &done);

[+ setup =*/

gst _bin_add_many (GST_BIN (pipeline), filesrc, typefind, NULL);
gst_element _link (filesrc, typefind);

gst _el ement _set_state (GST_ELEMENT (pi peline), GST_STATE_PLAYI NG ;

/* nowiterate until the type is found */
do {
if ('gst_bin_iterate (GST_BIN (pipeline)))
br eak;
} while (!done);

[+ unset x/
gst _el ement _set_state (GST_ELEVMENT (pi peline), GST_STATE _NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

Once a media type has been detected, you can plug an elentgra emuxer or decoder) to the source
pad of the typefind element, and decoding of the media streiflrstart right after.

17.3. Plugging together dynamic pipelines

In this chapter we will see how you can create a dynamic pipel\ dynamic pipeline is a pipeline that
is updated or created while data is flowing through it. We wiidlate a partial pipeline first and add more
elements while the pipeline is playing. The basis of thiygtavill be the application that we wrote in
the previous sectiorSection 17.2to identify unknown media streams.

Once the type of the media has been found, we will find elemaeritee registry that can decode this
streamtype. For this, we will get all element factories (@¥hive've seen before iBection 5.2 and find
the ones with the given MIME-type and capabilities on theiksad. Note that we will only use parsers,
demuxers and decoders. We will not use factories for anyra@lleenent types, or we might get into a
loop of encoders and decoders. For this, we will want to bailidt of “allowed” factories right after
initializing GStreamer.

static GList *factories;

61

Chapter 17. Autoplugging

| *

* This function is called by the registry loader. Its return val ue

* (TRUE or FALSE) deci des whether the given feature will be included
* in the list that we're generating further down.

*/

static gbool ean
cb_feature_filter (GstPluginFeature *feature,
gpoi nter dat a)
{
const gchar =*kl ass;
gui nt rank;

/+ we only care about elenment factories x/
if (!GST_I S _ELEMENT_FACTORY (feature))
return FALSE;

/+* only parsers, denuxers and decoders */
kl ass = gst_el ement _factory_get _kl ass (GST_ELEMENT_FACTORY (feature));
if (g_strrstr (klass, "Denux") == NULL &&
g_strrstr (klass, "Decoder") == NULL &&
g_strrstr (klass, "Parse") == NULL)
return FALSE;

/+* only select elenents wi th autopl ugging rank =/
rank = gst_plugin_feature_get_rank (feature);
if (rank < GST_RANK_NMARG NAL)

return FALSE;

return TRUE;
}

| *
* This function is called to sort features by rank.
* |

static gint
cb_conpare_ranks (GstPlugi nFeature *f1,
Gst Pl ugi nFeature *f2)
{
return gst_plugin_feature_get _rank (f2) - gst_plugin_feature_get_rank (f1);

}

static void
init_factories (void)
{
/+ first filter out the interesting elenent factories */
factories = gst_registry_pool _feature_ filter (
(Gst Plugi nFeatureFilter) cb_feature_filter, FALSE, NULL);

/* sort themaccording to their ranks x/
factories = g list_sort (factories, (GConpareFunc) cb_conpare_ranks);

62

Chapter 17. Autoplugging

From this list of element factories, we will select the onattimost likely will help us decoding a media
stream to a given output type. For each newly created elemenwill again try to autoplug new
elements to its source pad(s). Also, if the element has dimpads (which we've seen before in
Section 7.1.}, we will listen for newly created source pads and handlsghtoo. The following code
replaces theb_t ype_f ound from the previous section with a function to initiate autegding, which
will continue with the above approach.

static void try_to_plug (GstPad *pad, const GstCaps *caps);
static GstEl emrent *audi osi nk;

static void

cb_newpad (GstEl enent *el enent,
Gst Pad *pad,
gpoi nter dat a)

Gst Caps *caps;

caps = gst_pad_get _caps (pad);
try to_plug (pad, caps);
gst _caps_free (caps);

}

static void

close_I|ink (GstPad *srcpad,
Gst El enent *si nkel enent,
const gchar =*padnane,
const GList »tenpllist)

gbool ean has_dynani c_pads = FALSE;

g_print ("Plugging pad %:% to newmy created %: %\n",
gst _obj ect _get _nane (GST_OBJECT (gst_pad_get_parent (srcpad))),
gst _pad_get _nane (srcpad),
gst _obj ect _get _nane (GST_OBJECT (sinkel ement)), padnane);

/* add the elenment to the pipeline and set correct state =*/

gst _el ement _set _state (sinkel enent, GST_STATE_PAUSED) ;

gst _bin_add (GST_BIN (pipeline), sinkelenent);

gst _pad_link (srcpad, gst_el enent_get_pad (sinkel ement, padnane));
gst _bin_sync_children_state (GST_BIN (pipeline));

/+ if we have static source pads, link those. If we have dynamc
* source pads, listen for new pad signals on the el enent =/
for (; tenpllist !'= NULL; tenpllist = tenpllist->next) {

Gst PadTenpl ate *tenpl = GST_PAD TEMPLATE (tenpllist->data);

/+* only sourcepads, no request pads */
if (tenpl->direction != GST_PAD SRC ||

63

Chapter 17. Autoplugging

tenpl - >presence == GST_PAD_REQUEST) ({
conti nue;

}

switch (tenpl->presence) {
case GST_PAD ALVAYS: {
Gst Pad *pad = gst_el enent _get _pad (si nkel enent, tenpl->nane_tenplate);
Gst Caps *caps = gst_pad_get_caps (pad);

[+ link =/
try_to_plug (pad, caps);
gst _caps_free (caps);
br eak;

}

case GST_PAD SQOVETI MES:
has_dynani c_pads = TRUE;
br eak;

defaul t:
br eak;

}
}

/* listen for newly created pads if this el enent supports that =/
i f (has_dynam c_pads) {
g_si gnal _connect (sinkel enent, "new pad", G CALLBACK (cb_newpad), NULL);
}
}

static void
try to_plug (GstPad *pad,
const Gst Caps *caps)
{
Gst Obj ect *parent = GST_OBJECT (gst_pad_get_parent (pad));
const gchar *m ne;
const GList *item
Gst Caps *res, xaudiocaps;

/+* don’t plug if we’'re already plugged */
if (GST_PAD IS LINKED (gst_el ement _get _pad (audi osi nk, "sink"))) {
g print ("Oritting link for pad %: % because we're already |inked\n",
gst _obj ect _get _nanme (parent), gst_pad_get_nane (pad));
return;

}

/* as said above, we only try to plug audio... QOrit video */
m ne = gst_structure_get_nanme (gst_caps_get_structure (caps, 0));
if (g_strrstr (mne, "video")) {
g_print ("Oritting link for pad %: % because m netype % is non-audio\n",
gst _obj ect _get _nanme (parent), gst_pad_get_nane (pad), nine);
return;

}

/* can it link to the audi opad? =*/

64

Chapter 17. Autoplugging

audi ocaps = gst_pad_get _caps (gst_el enent _get _pad (audi osink, "sink"));
res = gst_caps_intersect (caps, audiocaps);
if (res &% 'gst_caps_is_enpty (res)) {
g_print ("Found pad to link to audiosink - plugging is now done\n");
close_link (pad, audiosink, "sink", NULL);
gst _caps_free (audi ocaps);
gst _caps_free (res);
return;
}
gst _caps_free (audiocaps);
gst _caps_free (res);

/* try to plug fromour list */

for (item= factories; item!= NULL; item= item >next) {
Gst El enent Factory *factory = GST_ELEMENT_FACTORY (item >data);
const GList =*pads;

for (pads = gst_elenent_factory_get_pad_tenplates (factory);
pads != NULL; pads = pads->next) {
Gst PadTenpl ate *tenpl = GST_PAD TEMPLATE (pads->dat a);

[+ find the sink tenplate - need an al ways pad*/
if (tenpl->direction != GST_PAD SINK ||
tenpl - >presence ! = GST_PAD_ALWAYS) {
conti nue;

}

[+ can it |ink? */
res = gst_caps_intersect (caps, tenpl->caps);
if (res & !gst_caps_is_enpty (res)) {
Gst El ement *el enent;
gchar *nane_tenplate = g_strdup (tenpl->nanme_tenpl ate);

[+ close link and return =/
gst _caps_free (res);
el ement = gst_el enent _factory_create (factory, NULL);
close_link (pad, elenent, nane_tenplate,

gst _el ement _factory_get_pad_tenpl ates (factory));
g_free (nane_tenpl ate);
return;

}

gst _caps_free (res);

/+ we only check one sink tenplate per factory, so nove on to the
* next factory now */
br eak;
}
}

/+ if we get here, no itemwas found =*/
g_print ("No conpatible pad found to decode % on %: %\ n",
m ne, gst_object_get_nanme (parent), gst_pad_get_nane (pad));

65

Chapter 17. Autoplugging

static void
cb_typefound (GstEl ement *typefind,

gui nt probability,
Gst Caps *caps,
gpoi nt er dat a)
{
gchar =xs;

s = gst_caps_to_string (caps);
g_print ("Detected nedia type %\n", s);
g_free (s);

/+ actually plug now */
try_to_plug (gst_el enent_get_pad (typefind, "src"), caps);
}

By doing all this, we will be able to make a simple autoplughat can automatically setup a pipeline
for any media type. In the example below, we will do this fodeuonly. However, we can also do this
for video to create a player that plays both audio and video.

The example above is a good first try for an autoplugger. Nextsswould be to listen for
“pad-removed” signals, so we can dynamically change thgg#d pipeline if the stream changes (this
happens for DVB or Ogg radio). Also, you might want specia$e code for input with known content
(such as a DVD or an audio-CD), and much, much more. Moregwetr|l want many checks to prevent
infinite loops during autoplugging, maybe you’ll want to ilament shortest-path-finding to make sure
the most optimal pipeline is chosen, and so on. Basicakyfehatures that you implement in an
autoplugger depend on what you want to use it for. For fubkbl implementations, see the “playbin”,
“decodebin” and “spider” elements.

66

Chapter 18. Pipeline manipulation

This chapter will discuss how you can manipulate your pigelh several ways from your application
on. Parts of this chapter are downright hackish, so be adshat you'll need some programming
knowledge before you start reading this.

Topics that will be discussed here include how you can irdad into a pipeline from your application,
how to read data from a pipeline, how to manipulate the pigsispeed, length, starting point and how
to listen to a pipeline’s data processing.

18.1. Data probes

Probes are best envisioned as pad listeners. They areedttwh pad in a pipeline, and you can add
callback functions to this probe. Those callback functiaiisbe called whenever data is being sent over
this pad. The callback can then decide whether the datadhbeuliscarded or it can replace the piece of
data with another piece of data. In this callback, it can &igger actions in the application itself. For
pipeline manipulation, probes are rather limited, but fipgtine tracking, they can be very useful.

18.2. Manually adding or removing data from/to a pipeline

Many people have expressed the wish to use their own sowrdeiett data into a pipeline. Some people
have also expressed the wish to grab the output in a pipelidéske care of the actual output inside
their application. While either of these methods are stpdigcouraged, GStreamer offers hacks to do
this. However, there is no support for those methdtis.doesn’t work, you're on your own. Also,
synchronization, thread-safety and other things thatyebeen able to take for granted so far are no
longer guanranteed if you use any of those methods. It'syalWatter to simply write a plugin and have
the pipeline schedule and manage it. See the Plugin WriBaride for more information on this topic.
Also see the next section, which will explain how to embedypis statically in your application.

After all those disclaimers, let’s start. There’s threegible elements that you can use for the
above-mentioned purposes. Those are called “fakesrc’hfaginary source), “fakesink” (an imaginary
sink) and “identity” (an imaginary filter). The same methqpbes to each of those elements. Here, we
will discuss how to use those elements to insert (using fakes grab (using fakesink or identity) data
from a pipeline, and how to set negotiation.

18.2.1. Inserting or grabbing data

The three before-mentioned elements (fakesrc, fakesidkdemtity) each have a “handoff” signal that
will be called in the _get () - (fakesrc) or_chai n () -function (identity, fakesink). In the signal

67

Chapter 18. Pipeline manipulation

handler, you can set (fakesrc) or get (identity, fakesird¢ado/from the provided buffer. Note that in the
case of fakesrc, you have to set the size of the providedhusiag the “sizemax” property. For both
fakesrc and fakesink, you also have to set the “signal-hifsidaroperty for this method to work.

Note that your handoff function shoutet block, since this will block pipeline iteration. Also, do trtoy
to use all sort of weird hacks in such functions to accompstmething that looks like synchronization
or so; it's not the right way and will lead to issues elsewh#rgou’re doing any of this, you're basically
misunderstanding the GStreamer design.

18.2.2. Forcing a format

Sometimes, when using fakesrc as a source in your pipelméll yant to set a specific format, for
example a video size and format or an audio bitsize and nupflidrannels. You can do this by forcing a
specificGst Caps on the pipeline, which is possible by usifitlered caps You can set a filtered caps on
a link by usinggst _pad_l i nk_filtered (), where the third argumentis the format to force on the
link.

18.2.3. Example application

This example application will generate black/white (it &hies every second) video to an X-window
output by using fakesrc as a source and using filtered camsde & format. Since the depth of the image
depends on your X-server settings, we use a colorspace ionelement to make sure that the output
to your X server will have the correct bitdepth. You can alebtBnestamps on the provided buffers to
override the fixed framerate.

#include <string.h> /* for nenset () =/
#i ncl ude <gst/gst.h>

static void

cb_handof f (GstEl enent =*fakesrc,
GstBuffer =+buffer,
Gst Pad *pad,
gpoi nter user _data)

static gbool ean white = FALSE;

/+ this nakes the inmage bl ack/white */
nenset (GST_BUFFER_DATA (buffer), white ? Oxff : 0xO,
GST_BUFFER_SI ZE (buffer));
white = lwhite;
}

gi nt

mai n (gint argc,
gchar =xargv[])

{

68

Chapter 18. Pipeline manipulation

Gst El enent *pi peline, *fakesrc, *conv, =*videosink;
Gst Caps *filter;

/* init GStreaner =*/
gst_init (&rgc, &argv);

/* setup pipeline */
pi peline = gst_pipeline_new ("pipeline");

fakesrc = gst_el ement _factory_nake ("fakesrc", "source");
conv = gst_elenent _factory_nake ("ffnpegcol orspace", "conv");
vi deosi nk = gst_el enent _factory_make ("xi magesi nk", "videosink");

/* setup */
filter = gst_caps_new sinple ("videol/x-rawrghb",
"wi dth", G TYPE_INT, 384,
"height", G TYPE_INT, 288,
"franerate", G_TYPE _DOUBLE, (gdouble) 1.0,
"bpp", G TYPE_INT, 16,
"depth", G_TYPE_INT, 16,
"endi anness", G TYPE |INT, G BYTE ORDER,
NULL) ;
gst_element _link_filtered (fakesrc, conv, filter);
gst _elenment _link (conv, videosink);
gst _bin_add_many (GST_BIN (pipeline), fakesrc, conv, videosink, NULL);

|+ setup fake source */

g_obj ect _set (G OBJECT (fakesrc),

"si gnal - handof fs", TRUE,

"sizemax", 384 * 288 x 2,

"sizetype", 2, NULL);

g_si gnal _connect (fakesrc, "handoff", G _CALLBACK (cb_handoff), NULL);

[+ play =/

gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;
while (gst_bin_iterate (GST_BIN (pipeline)))

/* clean up */

gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

18.3. Embedding static elements in your application

The Plugin Writer's Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html) describes in great detail

69

Chapter 18. Pipeline manipulation

how to write elements for the GStreamer framework. In thigise, we will solely discuss how to embed
such elements statically in your application. This can efuldor application-specific elements that
have no use elsewhere in GStreamer.

Dynamically loaded plugins contain a structure that’s definsingGST_PLUG N_DEFI NE () . This
structure is loaded when the plugin is loaded by the GStreaore. The structure contains an
initialization function (usually calledl ugi n_i ni t) that will be called right after that. It's purpose is to
register the elements provided by the plugin with the G®teraframework. If you want to embed
elements directly in your application, the only thing yowedéo do is to manually run this structure
using_gst _pl ugi n_regi ster_static (). Theinitialization will then be called, and the elements
will from then on be available like any other element, withthem having to be dynamically loadable
libraries. In the example below, you would be able to gall_el enent _f act ory_make

("ny-el enent - nane", "sone-nane") to create an instance of the element.
| *

* Here, you would wite the actual plugin code.

*/

[--]

static gbool ean
regi ster_elements (GstPlugin xplugin)
{
return gst_el enent _register (plugin, "ny-el enent-nane",
GST_RANK_NONE, MY_PLUGQ N_TYPE) ;

}

static GstPlugi nDesc plugin_desc = {
GST_VERSI ON_MAJOR,
GST_VERSI ON_M NOR,
"my-private-plugins",
"Private el enments of ny application”,
regi ster_el enents,
NULL,
"0.0.1",
"LGPL",
"my-application",
"http://ww. ny-application.net/",
GST_PADDI NG INI'T

b
| *
* Call this function right after calling gst_init ().
*/
voi d
ny_elements_init (void)
{
_gst_plugin_register_static (&plugin_desc);
}

70

I\VV. Higher-level interfaces for
GStreamer applications

In the previous two parts, you have learned many of the iadsrand their corresponding low-level
interfaces into GStreamer application programming. Ma@gpe will, however, not need so much
control (and as much code), but will prefer to use a standiyback interface that does most of the
difficult internals for them. In this chapter, we will intrade you into the concept of autopluggers,
playback managing elements, XML-based pipelines and sthdr things. Those higher-level interfaces
are intended to simplify GStreamer-based application ranogning. They do, however, also reduce the
flexibility. It is up to the application developer to chooskigh interface he will want to use.

Chapter 19. Components

GStreamer includes several higher-level components tplginyour applications life. All of the
components discussed here (for now) are targetted at migibgek. The idea of each of these
components is to integrate as closely as possible with ae@®r pipeline, but to hide the complexity of
media type detection and several other rather complexddpat have been discussed in

Part 11l in GStreamer Application Development Manual (0.8.11)

We currently recommend people to use either playbin Gastion 19.1or decodebin (seBection 19.2,
depending on their needs. The other components discussediteeeither outdated or deprecated. The
documentation is provided for legacy purposes. Use of tbtser components is not recommended.

19.1. Playbin

Playbin is an element that can be created using the stand&ré&@ner API (e.g.

gst_el enent _factory_make ()). The factory is conveniently called “playbin”. By being a

Gst El enent , playbin automatically supports all of the features of tass, including error handling,
tag support, state handling, getting stream position&isgeand so on.

Setting up a playbin pipeline is as simple as creating amirtst of the playbin element, setting a file
location (this has to be a valid URI, so “<protocol>://<|toa>", e.g. file:///tmp/my.ogg or
http://www.example.org/stream.ogg) using the “uri” peoty on playbin, and then setting the element to
the GST_STATE_PLAYI NGstate. Internally, playbin uses threads, so there’s no teeierate the element
or anything. However, one thing to keep in mind is that sigriaéd by playbin might come from another
than the main thread, so be sure to keep this in mind in yomasigandles. Most application
programmers will want to use a function suchgas dl e_add () to make sure that the signal is
handled in the main thread.

#i ncl ude <gst/gst.h>

static void
cb_eos (GstElenent =*play,
gpoi nter dat a)
{
gst_main_quit ();

}

static void
cb_error (GstEl enment xplay,
Gst El ement =*src,

CGError xerr,
gchar *debug,
gpoi nter dat a)

{

g print ("Error: %\n", err->nessage);

72

Chapter 19. Components

}

gi nt
mai n (gint argc,
gchar xargv[])

{
Gst El enent +*pl ay;

/* init GStreaner =*/
gst_init (&rgc, &argv);

/+* make sure we have a URl */

if (argc !'= 2) {
g_print ("Usage: % <URI>\n", argv[O0]);
return -1;

}

/* set up */

play = gst_el enent _factory_nake ("playbin", "play");

g_obj ect_set (G OBJECT (play), "uri", argv[1], NULL);

g_si gnal _connect (play, "eos", G CALLBACK (cb_eos), NULL);

g_si gnal _connect (play, "error", G CALLBACK (cb_error), NULL);

if (gst_element_set_state (play, GST_STATE PLAYING != GST_STATE_SUCCESS) ({
g_print ("Failed to play\n");
return -1;

}

/* now run */
gst_main ();

/+ also clean up */
gst _el ement _set_state (play, GST_STATE_NULL);
gst _obj ect _unref (GST_OBJECT (play));

return O;

Playbin has several features that have been discussedpséui

+ Settable video and audio output (using the “video-sink” &ndlio-sink” properties).

- Mostly controllable and trackable aszt El enent , including error handling, eos handling, tag
handling, state handling, media position handling andisgek

- Buffers network-sources.
« Supports visualizations for audio-only media.
- Supports subtitles, both in the media as well as from sepéitas.

- Supports stream selection and disabling. If your media haspte audio or subtitle tracks, you can
dynamically choose which one to play back, or decide to tuaffialltogther (which is especially
useful to turn off subtitles).

73

Chapter 19. Components

19.2. Decodebin

Decodebin is the actual autoplugger backend of playbinclvhias discussed in the previous section.
Decodebin will, in short, accept input from a source thairikdd to its sinkpad and will try to detect the
media type contained in the stream, and set up decoder estftin each of those. It will automatically
select decoders. For each decoded stream, it will emit te-decoded-pad” signal, to let the client
know about the newly found decoded stream. For unknownrssgahich might be the whole stream),
it will emit the “unknown-type” signal. The application isén responsible for reporting the error to the
user.

The example code below will play back an audio stream of autifife. For readability, it does not
include any error handling of any sort.
#i ncl ude <gst/gst.h>

Gst El enent =pi pel i ne, xaudi o;
Gst Pad *audi opad;

static void
cb_newpad (GstEl enent *decodebi n,

Gst Pad *pad,
gbool ean | ast,
gpoi nt er dat a)

Gst Caps *caps;
GstStructure xstr;

/* only link audio; only link once */

if (GST_PAD_I S LI NKED (audi opad))
return;

caps = gst_pad_get _caps (pad);

str = gst_caps_get_structure (caps, 0);

if ('g_strrstr (gst_structure_get_nane (str), "audio"))
return;

[+ link'n play */

gst _pad_link (pad, audiopad);

gst _bin_add (GST_BIN (pipeline), audio);

gst _bin_sync_children_state (GST_BIN (pipeline));
}

gi nt

mai n (gint argc,
gchar =xargv[])

{

Gst El enent *src, xdec, =*conv, =*scale, =*sink;

/* init GStreaner =*/
gst_init (&rgc, &argv);

74

Chapter 19. Components

/* make sure we have input x/

if (argc !'= 2) {
g_print ("Usage: % <filename>\n", argv[O0]);
return -1;

}

[+ setup */
pi peline = gst_pipeline_new ("pipeline");

src = gst_elenent _factory_nake ("filesrc", "source");
g_obj ect _set (G OBJECT (src), "location", argv[1], NULL);
dec = gst_el enent _factory_nake ("decodebin", "decoder");

g_si gnal _connect (dec, "new decoded-pad", G CALLBACK (cb_newpad), NULL);
audi o = gst_bin_new ("audi obin");

conv = gst_el enent _factory_nake ("audi oconvert", "aconv");
audi opad = gst_el enent _get _pad (conv, "sink");

scal e = gst_el enment _factory_make ("audi oscal e", "scale");
sink = gst_elenent_factory_nake ("al sasi nk", "sink");

gst _bin_add_many (GST_BIN (audi o), conv, scale, sink, NULL);
gst _el ement _| i nk_nmany (conv, scale, sink, NULL);

gst _bin_add_many (GST_BIN (pipeline), src, dec, NULL);

gst _element _link (src, dec);

[+ run */

gst _el ement _set _state (audi o, GST_STATE PAUSED);

gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;
while (gst_bin_iterate (GST_BIN (pipeline)))

[+ cleanup */
gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

Decodebin, similar to playbin, supports the following faais:

« Can decode an unlimited number of contained streams to édamatput pads.

- Is handled as &st El ement in all ways, including tag or error forwarding and state hiargl

Although decodebin is a good autoplugger, there’s a whdleflthings that it does not do and is not
intended to do:

- Taking care of input streams with a known media type (e.g. ®Pah audio-CD or such).
- Selection of streams (e.g. which audio track to play in cdseuiti-language media streams).

- Overlaying subtitles over a decoded video stream.

Decodebin can be easily tested on the commandline, e.g.ihy te commandst-launch-0.8 filesrc
location=file.ogg ! decodebin ! audioconvert ! audioscaledlsasink

75

Chapter 19. Components

19.3. Spider

Spider is an autoplugger that looks and feels very much ldedebin. On the commandline, you can
literally switch between spider and decodebin and it'll thogist work. Try, for example,

gst-launch-0.8 filesrc location=file.ogg ! spider ! audioawert ! audioscale ! alsasink Although the
two may seem very much alike from the outside, they are vdfgréint from the inside. Those internal
differences are the main reason why spider is currentlyidensd deprecated (along with the fact that it
was hard to maintain).

As opposed to decodebin, spider does not decode pads ansigmails for each detected stream.

Instead, you have to add output sinks to spider by createswsaguest pads and connecting those to sink
elements. This means that streams decoded by spider camdghbmic. Also, spider uses many
loop-based elements internally, which is rather heavy dalee-wise.

Code for using spider would look almost identical to the cofldecodebin, and is therefore omitted.
Also, featureset and limitations are very much alike, exéepthe above-mentioned extra limitations for
spider with respect to decodebin.

19.4. GstPlay

GstPlay is a GtkWidget with a simple API to play, pause ang atmedia file.

19.5. GstEditor

GstEditor is a set of widgets to display a graphical represgem of a pipeline.

76

Chapter 20. XML in GStreamer

GStreamer uses XML to store and load its pipeline definitioddL is also used internally to manage
the plugin registry. The plugin registry is a file that contathe definition of all the plugins GStreamer
knows about to have quick access to the specifics of the Eugin

We will show you how you can save a pipeline to XML and how yon rgload that XML file again for
later use.

20.1. Turning GstElements into XML

We create a simple pipeline and write it to stdout with gstl xmmite_file (). The following code
constructs an MP3 player pipeline with two threads and thetesvout the XML both to stdout and to a
file. Use this program with one argument: the MP3 file on disk.

#i ncl ude <stdlib. h>
#i ncl ude <gst/gst.h>

gbool ean pl ayi ng;

int

main (int argc, char xargv[])

{
Gst El enent =filesrc, *osssink, *queue, *queue2, *decode;
Gst El enent xbin;
Gst El enent *t hread, =*thread?2;

gst_init (&argc, &ragv);

if (argc '= 2) {
g_print ("usage: % <nmp3 filename>\n", argv[O0]);

exit (-1);
}
/* create a new thread to hold the el ements =*/
thread = gst_el enent _factory_neke ("thread", "thread");
g_assert (thread != NULL);
thread2 = gst_el enent _factory_meke ("thread", "thread2");

g_assert (thread2 != NULL);
/* create a new bin to hold the el enents */
bin = gst_bin_new ("bin");

g_assert (bin !'= NULL);

/* create a disk reader =*/
filesrc = gst_elenent_factory_nake ("filesrc", "disk_source");

77

Chapter 20. XML in GStreamer

g_assert (filesrc !'= NULL);
g_obj ect_set (G OBJECT (filesrc), "location", argv[1], NULL);

queue = gst_el ement _factory_nake ("queue", "queue");
queue2 = gst_elenent_factory_nake ("queue", "queue2");

/* and an audi o sink */
osssink = gst_el enent _factory_make ("osssink", "play_audio");

g_assert (osssink !'= NULL);

decode = gst_elenent_factory_make ("mad", "decode");
g_assert (decode != NULL);

/+* add objects to the main bin */
gst _bin_add_many (GST_BIN (bin), filesrc, queue, NULL);

gst _bin_add_many (GST_BIN (thread), decode, queue2, NULL);

gst _bin_add (GST_BIN (thread2), osssink);

gst _element _|ink_many (filesrc, queue, decode, queue2, osssink, NULL);
gst _bin_add_many (GST_BIN (bin), thread, thread2, NULL);

/* wite the bin to stdout =/
gst_xm _wite_ file (GST_ELEMENT (bin), stdout);

/+~ wite the binto a file */
gst_xml _wite file (GST_ELEMENT (bin), fopen ("xm Test.gst", "w'));

exit (0);

The most important line is:

gst_xm _wite_file (GST_ELEMENT (bin), stdout);

gst_xml_write_file () will turn the given element into an XdcPtr that is then formatted and saved to a
file. To save to disk, pass the result of a fopen(2) as the seamument.

The complete element hierarchy will be saved along with titerielement pad links and the element
parameters. Future GStreamer versions will also allow patdre the signals in the XML file.

78

Chapter 20. XML in GStreamer

20.2. Loading a GstElement from an XML file

Before an XML file can be loaded, you must create a GstXML dbjgsaved XML file can then be
loaded with the gst_xml_parse_file (xml, filename, rootedathmethod. The root element can
optionally left NULL. The following code example loads theepiously created XML file and runs it.

#i ncl ude <stdlib. h>
#i ncl ude <gst/gst.h>

int
mai n(int argc, char *argv[])

{

Gst XML *xmi ;

Gst El enent *bi n;

gbool ean ret;

gst_init (&rgc, &argv);
xm = gst_xm _new ();

ret = gst_xm _parse_file(xm, "xm Test.gst", NULL);
g_assert (ret == TRUE);

bin = gst_xm _get_elenent (xm, "bin");
g_assert (bin !'= NULL);

gst _el ement _set_state (bin, GST_STATE_PLAYI NG ;
while (gst_bin_iterate(GST_BIN(bin)));
gst _el ement _set_state (bin, GST_STATE NULL);

exit (0);

gst_xml_get_element (xml, "name") can be used to get afspet@ment from the XML file.

gst_xml_get_topelements (xml) can be used to get a list tdplevel elements in the XML file.

In addition to loading a file, you can also load a from a xmIDimefdd an in memory buffer using
gst_xml_parse_doc and gst_xml_parse_memory respactideth of these methods return a gboolean
indicating success or failure of the requested action.

79

Chapter 20. XML in GStreamer

20.3. Adding custom XML tags into the core XML data

It is possible to add custom XML tags to the core XML createthwgist_xml_write. This feature can be
used by an application to add more information to the savgiptu The editor will for example insert the
position of the elements on the screen using the custom XMd&. ta

It is strongly suggested to save and load the custom XML taggja namespace. This will solve the
problem of having your XML tags interfere with the core XMlg&g

To insert a hook into the element saving procedure you c&relisignal to the GstElement using the

following piece of code:

xm NsPtr ns;

ns = xm NewNs (NULL, "http://gstreaner.net/gst-test/1.0/", "test");
thread = gst_el enent _factory_neke ("thread", "thread");

g_si gnal _connect (G OBJECT (thread), "object_saved",
G _CALLBACK (object_saved), g_strdup ("decoder thread"));

When the thread is saved, the object_save method will beccallur example will insert a comment tag:

static void
obj ect _saved (Gst Obj ect *object, xnml NodePtr parent, gpointer data)

{
xm NodePtr chil d;
child = xm NewChild (parent, ns, "coment", NULL);
xm NewChi I d (child, ns, "text", (gchar *)data);

}

Adding the custom tag code to the above example you will getMh file with the custom tags in it.
Here’s an excerpt:

<gst: el enent >
<gst: name>t hr ead</ gst : nanme>
<gst:type>t hread</ gst:type>
<gst:version>0. 1. 0</gst:version>

</ gst:children>
<t est:coment >
<t est:text>decoder thread</test:text>
</test:coment >
</ gst: el enent >

80

Chapter 20. XML in GStreamer

To retrieve the custom XML again, you need to attach a signtié GstXML object used to load the
XML data. You can then parse your custom XML from the XML trebemever an object is loaded.

We can extend our previous example with the following piefceoale.
xm = gst_xm _new ();

g_si gnal _connect (G _OBJECT (xm), "object_| oaded",
G _CALLBACK (xnl _I oaded), xm);

ret = gst_xm _parse_file (xm, "xm Test.gst", NULL);
g_assert (ret == TRUE);

Whenever a new object has been loaded, the xml_loaded dunetil be called. This function looks like:

static void
xm _| oaded (Gst XML *xml, GstObject *object, xml NodePtr self, gpointer data)

{
xm NodePtr children = sel f->xmnl Chil drenNode;

while (children) {
if (!'strcmp (children->nane, "comment")) {
xm NodePtr nodes = chil dren->xn Chil dr enNode;

whil e (nodes) {
if (!strcnp (nodes->nane, "text")) {
gchar *nane = g_strdup (xm NodeGet Content (nodes));
g_print ("object % |oaded with comment ' %’ \n",
gst _obj ect _get _nane (object), nane);

}
nodes = nodes- >next;
}
}
children = chil dren->next;

}
}

As you can see, you'll get a handle to the GstXML object, thelnéoaded GstObject and the
xmINodePtr that was used to create this object. In the abxammple we look for our special tag inside
the XML tree that was used to load the object and we print oorroent to the console.

81

V. Appendices

By now, you've learned all about the internals of GStreanmer application programming using the
GStreamer framework. This part will go into some random tiieg are useful to know if you're going to
use GStreamer for serious application programming. Itwwilich upon things related to integration with
popular desktop environments that we run on (GNOME, KDE, Q®/idows), it will shortly explain
how applications included with GStreamer can help making yie easier, and some information on
debugging.

Chapter 21. Things to check when writing an
application

This chapter contains a fairly random selection of things tan be useful to keep in mind when writing
GStreamer-based applications. It's up to you how much yogiing to use the information provided
here. We will shortly discuss how to debug pipeline probleisiag GStreamer applications. Also, we
will touch upon how to acquire knowledge about plugins amarednts and how to test simple pipelines
before building applications around them.

21.1. Good programming habits

« Always connect to the “error” signal of your topmost pip@ito be notified of errors in your pipeline.

- Always check return values of GStreamer functions. Esjlgc@eck return values of
gst _elenment _link () andgst _el enent _set_state ().

- Always use your pipeline object to keep track of the curréatesof your pipeline. Don’t keep private
variables in your application. Also, don’t update your usgerface if a user presses the “play” button.
Instead, connect to the “state-changed” signal of your tgirpipeline and update the user interface
whenever this signal is triggered.

21.2. Debugging

Applications can make use of the extensive GStreamer détgiggstem to debug pipeline problems.
Elements will write output to this system to log what theyd@ng. It's not used for error reporting, but it
is very useful for tracking what an element is doing exaetligich can come in handy when debugging
application issues (such as failing seeks, out-of-syndaett.).

Most GStreamer-based applications accept the commarafiiten- - gst - debug=LI ST and related
family members. The list consists of a comma-separatedflisategory/level pairs, which can set the
debugging level for a specific debugging category. For exampgst - debug=oggdenux: 5 would

turn on debugging for the Ogg demuxer element. You can uskaitis as well. A debugging level of 0
will turn off all debugging, and a level of 5 will turn on all Bagging. Intermediate values only turn on
some debugging (based on message severity; 2, for examiplenly display errors and warnings).
Here’s a list of all available options:

« --gst-debug- hel p will print available debug categories and exit.

« --gst-debug- I evel =LEVEL will set the default debug level (which can range from O (ntpat) to
5 (everything)).

83

Chapter 21. Things to check when writing an application

. --gst-debug=LI ST takes a comma-separated list of category _name:leveltoesest specific levels
for the individual categories. ExampleST_AUTOPLUG 5, avi denmux: 3.

« --gst-debug- no- col or will disable color debugging.

- - gst - debug- di sabl e disables debugging alltogether.

« --gst-plugi n- spewenables printout of errors while loading GStreamer plugins

21.3. Conversion plugins

GStreamer contains a bunch of conversion plugins that npgditcations will find useful. Specifically,
those are videoscalers (videoscale), colorspace comsgftmpegcolorspace), audio format convertors
and channel resamplers (audioconvert) and audio samglesatertors (audioscale). Those convertors
don’t do anything when not required, they will act in passtigh mode. They will activate when the
hardware doesn’t support a specific request, though. Alliegons are recommended to use those
elements.

21.4. Utility applications provided with GStreamer

GStreamer comes with a default set of command-line uslitieat can help in application development.
We will discuss onlygst-launchandgst-inspecthere.

21.4.1. gst-launch

gst-launchis a simple script-like commandline application that carubed to test pipelines. For
example, the commargst-launch sinesrc ! alsasinkwill run a pipeline which generates a sine-wave
audio stream and plays it to your ALSA audio caggt-launchalso allows the use of threads (using
curly brackets, so “{" and “}") and bins (using brackets, 36 &nd “)"). You can use dots to imply
padnames on elements, or even omit the padname to autoliyegelact a pad. Using all this, the
pipelinegst-launch filesrc location=file.ogg ! oggdemux name=d { d.theoradec ! ffmpegcolorspace

I xvimagesink } { d. ! vorbisdec ! alsasink }will play an Ogg file containing a Theora video-stream and
a Vorbis audio-stream. You can also use autopluggers sugeasglebin on the commandline. See the
manual page ofst-launchfor more information.

21.4.2. gst-inspect

gst-inspectcan be used to inspect all properties, signals, dynamiapetexrs and the object hierarchy of
an element. This can be very useful to see witichj ect properties or which signals (and using what
arguments) an element supports. Rystrinspect fakesrdo get an idea of what it does. See the manual
page ofgst-inspectfor more information.

84

Chapter 22. Integration

GStreamer tries to integrate closely with operating systéuch as Linux and UNIX-like operating
systems, OS X or Windows) and desktop environments (suci\eBMEE or KDE). In this chapter, we'll
mention some specific techniques to integrate your apmicatith your operating system or desktop
environment of choice.

22.1. Linux and UNIX-like operating systems

GStreamer provides a basic set of elements that are useéul imkegrating with Linux or a UNIX-like
operating system.

- For audio input and output, GStreamer provides input angudwglements for several audio
subsystems. Amongst others, GStreamer includes elenmmis SA (alsasrc, alsamixer, alsasink),
OSS (osssrc, ossmixer, osssink) and Sun audio (sunaudosiudiomixer, sunaudiosink).

- Forvideo input, GStreamer contains source elements fagdAdnux (v4lsrc, v4imjpegsrc,
vdlelement and v4imjpegisnk) and Video4linux2 (v412srl2element).

- Forvideo output, GStreamer provides elements for outpMdttandows (ximagesink), Xv-windows
(xvimagesink; for hardware-accelerated video), direatrfebuffer (dfbimagesink) and openGL image
contexts (glsink).

22.2. GNOME desktop

GStreamer has been the media backend of the GNOME (httpa/grveme.org/) desktop since
GNOME-2.2 onwards. Nowadays, a whole bunch of GNOME apfitinoa make use of GStreamer for
media-processing, including (but not limited to) Rhythmiflttp://www.rhythmbox.org/), Totem
(http:/lwww.hadess.net/totem.php3) and Sound Juicer
(http://www.burtonini.com/blog/computers/sound-giix

Most of these GNOME applications make use of some specifimtgues to integrate as closely as
possible with the GNOME desktop:

« GNOME applications caljnome_program.init () to parse command-line options and initialize
the necessary gnome modules. GStreamer applications wouddally callgst _init () to do the
same for GStreamer. This would mean that only one of the twigease command-line options. To
work around this issue, GStreamer can provig®pt Opt i on array which can be passed to
gnome_programinit ().

#i ncl ude <gnone. h>
#incl ude <gst/gst.h>

gi nt
mai n (gint argc,

85

Chapter 22. Integration
gchar xargv[])

struct poptOption options[] = {
{NULL, "\0', POPT_ARG | NCLUDE_TABLE, NULL, 0, "GStreaner", NULL},
POPT_TABLEEND

H

[+ init GStreamer and GNOVE using the GStreaner popt tables */
options[0].arg = (void *) gst_init_get_popt_table ();
gnonme_program.init ("ny-application", "0.0.1", LIBGNOVEU _MODULE, argc, argv,
GNOVE_PARAM POPT_TABLE, opti ons,
NULL) ;

« GNOME stores the default video and audio sources and sinkE€ionf. GStreamer provides a small
utility library that can be used to get the elements from #gistry using functions such as
gst _gconf _get _defaul t _vi deo_si nk (). See the header filg$t / gconf/ gconf . h) for
details. All GNOME applications are recommended to useghasiables.

- GStreamer provides data input/output elements for usethvélfiGNOME-VFS system. These
elements are called “gnomevfssrc” and “gnomevfssink”.

22.3. KDE desktop

GStreamer has been proposed for inclusion in KDE-4.0. @tlgreGStreamer is included as an optional
component, and it's used by several KDE applications, ofialgt AmaroK (http://amarok.kde.org/) and
JuK (http://developer.kde.org/~wheeler/juk.html). Ackand for KMPlayer
(http:/lwww.xs4all.nl/~jjvrieze/kmplayer.html) is ctently under development.

Although not yet as complete as the GNOME integration Hitste are already some KDE integration

specifics available. This list will probably grow as GStrearstarts to be used in KDE-4.0:

« AmaroK contains a kiosrc element, which is a source elentettihtegrates with the KDE VFS
subsystem KIO.

22.4. 0SS X

GStreamer provides native video and audio output elemen®$ X. It builds using the standard
development tools for OS X.

86

Chapter 22. Integration

22.5. Windows

GStreamer builds using Microsoft Visual C .NET 2003 and g€dygwin.

87

Chapter 23. Licensing advisory

23.1. How to license the applications you build with
GStreamer

The licensing of GStreamer is no different from a lot of othieraries out there like GTK+ or glibc: we
use the LGPL. What complicates things with regards to G8tezas its plugin-based design and the
heavily patented and proprietary nature of many multimedidecs. While patents on software are
currently only allowed in a small minority of world counts¢the US and Australia being the most
important of those), the problem is that due to the centi@tgthe US hold in the world economy and
the computing industry, software patents are hard to igndrerever you are. Due to this situation, many
companies, including major GNU/Linux distributions, getgped in a situation where they either get
bad reviews due to lacking out-of-the-box media playbagabdities (and attempts to educate the
reviewers have met with little success so far), or go agaireit own - and the free software movement's
- wish to avoid proprietary software. Due to competitivegsgre, most choose to add some support.
Doing that through pure free software solutions would héneart risk heavy litigation and punishment
from patent owners. So when the decision is made to inclugpatfor patented codecs, it leaves them
the choice of either using special proprietary applicajan try to integrate the support for these codecs
through proprietary plugins into the multimedia infrastiwre provided by GStreamer. Faced with one of
these two evils the GStreamer community of course prefesé¢icend option.

The problem which arises is that most free software and operce applications developed use the GPL
as their license. While this is generally a good thing, ites a dilemma for people who want to put
together a distribution. The dilemma they face is that if/thelude proprietary plugins in GStreamer to
support patented formats in a way that is legal for them, tteexisk running afoul of the GPL license of
the applications. We have gotten some conflicting repoots fiawyers on whether this is actually a
problem, but the official stance of the FSF is that it is a peablWe view the FSF as an authority on this
matter, so we are inclined to follow their interpretatiortioé GPL license.

So what does this mean for you as an application developelt?itveeans you have to make an active
decision on whether you want your application to be usedttmgeavith proprietary plugins or not. What
you decide here will also influence the chances of commed@@éiibutions and Unix vendors shipping
your application. The GStreamer community suggest youniegyour software using a license that will
allow proprietary plugins to be bundled with GStreamer aadnapplications, in order to make sure that
as many vendors as possible go with GStreamer instead dféessolutions. This in turn we hope and
think will let GStreamer be a vehicle for wider use of freerfats like the Xiph.org formats.

If you do decide that you want to allow for non-free plugindbtused with your application you have a
variety of choices. One of the simplest is using licensesliPL, MPL or BSD for your application
instead of the GPL. Or you can add a exceptions clause to yBurliGense stating that you except
GStreamer plugins from the obligations of the GPL.

88

Chapter 23. Licensing advisory

A good example of such a GPL exception clause would be, usmituine music player project as an
example: The Muine project hereby grants permission for@®.-compatible GStreamer plugins to be
used and distributed together with GStreamer and Muines péimission goes above and beyond the
permissions granted by the GPL license Muine is covered by.

Our suggestion among these choices is to use the LGPL licaa$es what resembles the GPL most
and it makes it a good licensing fit with the major GNU/Linuxskop projects like GNOME and KDE.

It also allows you to share code more openly with projectsliiaae compatible licenses. Obviously, pure
GPL code without the above-mentioned clause is not usalyleinapplication as such. By choosing the
LGPL, there is no need for an exception clause and thus cadbecahared more freely.

| have above outlined the practical reasons for why the @&tsx community suggest you allow
non-free plugins to be used with your applications. We feat tn the multimedia arena, the free
software community is still not strong enough to set the dgeand that blocking non-free plugins to be
used in our infrastructure hurts us more than it hurts themadwners and their ilk.

This view is not shared by everyone. The Free Software Fdiordarges you to use an unmodified GPL
for your applications, so as to push back against the teiopttd use non-free plug-ins. They say that
since not everyone else has the strength to reject them sedaey are unethical, they ask your help to
give them a legal reason to do so.

This advisory is part of a bigger advisory with a FAQ which yaan find on the GStreamer website
(http://gstreamer.freedesktop.org/documentatioerfiging.html)

89

Chapter 24. Windows support

24.1. Building GStreamer under Win32

There are different makefiles that can be used to build GReesvith the usual Microsoft compiling
tools.

The Makefile is meant to be used with the GNU make program amétéle version of the Microsoft
compiler (http://msdn.microsoft.com/visualc/vctoeB#303/). You also have to modify your system
environment variables to use it from the command-line. Ydlualso need a working Platform SDK for
Windows that is available for free from Microsoft.

The projects/makefiles will generate automatically somec®files needed to compile GStreamer. That
requires that you have installed on your system some GNU$ taradl that they are available in your
system PATH.

The GStreamer project depends on other libraries, namely :
. GLib

-+ popt

« libxml2

- libintl

« libiconv

There is now an existing package that has all these depeieddnilt with MSVC7.1. It exists either as
precompiled librairies and headers in both Release and @elude, or as the source package to build it
yourself. You can find it on http://mukoli.free.fr/gstreandeps/.

Notes: GNU tools needed that you can find on http://gnuwin32.sourceforge.net/

+ GNU flex (tested with 2.5.4)
» GNU bison (tested with 1.35)

and http://www.mingw.org/

« GNU make (tested with 3.80)

the generated files from the -auto makefiles will be available soon separately on the net for
convenience (people who don’'t want to install GNU tools).

90

Chapter 24. Windows support

24.2. Installation on the system

By default, GSTreamer needs a registry. You have to genenaséeng "gst-register.exe". It will create the
file in c:\gstreamer\registry.xml that will hold all the gins you can use.

You should install the GSTreamer core in c:\gstreamer\hihthe plugins in c:\gstreamer\plugins. Both
directories should be added to your system PATH. The libd@gendencies should be installed in c:\usr

For example, my current setup is :

e c:\gstreanmer\registry.xm

- c:\gstreaner\bin\gst-inspect.exe

« c:\gstreaner\bin\gst-launch. exe

- c:\gstreaner\bin\gst-register.exe

- c:\gstreaner\bin\gstbytestreamdl|l

« c:\gstreaner\bin\gstel enents.dl|

« c:\gstreaner\bin\gstoptinal schedul er.dl|
e c:\gstreaner\bin\gstspider.dll

e c:\gstreaner\bin\libgtreanmer-0.8.dlI
o c:\gstreaner\plugins\gst-libs.dll

- c:\gstreaner\ pl ugi ns\ gst mat r oska. dl |
e c:\usr\bin\iconv.dll

e« c:\usr\bin\intl.dll

e c:\usr\bin\libglib-2.0-0.dlI

e c:\usr\bin\libgnmodul e-2.0-0.dlI

e c:\usr\bin\libgobject-2.0-0.dlI

e« c:\usr\bin\libgthread-2.0-0.dlI

o c:\usr\bin\libxn 2.dlI

e c:\usr\bin\popt.dll

91

Chapter 25. Quotes from the Developers

As well as being a cool piece of software, GStreamer is aylipebject, with developers from around the
globe very actively contributing. We often hang out on theté&gamer IRC channel on irc.freenode.net:
the following are a selection of amusinguotes from our conversations.

14 Oct 2004

* zaheermwonders how he can break gstreamer today :)

ensonic zaheerm, spider is always a good starting point

14 Jun 2004

teuf: ok, things work much better when | don’t write incrediblyptd and buggy code

thaytan | find that too

23 Nov 2003

Uraeus ah yes, the sleeping part, my mind is not multitasking sog atél thinking about exercise
dolphy Uraeus: your mind is multitasking

dolphy Uraeus: you just miss low latency patches

14 Sep 2002

--- wingo-partyis now known asvingo

* wingoholds head

16 Feb 2001

wtay: | shipped a few commerical products to >40000 people now [8tt&amer is way more
exciting...

16 Feb 2001

* tool-manis a gstreamer groupie

14 Jan 2001

Omega:did you run Idconfig? maybe it talks to init?

92

Chapter 25. Quotes from the Developers

wtay: not sure, don'’t think so... | did run gstreamer-registeuifio:-)

Omega:ah, that did it then ;-)

wtay: right

Omegaprobably not, but in case GStreamer starts turning into ans0®@eone please let me know?

9 Jan 2001

wtay: me tar, you rpm?

wtay: hehe, forgot "zan"

Omega:?

wtay: me tar"zan", you ...

7 Jan 2001
Omegathat means probably building an agreggating, cache-mamgsggeue to shove N buffers
across all at once, forcing cache transfer.
wtay: never done that before...

Omega:nope, but it's easy to do in gstreamer <g>

wtay: sure, | need to rewrite cp with gstreamer too, someday :-)

7 Jan 2001

wtay: GStreamer; always at least one developer is awake...

5/6 Jan 2001

wtay: we need to cut down the time to create an mp3 player down tosisco

richardb: :)

Omega:I’m wanting to something more interesting soon, | did theadian mp3 player in 15sec”
back in October '99.

93

Chapter 25. Quotes from the Developers

wtay: by the time Omega gets his hands on the editor, you'll see plEienaudio mixer in the
editor :-)

richardb: Well, it clearly has the potential...

Omega:Working on it... ;-)

28 Dec 2000

MPAA: We will sue you now, you have violated our IP rights!

wtay: hehehe

MPAA: How dare you laugh at us? We have lawyers! We have CongressiieehaveLARS
wtay: I'm so sorry your honor

MPAA: Hrumph.

* wtaybows before thy

4 Jun 2001

taaz:you witchdoctors and your voodoo mpeg2 black magic...
omega_um. | count three, no four different cults there <g>
ajmitch: hehe

omega_witchdoctors, voodoo, black magic,

omega_and mpeg

Notes

1. No guarantee of sense of humour compatibility is given.

94

	GStreamer Application Development Manual (0.8.11)
	Table of Contents
	List of Figures
	I. Overview
	Chapter 1. Introduction
	1.1. What is GStreamer?
	1.2. Structure of this Manual

	Chapter 2. Motivation & Goals
	2.1. Current problems
	2.1.1. Multitude of duplicate code
	2.1.2. 'One goal' media players/libraries
	2.1.3. Non unified plugin mechanisms
	2.1.4. Poor user experience
	2.1.5. Provision for network transparency
	2.1.6. Catch up with the Windows world

	2.2. The design goals
	2.2.1. Clean and powerful
	2.2.2. Object oriented
	2.2.3. Extensible
	2.2.4. Allow binary only plugins
	2.2.5. High performance
	2.2.6. Clean core/plugins separation
	2.2.7. Provide a framework for codec experimentation

	Chapter 3. Foundations
	3.1. Elements
	3.2. Bins and pipelines
	3.3. Pads

	II. Basic Concepts
	Chapter 4. Initializing GStreamer
	4.1. Simple initialization
	4.2. The popt interface

	Chapter 5. Elements
	5.1. What are elements?
	5.1.1. Source elements
	5.1.2. Filters, convertors, demuxers, muxers and codecs
	5.1.3. Sink elements

	5.2. Creating a GstElement
	5.3. Using an element as a GObject
	5.4. More about element factories
	5.4.1. Getting information about an element using a factory
	5.4.2. Finding out what pads an element can contain

	5.5. Linking elements
	5.6. Element States

	Chapter 6. Bins
	6.1. What are bins
	6.2. Creating a bin
	6.3. Custom bins

	Chapter 7. Pads and capabilities
	7.1. Pads
	7.1.1. Dynamic (or sometimes) pads
	7.1.2. Request pads

	7.2. Capabilities of a pad
	7.2.1. Dissecting capabilities
	7.2.2. Properties and values

	7.3. What capabilities are used for
	7.3.1. Using capabilities for metadata
	7.3.2. Creating capabilities for filtering

	7.4. Ghost pads

	Chapter 8. Buffers and Events
	8.1. Buffers
	8.2. Events

	Chapter 9. Your first application
	9.1. Hello world
	9.2. Compiling and Running helloworld.c
	9.3. Conclusion

	III. Advanced GStreamer concepts
	Chapter 10. Position tracking and seeking
	10.1. Querying: getting the position or length of a stream
	10.2. Events: seeking (and more)

	Chapter 11. Metadata
	11.1. Stream information
	11.2. Tag reading
	11.3. Tag writing

	Chapter 12. Interfaces
	12.1. The Mixer interface
	12.2. The Tuner interface
	12.3. The Color Balance interface
	12.4. The Property Probe interface
	12.5. The X Overlay interface

	Chapter 13. Clocks in GStreamer
	Chapter 14. Dynamic Parameters
	14.1. Getting Started
	14.2. Creating and Attaching Dynamic Parameters
	14.3. Changing Dynamic Parameter Values
	14.4. Different Types of Dynamic Parameter
	14.4.1. GstDParam the base dparam type
	14.4.2. GstDParamSmooth smoothing realtime dparam
	14.4.3. Timelined dparams

	Chapter 15. Threads
	15.1. When would you want to use a thread?
	15.2. Constraints placed on the pipeline by the GstThread
	15.3. A threaded example application

	Chapter 16. Scheduling
	16.1. Managing elements and data throughput

	Chapter 17. Autoplugging
	17.1. MIMEtypes as a way to identity streams
	17.2. Media stream type detection
	17.3. Plugging together dynamic pipelines

	Chapter 18. Pipeline manipulation
	18.1. Data probes
	18.2. Manually adding or removing data from/to a pipeline
	18.2.1. Inserting or grabbing data
	18.2.2. Forcing a format
	18.2.3. Example application

	18.3. Embedding static elements in your application

	IV. Higherlevel interfaces for GStreamer applications
	Chapter 19. Components
	19.1. Playbin
	19.2. Decodebin
	19.3. Spider
	19.4. GstPlay
	19.5. GstEditor

	Chapter 20. XML in GStreamer
	20.1. Turning GstElements into XML
	20.2. Loading a GstElement from an XML file
	20.3. Adding custom XML tags into the core XML data

	V. Appendices
	Chapter 21. Things to check when writing an application
	21.1. Good programming habits
	21.2. Debugging
	21.3. Conversion plugins
	21.4. Utility applications provided with GStreamer
	21.4.1. gstlaunch
	21.4.2. gstinspect

	Chapter 22. Integration
	22.1. Linux and UNIXlike operating systems
	22.2. GNOME desktop
	22.3. KDE desktop
	22.4. OS X
	22.5. Windows

	Chapter 23. Licensing advisory
	23.1. How to license the applications you build with GStreamer

	Chapter 24. Windows support
	24.1. Building GStreamer under Win32
	24.2. Installation on the system

	Chapter 25. Quotes from the Developers

