GStreamer Plugin Writer's Guide
(0.8.11)

Richard John Boulton
Erik Walthinsen
Steve Baker
Leif Johnson

Ronald S. Bultje

GStreamer Plugin Writer’s Guide (0.8.11)
by Richard John Boulton, Erik Walthinsen, Steve Baker, Uetfinson, and Ronald S. Bultje

This material may be distributed only subject to the ternts @nditions set forth in the Open Publication License, \dt.later (the latest version
is presently available at http://www.opencontent.orgfgmib/).

Table of Contents

I 1 01 oo [Tox o ISR Vii
O 1= - T PP PPN 1.
1.1. Who Should Read ThisS GUIE?..........eeiiiiiiieee ittt 1.
1.2. Preliminary REAGINGc.uviiiiiiiiie it stee ettt e et ee e snbeeeeenee 1
1.3. Structure of ThiS GUIAE......c.icueiieiiiiiiie e 1.
P =T] o 0] o [o T) £ P OPUPRROPPR 4
2.1. Elements and PIUGINS.coiiiiiiiiiiiiee ettt ettt 4.
2.2, PaAUS. .. 4.
2.3. Data, BUffers and EVENTS.........ccuuiiiiiiiiiieieiec et 5.
2.4. Mimetypes and ProPEIIES........uii ittt 7..
I =0T o [g Yo = W = [o] o PP 11
3. Constructing the BOIlErPIAtE..........coooi it 12
3.1. Getting the GStreamer Plugin Templates..........ccuueiiiiiiiiiiiiiii e 12
3.2.USINg the Project Stam.........oo it 12
3.3. Examining the BasiC COUR.........uuuiiiiiiaiiiiiiiie et 13
3.4. GSEEIEMENIDELAIIS.oeiiiiiiiii it 14
3.5. GStStaticPadTEMPIALE.coiiiiiie e 15.
3.6. CONSLIUCIOr FUNCLIONSoiiiiiiiie ittt 16.
3.7. The plugin_init FUNCHION.ooiii e 17.
4. SPECITYING the PAGAS ettt e e et e e e e e smnneee e e e e 18
4.1, The INK FUNCHION. ...ttt ne e e 18
4.2. The getCaps fUNCHOM.eiiii ettt aaeee 20
e T o d o] [o] | A oF= 1 oL TR 21
5. The Chain fUNCHION.........cooiiiiiii e 22
B. WAL Are STAIES2...ei ittt e et e e e eab e e e et b e e e eneneesrbaeeeeanee 24
6.1. Managing filter StAte...........coc i 24
AN (o T pTo AN o U031 o | PSRRI 26
LSS [0 =1L RPP R OTPRP 29
9. Building @ TeSt APPHCALIONL.coeiiiiiiie e 30
10. Creating a Filter with @ Filter FACIOLY.........coiiiiiieiiiiec e 32
1. Advanced Filter CONCEPLS........coiiirereeee e 33
11. HOW SChedUIING WOTKS........uieiiiieiieee ettt rmeeee e e e e s e e e e e e s e et e e e e e e ennnees 34
11.1. The BaSiC SCheAUIEE........cueiiii e 34.
11.2. The Optimal SChEAUIEE........eeiiiie e a e 34
12. HOW @ l0OPFUNC WOTKS ...ttt e e e e e e e e e s e et e e e e e e e e e 36
12.1. MURIFINPUL EIEMENES ...ttt e e e e e e s 36.
12.2. The Bytestream ODJECL........uuiiiii ittt a e 39
12.3. Adding @ SECON OUELPLE.....ceiieiiiiiiiieiie e e ettt e e et ee e e e e eee e e e e e e e d 41
12.4. Modifying the test appliCation.............coooi e 41
13. TYPES AN PrOPEITIES. ...t e ettt sttt e e e e e e e s et eeee e e e eenneeeas 42
13.1. Building a Simple Format for TESHNG.........uueeiiiiaaiiiiiiieiee e 42
13.2. Typefind Functions and AUtOPIUGQING.......ccoeiiiiiiiiiiiiee e 42
13.3. LiSt Of DEFINEA TYPES. ...eueeiiiieeeiiiiiiie et e e e e e e e e e 44.
14. Request and SOMEtiMES PAAS.coii ittt e e e 54.
14.1. SOMEIMES PAAS .. .eeeeeeieeeiie ittt e e e e et e e e e e e e s e nbb e e e e e e e e e s snnnraeeaaas 54

14.2. REQUEST PAAS ...ceiiiiiiii ittt e et ee e ettt e e e e e s e ettt e e e e e e e e nenbaeeaaaaeenes 57

ST O (o o3 (] o N OSSR POPPPPPPPPRR 59
15,0, TYPES OF LM ..ttt e e e e e ermnneeeas 59

15,2, CHOCKS. ..ottt 59

15.3. Flow of data between elements and time...............cooviiiiiiiiiiicne e 59

15.4. Obligations of each element.. ... 60

16. Supporting DyNamiC Parameters...........oooiiiiiiiiiiieea e iiiiee e e e eeaa e 61
16.1. Comparing Dynamic Parameters with GObject Proertie............occcevvieeeeeenn. 61

16.2. GettiNG STAMEA....ceiii ittt e e e e e s eeeeaans 61

16.3. Defining Parameter SpecificatiQnS...........cooooriiiiiiiiiie e 62

16.4. The Data Processing LOQR.........uuuuiiiiaaiiiiiiiiiiie et 65

L7 IMID ettt etttk b e e eneeeabe e s ereeennbeeesneeennnees 69
L8, INEEITACES ... ettt ea e 70
18.1. How to Implement INterfaces..........ooo i 70
18.2. MIXEI INTEITACE.eiiie ittt e e 71
18.3. TUNEI INtEIfACE ... et seeeee s] D

18.4. Color Balance INtErface.........cueviiiiiiiie et 77

18.5. Property Probe INterfaCe.........cuvvviiiiiii it 77

18.6. X OVErlay INTEIfACE........coiiiiiiie e e 80

18.7. Navigation INTEIACE.coiieiiii e 82.

19. Tagging (Metadata and Streaminfo)...........ccveeei i 83
19.1. Reading Tags from StrEAMS.cccoiiiiiiiiiiie et e e e e e e e e e s s aeeeee s 83

19.2. Writing TagsS 10 StrEaAMS. ..o cviieeiieeee et e e e e s r e e e e e s ennaneees 85

20. Events: Seeking, Navigation and MOFE............cccuiviiiiieee e eee e et ee e e 38
20.1. DOWNSIIEAM BVENIS....cii ittt te e e ettt s et e e e e e e e e e e e e s es 88
20.2. UPSIrEaM BVENLS.....cciiiiiiieeiiieieee ettt eeeeeeee e et eeeeeteteeeeereaeeeeeeesseesneessesennnnns 89
20.3. All EVENES TOGEINEL....... ittt a0

V. Other EIEMENT TYPES ..cviiitiiit ittt b bbbt 95
20, WIHING @ SOUICE. ... ceeeeieeiieit ettt ettt e ettt e e e e e e e e e babb et e e e e e e e e e aannbeseeeaeannnreneees 96
21.1. The get()-TUNCHOMueieieieee ettt e e e nnes 96
21.2. Events, querying and CONVEITING.uuiiiiaan ittt ie e e e semeeee e eereeeeeeee e e 96
21.3. Time, clocking and synchronization..............cccceeiiiiiiiiiiiiie e 100
21.4.USING SPECIAI MEIMOIY....eiiiiiiiiiiiiiiie ittt e e eae e e e 103

22, WIHING @ SINK ...ttt e et ee e e e e e me e e e e e e 105
22.1. Data processing, events, synchronization and clocks...........ccccooocn. 105
22.2. SPECIAI MEIMOLY ...ttt ettt e e e e e e e e s nbb e e ee e e e s eannns 106

23. Writing a 1-to-N Element, DEMUXET OF ParSer.........ccuuiiiiiiiiieeeeeeeiiiieee e eeeeeiee e 108
23.1. Demuxer Caps NegOtIAtiON........cuiiiii it e e 108
23.2. Data processing and dOWNSIream eVENLS..........oouiiiiiiiieeieee e eiiiie e e 108
23.3. Parsing Versus iNterpreting........c.uueeeeeeeeari it e e a e 108
23.4. Simple seeking and INOEXES.........couiiiiieiiiiiie et 110

24, Writing @ N-t0-1 EIemMeENnt OF MUXEE.........cuviiiiiiiie ettt et 111
24.1. The Data LOOP FUNCHOMc.uviiiiiiiiiie sttt 111
24.2. Eventsin the LoOp FUNCHON.........cooiiiiiiiiiice e 111

P e T N\ =T To T L1 o o SR PPPTSPN 112
24.4. Markup VS. data ProCESSING......uvvvieiiiieieeiitiiie e sitiee e see e e sttt e e eees 114

25. Wrting @ N-t0-N €IEMENT......cciiiiiiiiiiiiiii e 116

A T (o T AV F= T E= o =T PSPPI 118

VL APPENTICES. ...ttt h bbbt b bt bt b et h e R e R e R bR bt ee b s b e r e r e nere s 119
28. Things to check when writing an €lement...........ooooiiiiiiii e 120
28.1. ADOUL STALES.eiiiieiiiie ettt e e 120

28.2. DEDUGGING ...ttt e e e e e e e 120

28.3. Querying, events and the Ke...........coooiiiii e 121

28.4. Testing YOUTr €IEMENT.........oiiiiiii et 121

29. GSHrEAMEN lICENSING. .. . eetiiiee ettt e et e e e e e e e e s sa e e e e e e e e e e neeaee e s 122
29.1. How to license the code you write for GStreamer...........ccooviiiiiiiieeee i, 122

List of Tables

2-1. Table Of BASIC TYPES. . uuteiieiiieeees i ettt et e e e s s et meeee e e s s st ae e e aeeeeessasta e e aeeeaeeessnnnneeeeeannnnsnnes 7
13-1. Table Of AUGIO TYPES..ciiiii ittt errre e e e e nee e e e e e s s s nnrnnneesenennnsenneeees D4
13-2. Table Of VIAEO TYPES ...uueiiiieieee i ittt et ee e e et essttseeeeessssinneeee e s ee e e s ennnsnnnneneeeeessensssneesnssnnnneenes 48
13-3. Table Of CONtAINET TYPES. . iiiiiiiie i ittt et e e e es st e e e e sestre e eeeeeesesssaaaaereeeeaeanasnssreeeennnnrnnes 52
13-4. Table Of SUDLIIE TYPES...uuiiiiiie ittt e e e e e e e e e s e e e e e e e e st n e e e e e ensssnneees 53
R R ST =T o] [N o) O {1 Gl 1Y/ 1S 53

vi

|. Introduction

GStreamer is an exremely powerful and versatile frameworilcfeating streaming media applications.
Many of the virtues of the GStreamer framework come from itgloiarity: GStreamer can seamlessly
incorporate new plugin modules. But because modularitymoveer often come at a cost of greater
complexity (consider, for example, CORBA (http://www.org/)), writing new plugins is not always
easy.

This guide is intended to help you understand the GStrearaerdwork (version 0.8.11) so you can
develop new plugins to extend the existing functionalitye Quide addresses most issues by following
the development of an example plugin - an audio filter plugimitten in C. However, the later parts of
the guide also present some issues involved in writing dthpes of plugins, and the end of the guide
describes some of the Python bindings for GStreamer.

Chapter 1. Preface

1.1. Who Should Read This Guide?

This guide explains how to write new modules for GStreambe guide is relevant to several groups of
people:

« Anyone who wants to add support for new ways of processing ide® Streamer. For example, a
person in this group might want to create a new data formatexer, a new visualization tool, or a
new decoder or encoder.

- Anyone who wants to add support for new input and output @sviEor example, people in this group
might want to add the ability to write to a new video outputteys or read data from a digital camera
or special microphone.

- Anyone who wants to extend GStreamer in any way. You needve aa understanding of how the
plugin system works before you can understand the consdrtiiat the plugin system places on the
rest of the code. Also, you might be surprised after readiiggat how much can be done with plugins.

This guide is not relevant to you if you only want to use thesgérg functionality of GStreamer, or if you
just want to use an application that uses GStreamer. If yewuly interested in using existing plugins to
write a new application - and there are quite a lot of pluginsaly - you might want to check the
GStreamer Application Development Manuélou are just trying to get help with a GStreamer
application, then you should check with the user manualfat particular application.

1.2. Preliminary Reading

This guide assumes that you are somewhat familiar with te&leorkings of GStreamer. For a gentle
introduction to programming concepts in GStreamer, you mia to read th&sStreamer Application
Development Manudirst. Also check out the documentation available on the &8irer web site
(http://gstreamer.freedesktop.org/documentation/).

Since GStreamer adheres to the GObject programming mdegtide also assumes that you
understand the basics of GObject (http://developer.gnomeoc/AP1/2.0/gobject/index.html)
programming. There are several good introductions to th&jée library, including th>K+ Tutorial
(http://www.gtk.org/tutorial/and theGlib Object system
(http://www.le-hacker.org/papers/gobject/index.htmi

1.3. Structure of This Guide

To help you navigate through this guide, it is divided inteesal large parts. Each part addresses a

Chapter 1. Preface

particular broad topic concerning GStreamer plugin dgwedent. The parts of this guide are laid out in
the following order:

« Building a Plugin- Introduction to the structure of a plugin, using an exanguldio filter for
illustration.

This part covers all the basic steps you generally need foyeto build a plugin, such as registering
the element with GStreamer and setting up the basics so iecaive data from and send data to
neighbour elements. The discussion begins by giving exasmgflgenerating the basic structures and
registering an element i@onstructing the Boilerplatd hen, you will learn how to write the code to
get a basic filter plugin working i€hapter 4 Chapter 5andChapter 6

After that, we will show some of the GObject concepts on homske an element configurable for
applications and how to do application-element interacitivAdding ArgumentandChapter 8 Next,
you will learn to build a quick test application to test alatlyou've just learned iChapter 9We will
just touch upon basics here. For full-blown applicationelegment, you should look at the
Application Development Manual
(http://gstreamer.freedesktop.org/data/doc/gstredmead/manual/html/index.html).

- Advanced Filter Conceptsinformation on advanced features of GStreamer plugin ldgveent.

After learning about the basic steps, you should be ablegatera functional audio or video filter
plugin with some nice features. However, GStreamer offesgenfor plugin writers. This part of the
guide includes chapters on more advanced topics, such edwdaiy, media type definitions in
GStreamer, clocks, interfaces and tagging. Since theserésaare purpose-specific, you can read
them in any order, most of them don’t require knowledge fraheosections.

The first chapter, nameddhapter 11will explain some of the basics of element scheduling. itas
very in-depth, but is mostly some sort of an introduction diywther things work as they do. Read
this chapter if you're interested in GStreamer internalsxtwe will apply this knowledge and
discuss another type of data transmission than what yondeanChapter 5Chapter 12Loop-based
elements will give you more control over input rate. This $&ful when writing, for example, muxers
or demuxers.

Next, we will discuss media identification in GStreameCinapter 13You will learn how to define
new media types and get to know a list of standard media tygfsed] in GStreamer.

In the next chapter, you will learn the concept of requestt smmetimes-pads, which are pads that are
created dynamically, either because the application afgkatl(request) or because the media stream
requires it (sometimes). This will be @hapter 14

The next chapteChapter 15will explain the concept of clocks in GStreamer. You need th
information when you want to know how elements should a@h@mwdio/video synchronization.

Chapter 1. Preface

The next few chapters will discuss advanced ways of doingjadjpn-element interaction.
Previously, we learned on the GObject-ways of doing thi&dding ArgumentsandChapter 8 We

will discuss dynamic parameters, which are a way of definlagyent behaviour over time in advance,
in Chapter 16Next, you will learn about interfaces Bhapter 18Interfaces are very target- specific
ways of application-element interaction, based on GOlsj&interface. Lastly, you will learn about
how metadata is handled in GStreameC€imapter 19

The last chapteChapter 20will discuss the concept of events in GStreamer. Eventsoaréhe one
hand, another way of doing application-element interactibtakes care of seeking, for example. On
the other hand, it is also a way in which elements interadt éch other, such as letting each other
know about media stream discontinuities, forwarding taggdie a pipeline and so on.

Other Element TypesExplanation of writing other plugin types.

Because the first two parts of the guide use an audio filter axample, the concepts introduced
apply to filter plugins. But many of the concepts apply equilother plugin types, including

sources, sinks, and autopluggers. This part of the guidsepts the issues that arise when working on
these more specialized plugin types. The part includesterapnWriting a SourceWriting a Sink
Writing a 1-to-N Element, Demuxer or Pars@'riting a N-to-1 Element or Muxeand

Writing a Manager

Appendices Further information for plugin developers.

The appendices contain some information that stubboriflises to fit cleanly in other sections of the
guide. Most of this section is not yet finished.

The remainder of this introductory part of the guide presenshort overview of the basic concepts
involved in GStreamer plugin development. Topics covenetlideElements and Plugin®ads

Data, Buffers and EventndTypes and PropertieHf you are already familiar with this information, you
can use this short overview to refresh your memory, or youstdmto Building a Plugin

As you can see, there a lot to learn, so let’s get started!

- Creating compound and complex elements by extending frostBi@ This will allow you to create
plugins that have other plugins embedded in them.

- Adding new mime-types to the registry along with typedetenttions. This will allow your plugin to
operate on a completely new media type.

Chapter 2. Basic Concepts

This chapter of the guide introduces the basic concepts tie@®er. Understanding these concepts will
help you grok the issues involved in extending GStreamenyMd these concepts are explained in
greater detail in th&Streamer Application Development Manuhk basic concepts presented here
serve mainly to refresh your memory.

2.1. Elements and Plugins

Elements are at the core of GStreamer. In the context of pldgvelopment, aalemenis an object
derived from the Gst El ement (../../gstreamer/html/GstElement.html) class. Elerag@mnovide some

sort of functionality when linked with other elements: Faaeple, a source element provides data to a
stream, and a filter element acts on the data in a stream. Wigdements, GStreamer is just a bunch of
conceptual pipe fittings with nothing to link. A large numlo¢elements ship with GStreamer, but extra
elements can also be written.

Just writing a new element is not entirely enough, howeveu Will need to encapsulate your element in
apluginto enable GStreamer to use it. A plugin is essentially a Ibkedialock of code, usually called a
shared object file or a dynamically linked library. A singleg@in may contain the implementation of
several elements, or just a single one. For simplicity, ghisle concentrates primarily on plugins
containing one element.

A filter is an important type of element that processes a stream af Bedducers and consumers of data
are calledsourceandsink elements, respectivelgin elements contain other elements. One type of bin is
responsible for scheduling the elements that they contathat data flows smoothly. Another type of

bin, calledautopluggerelements, automatically add other elements to the bin akd them together so
that they act as a filter between two arbitary stream types.

The plugin mechanism is used everywhere in GStreamer, ¢oetyithe standard packages are being
used. A few very basic functions reside in the core librang all others are implemented in plugins. A
plugin registry is used to store the details of the pluginannXML file. This way, a program using
GStreamer does not have to load all plugins to determinelwdnie needed. Plugins are only loaded
when their provided elements are requested.

See theGStreamer Library Referender the current implementation details Gt El ement
(../..Igstreamer/html/GstElement.html) a@st Pl ugi n (../../gstreamer/html/gstreamer-GstPlugin.html).

2.2. Pads

Padsare used to negotiate links and data flow between elementStre@mer. A pad can be viewed as a

Chapter 2. Basic Concepts

“place” or “port” on an element where links may be made withestelements, and through which data
can flow to or from those elements. Pads have specific datdihgrapabilities: A pad can restrict the
type of data that flows through it. Links are only allowed begw two pads when the allowed data types
of the two pads are compatible.

An analogy may be helpful here. A pad is similar to a plug okjan a physical device. Consider, for
example, a home theater system consisting of an amplifiey;[a [@ayer, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed becausetbdévices have audio jacks, and linking
the projector to the DVD player is allowed because both d=s/lave compatible video jacks. Links
between the projector and the amplifier may not be made bec¢hagprojector and amplifier have
different types of jacks. Pads in GStreamer serve the sampoge as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way througtkdetween elements. Data flows out
of one element through one or maseurce padsand elements accept incoming data through one or
moresink padsSource and sink elements have only source and sink pagectesly.

See theGStreamer Library Referender the current implementation details ofzat Pad
(../..Igstreamer/html/GstPad.html).

2.3. Data, Buffers and Events

All streams of data in GStreamer are chopped up into churdtsatte passed from a source pad on one
element to a sink pad on another elem@&staare structures used to hold these chunks of data.

Data contains the following important types:

- An exact type indicating what type of data (control, contenxthis Data is.

- Areference count indicating the number of elements culydrtiding a reference to the buffer. When
the buffer reference count falls to zero, the buffer will beinked, and its memory will be freed in
some sense (see below for more details).

There are two types of data defined: events (control) anctkaifEontent).

Buffers may contain any sort of data that the two linked patskhow to handle. Normally, a buffer
contains a chunk of some sort of audio or video data that flosra bne element to another.

Buffers also contain metadata describing the buffer'seotst Some of the important types of metadata
are:

- A pointer to the buffer's data.

Chapter 2. Basic Concepts

- An integer indicating the size of the buffer’s data.

- Atimestamp indicating the preferred display timestamphefd¢ontent in the buffer.

Events contain information on the state of the stream flowigigveen the two linked pads. Events will
only be sent if the element explicitely supports them, etgecore will (try to) handle the events
automatically. Events are used to indicate, for examplégekaliscontinuity, the end of a media stream
or that the cache should be flushed.

Events may contain several of the following items:

- A subtype indicating the type of the contained event.

- The other contents of the event depend on the specific eveat ty

Events will be discussed extensively@mapter 20Until then, the only event that will be used is the
EOSevent, which is used to indicate the end-of-stream (usealti-of-file).

See theGStreamer Library Referender the current implementation details ofaat Dat a
(../..Igstreamer/html/gstreamer-GstData.hti@d), Buf f er
(../..Igstreamer/html/gstreamer-GstBuffer.html) &sd Event
(../..Igstreamer/html/gstreamer-GstEvent.html).

2.3.1. Buffer Allocation

Buffers are able to store chunks of memory of several diffetgpes. The most generic type of buffer
contains memory allocated by malloc(). Such buffers, alfioconvenient, are not always very fast,
since data often needs to be specifically copied into thesbuff

Many specialized elements create buffers that point toiape®mory. For example, the filesrc element
usually maps a file into the address space of the applicatging mmap()), and creates buffers that
point into that address range. These buffers created bydites exactly like generic buffers, except that
they are read-only. The buffer freeing code automaticatiednines the correct method of freeing the
underlying memory. Downstream elements that recieve tkiesks of buffers do not need to do anything
special to handle or unreference it.

Another way an element might get specialized buffers is quest them from a downstream peer. These
are called downstream-allocated buffers. Elements caa @gler connected to a source pad to create an
empty buffer of a given size. If a downstream element is able¢ate a special buffer of the correct size,
it will do so. Otherwise GStreamer will automatically creat generic buffer instead. The element that
requested the buffer can then copy data into the buffer, ast fhe buffer to the source pad it was
allocated from.

Chapter 2. Basic Concepts

Many sink elements have accelerated methods for copyiregtddtardware, or have direct access to
hardware. Itis common for these elements to be able to cdeatestream-allocated buffers for their
upstream peers. One such example is ximagesink. It creatiesthat contain XImages. Thus, when an
upstream peer copies data into the buffer, it is copyingotlyento the XImage, enabling ximagesink to
draw the image directly to the screen instead of having ty clgpa into an XImage first.

Filter elements often have the opportunity to either worladsuffer in-place, or work while copying
from a source buffer to a destination buffer. It is optimairtgplement both algorithms, since the
GStreamer framework can choose the fastest algorithm asjaipgte. Naturally, this only makes sense
for strict filters -- elements that have exactly the same from source and sink pads.

2.4. Mimetypes and Properties

GStreamer uses a type system to ensure that the data passedmelements is in a recognized format.
The type system is also important for ensuring that the patara required to fully specify a format
match up correctly when linking pads between elements. laklthat is made between elements has a
specified type and optionally a set of properties.

2.4.1. The Basic Types

GStreamer already supports many basic media types. Folipiwia table of a few of the the basic types
used for buffers in GStreamer. The table contains the namar(® type") and a description of the type,
the properties associated with the type, and the meaningabf property. A full list of supported types is
included inList of Defined Types

Table 2-1. Table of Basic Types

Mime Type Description Property Property Property Property
Type Values Description
audio/* All audio types| rate integer greater than 0 | The sample

rate of the data
in samples (pel
channel) per
second.

channels integer greater than 0 | The number of|
channels of
audio data.

Chapter 2. Basic Concepts

Mime Type

Description

Property

Property
Type

Property
Values

Property
Description

audio/x-raw-int

Unstructured
and
uncompressed
raw integer
audio data.

endianness

integer

G_BIG_ENDIA
(1234) or
G_LITTLE_EN
(4321)

NThe order of
bytesin a
DHaMNple. The
value
G_LITTLE_EN
(4321) means
“little-endian”
(byte-orderis
“least
significant byte
first”). The
value
G_BIG_ENDIA
(1234) means
“big-endian”
(byte order is
“most
significant byte
first”).

DIAN

signed

boolean

TRUE or
FALSE

Whether the
values of the
integer sample
are signed or
not. Signed
samples use
one bit to
indicate sign
(negative or
positive) of the
value.
Unsigned
samples are

always positive|

width

integer

greater than 0

Number of bits
allocated per

sample.

Chapter 2. Basic Concepts

Mime Type

Description

Property

depth

Property
Type
integer

Property
Values

greater than 0

Property
Description
The number of]
bits used per
sample. This
must be less
than or equal tg
the width: If the
depth is less
than the width,
the low bits are
assumed to be
the ones used.
For example, a
width of 32 and
a depth of 24
means that eag
sample is
stored in a 32
bit word, but
only the low 24
bits are actually
used.

audio/mpeg

Audio data
compressed
using the
MPEG audio
encoding
scheme.

mpegversion

integer

1,2o0r4

The
MPEG-version
used for
encoding the
data. The valug
1refersto
MPEG-1, -2
and -2.5 layer
1,20r3.The
values 2 and 4
refer to the
MPEG-AAC
audio encoding
schemes.

Chapter 2. Basic Concepts

Mime Type

Description

Property

framed

Property
Type
boolean

Property
Values

Oorl

Property
Description

A true value
indicates that
each buffer
contains
exactly one
frame. A false
value indicates
that frames and
buffers do not
necessarily
match up.

layer

integer

1,2,0r3

The
compression
scheme layer
used to
compress the
data(only if
mpegver-
sion=1).

bitrate

integer

greater than 0

The bitrate, in
bits per second.
For VBR
(variable
bitrate) MPEG
data, this is the
average bitrate

audio/x-vorbis

\orbis audio
data

There are
currently no
specific
properties
defined for this
type.

10

Il. Building a Plugin

You are now ready to learn how to build a plugin. In this parttef guide, you will learn how to apply
basic GStreamer programming concepts to write a simpleiplddne previous parts of the guide have
contained no explicit example code, perhaps making thirtgsabstract and difficult to understand. In
contrast, this section will present both applications amdiecby following the development of an
example audio filter plugin called “ExampleFilter”.

The example filter element will begin with a single input pad @ single output pad. The filter will, at
first, simply pass media and event data from its sink pad toitsce pad without modification. But by
the end of this part of the guide, you will learn to add someenioteresting functionality, including
properties and signal handlers. And after reading the nasttq the guideAdvanced Filter Concepts
you will be able to add even more functionality to your plugin

The example code used in this part of the guide can be fouagdnpl es/ pwg/ exanpl efilter/ in
your GStreamer directory.

Chapter 3. Constructing the Boilerplate

In this chapter you will learn how to construct the bare minimcode for a new plugin. Starting from
ground zero, you will see how to get the GStreamer templatecseo Then you will learn how to use a
few basic tools to copy and modify a template plugin to createw plugin. If you follow the examples
here, then by the end of this chapter you will have a functiandio filter plugin that you can compile
and use in GStreamer applications.

3.1. Getting the GStreamer Plugin Templates

There are currently two ways to develop a new plugin for GS8trer: You can write the entire plugin by
hand, or you can copy an existing plugin template and wrigepllangin code you need. The second
method is by far the simpler of the two, so the first method ndlt even be described here. (Errm, that s,
“it is left as an exercise to the reader.”)

The first step is to check out a copy of tpet - t enpl at e CVS module to get an important tool and the
source code template for a basic GStreamer plugin. To chetcthegst - t enpl at e module, make sure
you are connected to the internet, and type the followingroamds at a command console:

shell $ cvs -d:pserver:anoncvs@vs. f reedeskt op. org/ cvs/ gstreaner |ogin
Logging in to :pserver:anoncvs@vs. freedesktop. org:/cvs/ gstreaner
CVS password: [ENTER]

shell $ cvs -z3 -d:pserver:anoncvs@vs. freedesktop.org:/cvs/gstreamer co gst-tenplate
gst - t enpl at e/ READVE

gst -t enpl at e/ gst - app/ AUTHORS

gst -t enpl at e/ gst - app/ ChangelLog

gst-tenpl at e/ gst - app/ Makefil e. am

gst -t enpl at e/ gst - app/ NEWS

gst -t enpl at e/ gst - app/ READVE

gst -t enpl at e/ gst - app/ aut ogen. sh

gst-tenpl at e/ gst-app/ confi gure. ac

gst-tenpl at e/ gst - app/ src/ Makefil e.am

ccccccccc

After the first command, you will have to preBSNTER to log in to the CVS server. (You might have to
log in twice.) The second command will check out a series e$§fdnd directories into

./ gst -t enpl at e. The template you will be using is irf gst - t enpl at e/ gst - pl ugi n/ directory.

You should look over the files in that directory to get a gehiel@a of the structure of a source tree for a

plugin.

12

Chapter 3. Constructing the Boilerplate

3.2. Using the Project Stamp

The first thing to do when making a new element is to specifyesbasic details about it: what its name
is, who wrote it, what version number it is, etc. We also needédfine an object to represent the element
and to store the data the element needs. These details Eretively known as théoilerplate

The standard way of defining the boilerplate is simply to &sbme code, and fill in some structures. As
mentioned in the previous section, the easiest way to dagiiscopy a template and add functionality
according to your needs. To help you do so, there are somgitotie. / gst - pl ugi ns/ t ool s/

directory. One toolgst - qui ck- st anp, is a quick command line tool. The other,

gst - proj ect - st anp, is a full GNOME druid application that takes you through seps of creating a
new project (either a plugin or an application).

To usepluginstamp.sh, first open up a terminal window. Change to ¥t - t enpl at e directory, and
then run thepluginstamp.sh command. The arguments to tphkiginstamp.sh are:

1. the name of the plugin, and

2. the directory that should hold a new subdirectory for therse tree of the plugin.

Note that capitalization is important for the name of thegahuUnder some operating systems,
capitalization is also important when specifying diregtoames. For example, the following commands
create the ExampleFilter plugin based on the plugin tere@atl put the output files in a new directory
called~/ src/ exanpl efilter/:

shell $ cd gst-tenplate
shell $ tools/pluginstanp.sh ExanpleFilter ~/src

3.3. Examining the Basic Code

First we will examine the code you would be likely to place ineader file (although since the interface
to the code is entirely defined by the plugin system, and dbéspend on reading a header file, this is
not crucial.) The code here can be found in

exanpl es/ pwg/ exanpl efilter/boiler/gstexanplefilter.h.

Example 3-1. Example Plugin Header File

/+ Definition of structure storing data for this elenment. */
typedef struct _GstExanpl e Gst Exanpl e;

struct _GstExanple {
Gst El enent el enent;

Gst Pad *si nkpad, =*srcpad;

13

Chapter 3. Constructing the Boilerplate

gbool ean sil ent;

b

/+ Standard definition defining a class for this elenment. */
t ypedef struct _Gst Exanpl eCl ass Gst Exanpl ed ass;
struct _Gst Exanpl eC ass {

Gst El enent Cl ass parent _cl ass;

}s

/+ Standard nmacros for defining types for this element. =/
#defi ne GST_TYPE_EXAMPLE \
(gst _exanpl e_get _type())
#defi ne GST_EXAMPLE(obj) \
(G_TYPE_CHECK_CAST((0bj), GST_TYPE_EXAMPLE, Gst Exanpl €))
#def i ne GST_EXAMPLE_CLASS(kl ass) \
(G_TYPE_CHECK_CLASS_CAST((kI ass), GST_TYPE_EXAMPLE, Gst Exanpl e))
#define GST_I S_EXAMPLE(obj) \
(G_TYPE_CHECK_TYPE((0bj), GST_TYPE_EXAWPLE))
#define GST_I S_EXAMPLE_CLASS(obj) \
(G_TYPE_CHECK_CLASS_TYPE((kl ass), GST_TYPE_EXAMPLE))

/+ Standard function returning type information. */
Glype gst_exanpl e_get _type (void);

3.4. GstElementDetalls

The GstElementDetails structure gives a hierarchical fgpéhe element, a human-readable description
of the element, as well as author and version data. The srarée

A long, english, name for the element.

The type of the element, as a hierarchy. The hierarchy is e@gfiryy specifying the top level category,
followed by a "/", followed by the next level category, etheltype should be defined according to the
guidelines elsewhere in this document. (FIXME: write thédglines, and give a better reference to
them)

A brief description of the purpose of the element.

The name of the author of the element, optionally followedlmpntact email address in angle
brackets.

For example:

static GstEl enentDetails exanple_details = {

"An exanpl e plugin",

"Exanpl e/ Fi r st Exanpl e",

"Shows the basic structure of a plugin",
"your nanme <your.nanme@our.isp>"

14

Chapter 3. Constructing the Boilerplate

The element details are registered with the plugin durilg ttase_i nit () function, which is part of
the GObject system. Thebase_i nit () function should be set for this GObject in the function where
you register the type with Glib.

static void
gst_ny filter_base_init (GstMFilterd ass *kl ass)

{
static GstElenentDetails ny_filter_details = {

[--]
b
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);

[--]

gst _el ement _cl ass_set _details (el enent_class, &ry_filter_details);

}

3.5. GstStaticPadTemplate

A GstStaticPadTemplate is a description of a pad that thmaeé will (or might) create and use. It
contains:

« A short name for the pad.
- Pad direction.

- Existence property. This indicates whether the pad exigigys (an “always” pad), only in some
cases (a “sometimes” pad) or only if the application reqeabstich a pad (a “request” pad).

- Supported types by this element (capabilities).

For example:

static GstStati cPadTenpl ate sink_factory =
GST_STATI C_PAD_TEMPLATE (

"sink",

GST_PAD SI NK,

GST_PAD_ALWAYS,

GST_STATI C_CAPS (" ANY")
)

Those pad templates are registered during these_i ni t () function. Pads are created from these
templates in the element’s nit () function usinggst _pad_new from tenpl ate (). The
template can be retrieved from the element class ussng el ement _cl ass_get _pad_t enpl ate

15

Chapter 3. Constructing the Boilerplate

() . See below for more details on this. In order to create a nelfimen this template using
gst _pad_new from tenplate (), you will need to declare the pad template as a global vaiabl
More on this subject itChapter 4

static GstStaticPadTenpl ate sink_factory =1[..],
src_factory =[..];

static void
gst_ny filter_base_init (GstMFilterd ass *kl ass)
{
[..]
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);

gst _el ement _cl ass_add_pad_tenpl ate (el enent _cl ass,
gst _static_pad_tenplate_get (&src_factory));
gst _el ement _cl ass_add_pad_tenpl ate (el enent _cl ass,
gst _static_pad_tenpl ate_get (&sink_factory));
[..]
}

The last argument in a template is its type or list of supmbtypes. In this example, we use 'ANY’,
which means that this element will accept all input. In rifalsituations, you would set a mimetype and
optionally a set of properties to make sure that only suggabiriput will come in. This representation
should be a string that starts with a mimetype, then a setrofica-separates properties with their
supported values. In case of an audio filter that supportsreeger 16-bit audio, mono or stereo at any
samplerate, the correct template would look like this:

static GstStati cPadTenpl ate sink_factory =
GST_STATI C_PAD_TEMPLATE (
"sink",
GST_PAD_SI NK,
GST_PAD_ALWAYS,
GST_STATI C_CAPS (
"audi o/ x-rawi nt,
"width = (int) 16,
"depth = (int) 16,
"endi anness = (int) BYTE_ORDER,
"channels = (int) { 1, 2},
"rate = (int) [8000, 96000]"

Values surrounded by curly brackets (“{" and “}") are listgalues surrounded by square brackets (“[”
and “]") are ranges. Multiple sets of types are supported &mal should be separated by a semicolon
(7). Later, in the chapter on pads, we will see how to usestypo know the exact format of a stream:
Chapter 4

16

Chapter 3. Constructing the Boilerplate

3.6. Constructor Functions

Each element has three functions which are used for conistnuaf an element. These are the
_base_ini t () function which is meant to initialize class and child classpgerties during each new
child class creation; thecl ass_i ni t () function, which is used to initialise the class only once
(specifying what signals, arguments and virtual functitiresclass has and setting up global state); and
the_i ni t () function, which is used to initialise a specific instancelos type.

3.7. The plugin_init function

Once we have written code defining all the parts of the pluganeed to write the plugin_init()
function. This is a special function, which is called as sasithe plugin is loaded, and should return
TRUE or FALSE depending on whether it loaded initialized dependencies correctly. Also, in this
function, any supported element type in the plugin shoulcelgéstered.

static gbool ean
plugin_init (GstPlugin *plugin)
{
return gst_elenent _register (plugin, "nmy_filter",
GST_RANK_NONE,
GST_TYPE_MY_FI LTER) ;
}

GST_PLUG N_DEFI NE (
GST_VERSI ON_MAJOR,
GST_VERSI ON_M NOR,
"my_filter",

"My filter plugin",
plugin_init,

VERSI ON,

"LGPL",

"CStreamer”,
"http://gstreaner.net/"

)

Note that the information returned by the plugin_init() étion will be cached in a central registry. For
this reason, it is important that the same information isaglsweturned by the function: for example, it
must not make element factories available based on runtimeittons. If an element can only work in
certain conditions (for example, if the soundcard is nohbeised by some other process) this must be
reflected by the element being unable to enter the READY #tateavailable, rather than the plugin
attempting to deny existence of the plugin.

17

Chapter 4. Specifying the pads

As explained before, pads are the port through which data goand out of your element, and that
makes them a very important item in the process of elemeatiore In the boilerplate code, we have
seen how static pad templates take care of registering pgulaées with the element class. Here, we will
see how to create actual elements, usenk () and_get caps () functions to let other elements
know their capabilities and how to register functions todata flow through the element.

In the elementi nit () function, you create the pad from the pad template that has tegistered
with the element class in thébase_i nit () function. After creating the pad, you have to sef &nk

() function pointer and aget caps () function pointer. Optionally, you can set ahai n () function
pointer (on sink pads in filter and sink elements) througholtdata will come in to the element, or (on
source pads in source elements)ggt () function pointer through which data will be pulled from the
element. After that, you have to register the pad with thenelat. This happens like this:

static GstPadLi nkReturn gst_ny _filter_link (GstPad *pad
const Gst Caps *caps);
static GstCaps * gst_ny_filter_getcaps (GstPad *pad) ;
static void gst_ny filter_chain (GstPad *pad
Gst Dat a xdat a) ;

static void
gst_ny filter_init (GstMyFilter *filter)
{
Gst El enent Cl ass *kl ass = GST_ELEMENT_GET_CLASS (filter);

/+ pad through which data cones in to the elenent */
filter->sinkpad = gst_pad_new fromtenplate (
gst _el enent _cl ass_get _pad_tenpl ate (klass, "sink"), "sink");
gst _pad_set _link_function (filter->sinkpad, gst_ny filter_link);
gst _pad_set _getcaps_function (filter->sinkpad, gst_ny filter_getcaps);
gst _pad_set _chain_function (filter->sinkpad, gst_ny filter_chain);
gst _el ement _add_pad (GST_ELEMENT (filter), filter->sinkpad);

/+ pad through which data goes out of the elenment x/
filter->srcpad = gst_pad_new fromtenplate (
gst _el ement _cl ass_get _pad_tenpl ate (klass, "src"), "src");

gst _pad_set _link_function (filter->srcpad, gst_ny _filter_link);
gst _pad_set _getcaps_function (filter->srcpad, gst_ny_filter_getcaps);
gst _el ement _add_pad (GST_ELEMENT (filter), filter->srcpad);

[..]

}

18

Chapter 4. Specifying the pads

4.1. The link function

The_link () is called during caps negotiation. This is the process wtierdinked pads decide on the
streamtype that will transfer between them. A full list op&rdefinitions can be found @hapter 13A
_link () receives a pointer to@st Caps (../../gstreamer/html/gstreamer-GstCaps.html) stifoet
defines the proposed streamtype, and can respond with ger(GST_PAD_LINK_OK), “no”
(GST_PAD_LINK_REFUSED) or “don’t know yet” (GST_PAD_LINKDELAYED). If the element
responds positively towards the streamtype, that typebeillised on the pad. An example:

static GstPadLi nkReturn
gst_nmy filter_link (GstPad *pad,
const Gst Caps *caps)

{
Gst Structure *structure = gst_caps_get_structure (caps, 0);
Gst WFilter =filter = GST_MY_FILTER (gst_pad_get_parent (pad));
Gst Pad *otherpad = (pad == filter->srcpad) ? filter->sinkpad :
filter->srcpad;
Gst PadLi nkReturn ret;
const gchar *m ne;
/* Since we're an audio filter, we want to handl e raw audi o
* and fromthat audio type, we need to get the sanplerate and
* nunber of channels. =/
mme = gst_structure_get_name (structure);
if (strcnp (mne, "audio/x-rawint") I'=0) {
GST_WARNI NG ("Wong m netype % provided, we only support %",
m e, "audio/ x-rawint");
return GST_PAD LI NK_REFUSED;
}
/+ we're a filter and don't touch the properties of the data.
* That nmeans we can set the given caps unnodified on the next
* el enent, and use that negotiation return value as ours. */
ret = gst_pad_try_set_caps (otherpad, gst_caps_copy (caps));
if (GST_PAD LI NK FAILED (ret))
return ret;
/= Capsnego succeeded, get the stream properties for internal
* usage and return success. */
gst _structure_get _int (structure, "rate", &filter->sanplerate);
gst _structure_get _int (structure, "channels", &filter->channels);
g_print ("Caps negotiation succeeded with % Hz @ % channel s\ n",
filter->sanplerate, filter->channels);
return ret;
}

In here, we check the mimetype of the provided caps. Normgdly don’t need to do that in your own
plugin/element, because the core does that for you. We giogd it to show how to retrieve the

19

Chapter 4. Specifying the pads

mimetype from a provided set of caps. Types are storegirst r uct ur e
(../..Igstreamer/html/gstreamer-GstStructure.htmbiinally. AGst Caps
(../..Igstreamer/html/gstreamer-GstCaps.html) is imgtinore than a small wrapper for 0 or more
structures/types. From the structure, you can also retfegperties, as is shown above with the function
gst _structure_get_int ().

If your _I'i nk () function does not need to perform any specific operationi(iveill only forward
caps), you can set it tgst _pad_proxy_I i nk. This is a link forwarding function implementation
provided by the core. It is useful for elements such desntity.

4.2. The getcaps function

The_get caps () funtionis used to request the list of supported formats anggrties from the

element. In some cases, this will be equal to the formatsigeohby the pad template, in which case this
function can be omitted. In some cases, too, it will not dejpgmanything inside this element, but it will
rather depend on the input from another element linked dl@ment’s sink or source pads. In that case,
you can us@st _pad_pr oxy_get caps as implementation, it provides getcaps forwarding in theco
However, in many cases, the format supported by this elepsmtot be defined externally, but is more
specific than those provided by the pad template. In this, gaseshould use aget caps () function.

In the case as specified below, we assume that our filter is@bésample sound, so it would be able to
provide any samplerate (indifferent from the samplerategjed on the other pad) on both pads. It
explains how a get caps () can be used to do this.

static GstCaps *

gst_ny_filter_getcaps (GstPad *pad)

{
Gst WFilter »filter = GST_MY_FILTER (gst_pad_get_parent (pad));
Gst Pad *otherpad = (pad == filter->srcpad) ? filter->sinkpad

filter->srcpad;

Gst Caps *ot hercaps = gst_pad_get _al |l owed_caps (ot herpad), =*caps;
gint n;

if (gst_caps_is_enpty (othercaps))
return ot hercaps;

/+* \\& support *any* sanplerate, indifferent fromthe sanplerate
* supported by the linked el enents on both sides. */
for (i = 0; i < gst_caps_get_size (othercaps); i++) {
Gst Structure *structure = gst_caps_get_structure (othercaps, i);

gst _structure_renove_field (structure, "rate");
}
caps = gst_caps_intersect (othercaps, gst_pad_get_pad_tenpl ate_caps (pad));
gst _caps_free (othercaps);

return caps;

20

Chapter 4. Specifying the pads

4.3. Explicit caps

Obviously, many elements will not need this complex mecsranbecause they are much simpler than
that. They only support one format, or their format is fixed te contents of the format depend on the
stream or something else. In those casgplicit capsare an easy way of handling caps. Explicit caps are
an easy way of specifying one, fixed, supported format on alpads using explicit caps do not
implement their own get caps () or_li nk () functions. When the exact format is known, an
elements usegst _pad_set _explicit_caps () to specify the exact format. This is very useful for
demuxers, for example.

static void
gst_nmy filter_init (GstMFilter *filter)
{
Gst El enent O ass *kl ass = GST_ELEMENT_CET_CLASS (filter);
[-.]
filter->srcpad = gst_pad_new fromtenplate (
gst _elenent _cl ass_get _pad_tenplate (klass, "src"), "src");
gst _pad_use_explicit_caps (filter->srcpad);
[..]
}

static void
gst_ny filter_sonefunction (GstMFilter *filter)

{
Gst Caps *caps = ..,

[--]

gst _pad_set _explicit_caps (filter->srcpad, caps);
[..]
}

21

Chapter 5. The chain function

The chain function is the function in which all data procegdiakes place. In the case of a simple filter,
_chain () functions are mostly linear functions - so for each incontinéfer, one buffer will go out,
too. Below is a very simple implementation of a chain funetio

static void
gst_mnmy _filter_chain (GstPad =*pad,
Gst Dat a *dat a)

{
Gst MFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));
Gst Buf fer *buf = GST_BUFFER (data);
if ('filter->silent)
g_print ("Have data of size % bytes!\n", GST_BUFFER_SI ZE (buf));
gst _pad_push (filter->srcpad, GST_DATA (buf));
}

Obviously, the above doesn’t do much useful. Instead otipgrthat the data is in, you would normally
process the data there. Remember, however, that buffer®aedways writable. In more advanced
elements (the ones that do event processing), the inconaitagndight not even be a buffer.

static void
gst_mny _filter_chain (GstPad =*pad,
Gst Dat a *dat a)
{
Gst MFilter =filter = GST_MY_FILTER (gst_pad_get_parent (pad));
Gst Buf fer xbuf, =*outbuf;

if (GST_IS_EVENT (data)) {
Gst Event *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOCS:
/* end-of -stream we should cl ose down all stream | eftovers here */
gst_nmy filter_stop_processing (filter);
[+ fall-through to default event handling */
defaul t:
gst _pad_event _default (pad, event);
br eak;
}

return;

}

buf = GST_BUFFER (data);

outbuf = gst_ny filter_process_data (buf);
gst _buffer_unref (buf);

if (loutbuf) {

22

Chapter 5. The chain function

/* sonmet hing went wong - signal an error */

gst _el ement _error (GST_ELEMENT (filter), STREAM FAILED, (NULL), (NULL));
return;

}

gst _pad_push (filter->srcpad, GST_DATA (outbuf));
}

In some cases, it might be useful for an element to have damtes the input data rate, too. In that case,
you probably want to write a so-callédop-basedlement. Source elements (with only source pads) can
also beget-basealements. These concepts will be explained in the advareibe of this guide, and

in the section that specifically discusses source pads.

23

Chapter 6. What are states?

A state describes whether the element instance is inigid)iwhether it is ready to transfer data and
whether it is currently handling data. There are four std&ftned in GStreamer: GST_STATE_NULL,
GST_STATE_READY, GST_STATE_PAUSED and GST_STATE_PLA@GN

GST_STATE_NULL (from now on referred to as “NULL") is the drflt state of an element. In this
state, it has not allocated any runtime resources, it habaded any runtime libraries and it can
obviously not handle data.

GST_STATE_READY (from now on referred to as “READY”) is thext state that an element can be
in. In the READY state, an element has all default resouncegifme-libraries, runtime-memory)
allocated. However, it has not yet allocated or defined angtthnat is stream-specific. When going from
NULL to READY state (GST_STATE_NULL_TO_READY), an elemesitould allocate any
non-stream-specific resources and should load runtim#alaa libraries (if any). When going the other
way around (from READY to NULL, GST_STATE_READY_TO_NULLAn element should unload
these libraries and free all allocated resources. Exangblesch resources are hardware devices. Note
that files are generally streams, and these should thus ls&gdeved as stream-specific resources;
therefore, they shouldot be allocated in this state.

GST_STATE_PAUSED (from now on referred to as “PAUSED”) idata in which an element is by all
means able to handle data; the only 'but’ here is that it dbastually handle any data. When going
from the READY state into the PAUSED state (GST_STATE_READ®_PAUSED), the element will
usually not do anything at all: all stream-specific info imgelly handled in thel i nk (), which is
called during caps negotiation. Exceptions to this rule fareexample, files: these are considered
stream-specific data (since one file is one stream), anddlttous be opened in this state change. When
going from the PAUSED back to READY (GST_STATE_PAUSED_ T@&ADY), all stream-specific
data should be discarded.

GST_STATE_PLAYING (from now on referred to as “PLAYING”) the highest state that an element
can be in. Itis similar to PAUSED, except that now, data isialty passing over the pipeline. The
transition from PAUSED to PLAYING (GST_STATE_PAUSED_TCLAYING) should be as small as
possible and would ideally cause no delay at all. The same fgo¢he reverse transition
(GST_STATE_PLAYING_TO_PAUSED).

6.1. Managing filter state

An element can be notified of state changes through a virtunation pointer. Inside this function, the
element can initialize any sort of specific data needed bglément, and it can optionally fail to go
from one state to another.

Do not g_assert for unhandled state changes; this is takerothy the GstElement base class.

24

Chapter 6. What are states?

static GstEl enentStateReturn
gst_ny_filter_change_state (GstEl ement *el enment);

static void
gst_nmy filter_class_init (GstMFilterd ass *kl ass)

{
Gst El enent Cl ass *el enent _cl ass = GST_ELEMENT_CLASS (kl ass);

el enent _cl ass->change_state = gst_ny_filter_change_state,;

}

static GstEl ement StateReturn
gst_ny_filter_change_state (GstEl ement *el ement)

{
Gst WFilter =filter = GST_MY_FILTER (el enent);

switch (GST_STATE_TRANSI TION (el enent)) {

case GST_STATE _NULL_TO READY:

if ('gst_ny filter_allocate _nenory (filter))
return GST_STATE FAI LURE;

br eak;

case GST_STATE_READY_TO NULL:
gst_ny filter _free_nenory (filter);
br eak;

defaul t:
br eak;

}

if (GST_ELEMENT_CLASS (parent_cl ass)->change_state)
return GST_ELEMENT_CLASS (parent_cl ass)->change_state (el enent);

return GST_STATE SUCCESS;
}

25

Chapter 7. Adding Arguments

The primary and most important way of controlling how an eéetbehaves, is through GObject
properties. GObject properties are defined in_ theass_i nit () function. The element optionally
implements aget _property () anda set_property () function. These functions will be
notified if an application changes or requests the value obpgrty, and can then fill in the value or take
action required for that property to change value integnall

[+ properties */

enum {
ARG 0,
ARG_SI LENT
[+ FILL ME */
s
static void gst_ny filter_set_property (GObject *0obj ect,
gui nt prop_id,
const Gval ue *val ue,
GPar anfsSpec *pspec) ;
static void gst_ny filter_get_property (GObject *0obj ect,
gui nt prop_id,
Gval ue +xval ue,

GPar anSpec *pspec);

static void
gst_mnmy filter_class_init (GstMFilterd ass *kl ass)

{
Gbj ect G ass *obj ect_class = G OBJECT_CLASS (kl ass);
/+ define properties */
g_object_class_install _property (object_class, ARG S| LENT,
g_param spec_bool ean ("silent", "Silent",
"Whet her to be very verbose or not",
FALSE, G _PARAM READWRI TE));
/+ define virtual function pointers =/
obj ect _cl ass->set _property = gst_ny_filter_set_property;
obj ect _cl ass->get _property = gst_ny_filter_get_property;
}
static void
gst_ny _filter_set_property (GObject *0obj ect,
gui nt prop_id,

const Gval ue *val ue,
GPar anfspec *pspec)

{
Gst MFilter =filter = GST_MY_FILTER (object);

switch (prop_id) {

case ARG S| LENT:
filter->silent = g_val ue_get _bool ean (val ue);

26

Chapter 7. Adding Arguments

g_print ("Silent argunent was changed to %s\n",

filter->silent ? "true" : "false");
br eak;
defaul t:
G _OBJECT_WARN | NVALI D_PROPERTY_I D (object, prop_id, pspec);
br eak;

}
}

static void
gst_ny _filter_get_property (GObject *0bj ect,

gui nt prop_id,
Gval ue xval ue,
GPar anfSpec *pspec)
{
Gst MFilter =filter = GST_MY_FILTER (object);
switch (prop_id) {
case ARG _SI LENT:
g_val ue_set _bool ean (value, filter->silent);
br eak;
def aul t:
G _OBJECT_WARN | NVALI D_PROPERTY_I D (object, prop_id, pspec);
br eak;
}
}

The above is a very simple example of how arguments are usagh@al applications - for example
GStreamer Editor - will use these properties and will dig@aiser-controlleable widget with which
these properties can be changed. This means that - for tpenpydo be as user-friendly as possible - you
should be as exact as possible in the definition of the prpdéat only in defining ranges in between
which valid properties can be located (for integers, floets,), but also in using very descriptive (better
yet: internationalized) strings in the definition of the peoty, and if possible using enums and flags
instead of integers. The GObject documentation descriEsetin a very complete way, but below, we'll
give a short example of where this is useful. Note that usitegers here would probably completely
confuse the user, because they make no sense in this corttexéxample is stolen from videotestsrc.

t ypedef enum {
GST_VI DEOTESTSRC_SMPTE,
GST_VI DECTESTSRC_SNOW
GST_VI DEOTESTSRC_BLACK
} GstVi deotestsrcPattern;

[--]

#defi ne GST_TYPE_VI DEOTESTSRC PATTERN (gst_vi deotestsrc_pattern_get_type ())
static Glype
gst _vi deotestsrc_pattern_get _type (void)

{
static GlIype videotestsrc_pattern_type = O;

27

Chapter 7. Adding Arguments

if (!videotestsrc_pattern_type) {
static GEnunVal ue pattern_types[] = {
{ GST_VI DEOTESTSRC SMPTE, "snpte", "SMPTE 100% col or bars" },
{ GST_VI DECTESTSRC_SNOW "snow', "Random (tel evision snow" },
{ GST_VI DEOTESTSRC BLACK, "bl ack", "0% Bl ack" },
{ 0, NULL, NULL },
s

vi deotestsrc_pattern_type =
g_enumregister_static ("GstVideotestsrcPattern",
pattern_types);
}

return videotestsrc_pattern_type;

}
[--]

static void
gst _videotestsrc_class_init (GstvideotestsrcC ass *kl ass)
{
[..]
g_object_class_install _property (G OBJECT_CLASS (klass), ARG TYPE,
g_param spec_enum ("pattern”, "Pattern",
"Type of test pattern to generate",
GST_TYPE_VI DEOTESTSRC _PATTERN, 1, G PARAM READWRI TE));

28

Chapter 8. Signals

GObject signals can be used to notify applications of evepesific to this object. Note, however, that
the application needs to be aware of signals and their mgasinif you're looking for a generic way for
application-element interaction, signals are probablywitat you're looking for. In many cases,
however, signals can be very useful. See the GObject dociatiam
(http:/lwww.le-hacker.org/papers/gobject/index.Htfat all internals about signals.

29

Chapter 9. Building a Test Application

Often, you will want to test your newly written plugin in an simall setting as possible. Usually,

gst -1 aunch is a good first step at testing a plugin. However, you will ofteeed more testing features
than gst-launch can provide, such as seeking, eventsaatiaty and more. Writing your own small
testing program is the easiest way to accomplish this. Tédsan explains - in a few words - how to do
that. For a complete application development guide, seAppdcation Development Manual
(-./../manual/html/index.html).

At the start, you need to initialize the GStreamer core liptay callinggst _init (). You can
alternatively callgst _i nit _wi t h_popt _t abl es (), which will return a pointer to popt tables. You
can then use libpopt to handle the given argument table fasavill finish the GStreamer intialization.

You can create elements usiggt _el enent _f act ory_make (), where the first argumentis the
element type that you want to create, and the second argusnefree-form name. The example at the
end uses a simple filesource - decoder - soundcard outpuir@pleut you can use specific debugging
elements if that's necessary. For examplej dent i t y element can be used in the middle of the
pipeline to act as a data-to-application transmitter. This be used to check the data for misbehaviours
or correctness in your test application. Also, you can uselkasi nk element at the end of the pipeline
to dump your data to the stdout (in order to do this, setitingp property to TRUE). Lastly, you can use
theef ence element (indeed, an eletric fence memory debugger wrapeereat) to check for memory
errors.

During linking, your test application can use fixation orditd caps as a way to drive a specific type of
data to or from your element. This is a very simple and efiectvay of checking multiple types of input
and output in your element.

Running the pipeline happens through tfse _bi n_i terate () function. Note that during running,
you should connect to at least the “error” and “eos” signalsh@ pipeline and/or your plugin/element to
check for correct handling of this. Also, you should add esémto the pipeline and make sure your
plugin handles these correctly (with respect to clockintgiinal caching, etc.).

Never forget to clean up memory in your plugin or your testlaapion. When going to the NULL state,
your element should clean up allocated memory and cachss, Akhould close down any references
held to possible support libraries. Your application sldaudr ef () the pipeline and make sure it
doesn’t crash.

#i ncl ude <gst/gst.h>

gi nt

mai n (gint arcg,
gchar =xargv[])

{

Gst El enent =pipeline, xfilesrc, »decoder, xfilter, =*sink;

30

Chapter 9. Building a Test Application

/* initialization */
gst_init (&rgc, &argv);

/* create elenments */
pi peline = gst_pi peline_new ("ny_pipeline");

filesrc = gst_elenent_factory_make ("filesrc", "nmy_filesource");
decoder = gst_elenent_factory_nake ("mad", "ny_decoder");

filter = gst_elenent _factory_make ("ny_filter", "my_filter");
si nk = gst_el enent _factory_neke ("osssink", "audi osi nk");

g_object_set (G OBJECT (filesrc), "location", argv[1], NULL);

/+ link everything together =/
gst _element _link_many (filesrc, decoder, filter, sink, NULL);
gst _bin_add_many (GST_BIN (pipeline), filesrc, decoder, filter, sink, NULL);

[+ run x/

gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;
while (gst_bin_iterate (GST_BIN (pipeline)));

/* clean up =/

gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

31

Chapter 10. Creating a Filter with a Filter
Factory

A plan for the future is to create a FilterFactory, to makephacess of making a new filter a simple
process of specifying a few details, and writing a small ama@tf code to perform the actual data
processing. Ideally, a FilterFactory would perform thekgasf boilerplate creation, code functionality
implementation, and filter registration.

Unfortunately, this has not yet been implemented. Even veloameone eventually does write a
FilterFactory, this element will not be able to cover all wssibilities available for filter writing. Thus,
some plugins will always need to be manually coded and regidt

Here is a rough outline of what is planned: You run the Filsmtery and give the factory a list of
appropriate function pointers and data structures to defifileer. With a reasonable measure of
preprocessor magic, you just need to provide a name for tiee dihd definitions of the functions and
data structures desired. Then you call a macro from withiigiol_init() that registers the new filter. All
the fluff that goes into the definition of a filter is thus be heddrom view.

32

Ill. Advanced Filter Concepts

By now, you should be able to create basic filter elementscrateceive and send data. This is the
simple model that GStreamer stands for. But GStreamer canudi more than only this! In this

chapter, various advanced topics will be discussed, susbtesluling, special pad types, clocking,
events, interfaces, tagging and more. These topics areiga that makes GStreamer so easy to use for
applications.

Chapter 11. How scheduling works

Scheduling is, in short, a method for making sure that evienment gets called once in a while to
process data and prepare data for the next element. Likesvlisrnel has a scheduler to for processes,
and your brain is a very complex scheduler too in a way. Rargoalling elements’ chain functions
won't bring us far, however, so you'll understand that theestulers in GStreamer are a bit more
complex than this. However, as a start, it's a nice pictuigtr€&amer currently provides two schedulers: a
basicscheduler and aoptimalscheduler. As the name says, the basic scheduler (“basiaf) i
unoptimized, but very complete and simple scheduler. Thienah scheduler (“opt”), on the other hand,

is optimized for media processing, but therefore also moreplex.

Note that schedulers only operate on one thread. If youlipeontains multiple threads, each thread
will run with a separate scheduler. That is the reason whyelements running in different threads need
a queue-like element ECOUPLED element) in between them.

11.1. The Basic Scheduler

Thebasicscheduler assumes that each element is its own process.Weis® UNIX processes or
POSIX threads for this, however; instead, we use so-caltethreadsCo-threads are threads that run
besides each other, but only one is active at a time. The #ayaiof co-threads over normal threads is
that they're lightweight. The disadvantage is that UNIX @ X do not provide such a thing, so we
need to include our own co-threads stack for this to run.

The task of the scheduler here is to control which co-thread at what time. A well-written scheduler
based on co-threads will let an element run until it outpuiss piece of data. Upon pushing one piece of
data to the next element, it will let the next element run, smdn. Whenever a running element requires
data from the previous element, the scheduler will switctintd previous element and run that element
until it has provided data for use in the next element.

This method of running elements as needed has the disadeahta a lot of data will often be queued in
between two elements, as the one element has provided ddteelather element hasn’t actually used it
yet. These storages of in-between-data are callgdensand they can be visualized as a light “queue”.

Note that since every element runs in its own (co-)thredd dtheduler is rather heavy on your system
for larger pipelines.

11.2. The Optimal Scheduler

Theoptimalscheduler takes advantage of the fact that several elerc@mtse linked together in one
thread, with one element controlling the other. This work$alows: in a series of chain-based

34

Chapter 11. How scheduling works

elements, each element has a function that accepts onegfidata, and it calls a function that provides
one piece of data to the next element. The optimal schedullenake sure that thgst _pad_push ()
function of the first elemerdirectly calls the chain-function of the second element. This siggifily
decreases the latency in a pipeline. It takes similar agepgnof other possibilities of short-cutting the
data path from one element to the next.

The disadvantage of the optimal scheduler is that it is nigt fionplemented. Also it is badly
documented; for most developers, the opt scheduler is @nelack box. Features that are not
implemented include pad-unlinking within a group while nimy, pad-selecting (i.e. waiting for data to
arrive on a list of pads), and it can’t really cope with muftput/-output elements (with the elements
linked to each of these in-/outputs running in the same thjreght now.

Some of our developers are intending to write a new schediitailar to the optimal scheduler (but
better documented and more completely implemented).

35

Chapter 12. How a loopfunc works

A _l oop () functionis a function that is called by the scheduler, bubwait providing data to the
element. Instead, the element will become responsibleciguiaing its own data, and it will still be
responsible of sending data over to its source pads. Thisadetoticeably complicates scheduling; you
should only write loop-based elements when you need to. iitynthain-based elements are preferred.
Examples of elements thhaveto be loop-based are elements with multiple sink pads. Shee
scheduler will push data into the pads as it comes (and thghimiot be synchronous), you will easily
get asynchronous data on both pads, which means that théhdatarives on the first pad has a different
display timestamp than the data arriving on the second ptiteaame time. To get over these issues,
you should write such elements in a loop-based form. Otlements that areasierto write in a
loop-based form than in a chain-based form are demuxersanses. It is not required to write such
elements in a loop-based form, though.

Below is an example of the easiest loop-function that onengée:

static void gst_ny _filter_l oopfunc (GstEl ement el ement);

static void
gst_ny filter_init (GstMyFilter *filter)
{
[--]
gst _el ement _set | oopfunc (GST_ELEMENT (filter), gst_my filter_l oopfunc);
[--]
}

static void
gst _nmy_filter_l oopfunc (GstEl enent *el ement)

{
Gst WFilter =filter = GST_MY_FILTER (el enent);

Gst Dat a *dat a;

/* acquire data */
data = gst_pad_pull (filter->sinkpad);

/* send data */
gst _pad_push (filter->srcpad, data);

Obviously, this specific example has no single advantageaebain-based element, so you should
never write such elements. However, it's a good introdurctiothe concept.

36

Chapter 12. How a loopfunc works

12.1. Multi-Input Elements

Elements with multiple sink pads need to take manual cooiref their input to assure that the input is
synchronized. The following example code could (shouldy&ed in an aggregator, i.e. an element that
takes input from multiple streams and sends it out interrfeghdNot really useful in practice, but a good
example, again.

typedef struct _Gst MyFilterlnputContext {
gbool ean €os;
Gst Buf fer =I ast buf;

} Gst MyFil terlnput Cont ext;

[--]

static void

gst_ny filter_init (GstMFilter *filter)

{
Gst El enent Cl ass *kl ass = GST_ELEMENT_GET_CLASS (filter);
Gst MyFi | ter | nput Cont ext *cont ext;

filter->sinkpadl = gst_pad_new fromtenplate (
gst _el ement _cl ass_get _pad_tenpl ate (klass, "sink"), "sink_1");
context = g _newd (GstMFilterlnputContext, 1);
gst_pad_set _private_data (filter->sinkpadl, context);
-]
filter->sinkpad2 = gst_pad_new fromtenplate (
gst _el ement _cl ass_get _pad_tenpl ate (klass, "sink"), "sink_2");
context = g _new0 (Gst MyFilterlnputContext, 1);
gst _pad_set _private_data (filter->sinkpad2, context);
[..]
gst _el ement _set _| oopfunc (GST_ELEMENT (filter),
gst_ny_filter_l oopfunc);

[

}
[--]

static void

gst_ny_filter_l oopfunc (GstEl enent *el ement)

{
Gst MFilter =filter = GST_MY_FILTER (el enent);
GLi st *padlist;
Gst MyFi | terl nput Context *first_context = NULL;

/+* Go over each sink pad, update the cache if needed, handl e ECS
* or non-responding streans and see which data we shoul d handl e
* next. =*/
for (padlist = gst_elenent_get_padlist (el enent);
padlist !'= NULL; padlist = g_list_next (padlist)) {
Gst Pad *pad = GST_PAD (padlist->data);
Gst MyFi | terl nput Cont ext *context = gst_pad_get_private_data (pad);

37

Chapter 12. How a loopfunc works

if (GST_PAD | S _SRC (pad))
conti nue;

whil e (GST_PAD_I S_USABLE (pad) &&
I cont ext - >eos && !context->l astbuf) {
GstData *data = gst_pad_pul | (pad);

if (GST_IS EVENT (data)) {
/+ W& handl e events i medi ately =/
Gst Event r*event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOCS:
cont ext - >eos = TRUE;
gst _event _unref (event);
br eak;
case GST_EVENT_DI SCONTI NUCUS:
g_warning ("HELP! How do | handle this?");
/+ fall-through =/
defaul t:
gst _pad_event _default (pad, event);
br eak;
}
} else {
/+ W& store the buffer to handl e synchronizati on bel ow */
cont ext - >l ast buf = GST_BUFFER (dat a);

}
}

/* synchroni ze streans by always using the earliest buffer =/
if (context->lastbuf) {
if (!'first_context) {
first_context = context;
} else {
i f (GST_BUFFER _TI MESTAMP (context->l astbuf) <
GST_BUFFER_TI MESTAMP (first_context->l astbuf))
first_context = context;
}
}
}

/* |f we handle no data at all, we’'re at the end-of-stream so

* we shoul d signal ECS. */

if (!first_context) {
gst _pad_push (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EQOS)));
gst _el ement _set _eos (el enent);
return;

}

/+ So we do have data! Let’'s forward that to our source pad. =*/
gst _pad_push (filter->srcpad, GST_DATA (first_context->lastbuf));
first_context->lastbuf = NULL;

38

Chapter 12. How a loopfunc works

Note that a loop-function is allowed to return. Better yeh@p functionhas toreturn so the scheduler
can let other elements run (this is particularly true fordpgimal scheduler). Whenever the scheduler
feels right, it will call the loop-function of the elementaig.

12.2. The Bytestream Object

A second type of elements that wants to be loop-based, asothalled bytestream-elements. Until now,
we've only dealt with elements that receive or pull full e of a random size from other elements.
Often, however, it is wanted to have control over the stretantgyte-level, such as in stream parsers or
demuxers. It is possible to manually pull buffers and mehgert until a certain size; it is easier, however,
to use bytestream, which wraps this behaviour.

To use bytestream, you need to load the bytestream when Yugings loaded; you should do this
before registering the element, which you learned preWansSection 3.7 After that, all functions of
the bytestream plugin are available in your plugin as well.

#i ncl ude <gst/bytestreani byt estream h>

static gbool ean
plugin_init (GstPlugin *plugin)

{
if ('gst_library_load ("gsthbytestreant))
return FALSE;
/+* and now, actually register the elenment */
[--]
}

Bytestream-using elements are usually stream parsersyandes. For now, we will take a parser as an
example. Demuxers require some more magic that will be détidtlater in this guideChapter 14The
goal of this parser will be to parse a text-file and to push diaehof text as a separate buffer over its
source pad.

static void
gst_ny_filter_|l oopfunc (GstEl enent *el ement)

{
Gst WFilter =filter = GST_MY_FILTER (el enent);
gint n, num
gui nt 8 *dat a;

for (n =0; ; n++) {

39

Chapter 12. How a loopfunc works

num = gst _bytestream peek_bytes (filter->bs, &ata, n + 1);
if (num!=n + 1) {

Gst Event revent = NULL;

gui nt remnai ni ng;

gst _bytestream get_status (filter->bs, & emmining, &event);
if (event) {
if (GST_EVENT_TYPE (event) == GST_EVENT_EOCS)) {
[+ end-of-file */
gst _pad_push (filter->srcpad, GST_DATA (event));
gst _el ement _set _eos (el ement);

return;
}
gst _event _unref (event);

}

/+ failed to read - throw error and bail out =/
gst_elenent_error (element, STREAM READ, (NULL), (NULL));

return;

}

/* check if the last character is a newine */
if (data[n] =="\n") {
Gst Buf fer *buf = gst_buffer_new and_alloc (n + 1);

/+ read the line of text without newine - then flush the newine */
gst _bytestream peek_data (filter->bs, &data, n);

mencpy (GST_BUFFER _DATA (buf), data, n);

GST_BUFFER_DATA (buf)[n] = '\0";

gst _bytestream flush_fast (filter->bs, n + 1);

g_print ("Pushing '%’'\n", GST_BUFFER DATA (buf));

gst _pad_push (filter->srcpad, GST_DATA (buf));

return;
}
}
}

static void
gst _nmy _filter_change_state (GstEl enent =*el enent)

{
Gst MFilter =filter = GST_MY_FILTER (el enent);

switch (GST_STATE_TRANSI TION (el enent)) {

case GST_STATE_READY_TO PAUSED:
filter->bs = gst_bytestreamnew (filter->sinkpad);
br eak;

case GST_STATE_PAUSED TO READY:
gst _bytestream destroy (filter->bs);
br eak;

def aul t:

40

Chapter 12. How a loopfunc works

br eak;

}

if (GST_ELEMENT_CLASS (parent_cl ass)->change_state)
return GST_ELEMENT_CLASS (parent_cl ass)->change_state (el enent);

return GST_STATE_SUCCESS;
}

In the above example, you'll notice how bytestream handléfebing of data for you. The result is that
you can handle the same data multiple times. Event handiibgtestream is currently sort afacky but
it works quite well. The one big disadvantage of bytestreathat itrequiresthe element to be
loop-based. Long-term, we hope to have a chain-based usalsien of bytestream, too.

12.3. Adding a second output

WRITEME

12.4. Modifying the test application

WRITEME

41

Chapter 13. Types and Properties

There is a very large set of possible types that may be useaktogata between elements. Indeed, each
new element that is defined may use a new data format (thoughsuat least one other element
recognises that format, it will be most likely be uselesgsinothing will be able to link with it).

In order for types to be useful, and for systems like autogérg to work, it is necessary that all elements
agree on the type definitions, and which properties are redtdior each type. The GStreamer framework
itself simply provides the ability to define types and partarg but does not fix the meaning of types
and parameters, and does not enforce standards on theareatiew types. This is a matter for a policy
to decide, not technical systems to enforce.

For now, the policy is simple:

- Do not create a new type if you could use one which alreadyt®xis

- If creating a new type, discuss it first with the other GStreadevelopers, on at least one of: IRC,
mailing lists.

- Try to ensure that the name for a new format is as unlikely tflezi with anything else created
already, and is not a more generalised name than it shoukblbexample: "audio/compressed"
would be too generalised a name to represent audio data essgat with an mp3 codec. Instead
"audio/mp3" might be an appropriate name, or "audio/cosgrd" could exist and have a property
indicating the type of compression used.

- Ensure that, when you do create a new type, you specify itlglead get it added to the list of known
types so that other developers can use the type correctly whigng their elements.

13.1. Building a Simple Format for Testing

If you need a new format that has not yet been defined irL@mtiiof Defined Typesyou will want to

have some general guidelines on mimetype naming, propentié such. A mimetype would ideally be
one defined by IANA,; else, it should be in the form type/x-namieere type is the sort of data this
mimetype handles (audio, video, ...) and name should betbimgyespecific for this specific type. Audio
and video mimetypes should try to support the general avidied properties (see the list), and can use
their own properties, too. To get an idea of what propertieghink are useful, see (again) the list.

Take your time to find the right set of properties for your tyfplere is no reason to hurry. Also,
experimenting with this is generally a good idea. Experéglearns that theoretically thought-out types
are good, but they still need practical use to assure thgtdhere their needs. Make sure that your
property names do not clash with similar properties usedhertypes. If they match, make sure they
mean the same thing; properties with different types bustdmee names aretallowed.

42

Chapter 13. Types and Properties

13.2. Typefind Functions and Autoplugging

With only definingthe types, we're not yet there. In order for a random datadileg recognized and
played back as such, we need a way of recognizing their typefdhe blue. For this purpose,
“typefinding” was introduced. Typefinding is the process efettting the type of a datastream.
Typefinding consists of two separate parts: first, there'srdimited number of functions that we call
typefind functionswhich are each able to recognize one or more types from art 8igeam. Then,
secondly, there’s a small engine which registers and catth ef those functions. This is the typefind
core. On top of this typefind core, you would normally writearioplugger, which is able to use this
type detection system to dynamically build a pipeline agban input stream. Here, we will focus only
on typefind functions.

A typefind function ususally lives igst - pl ugi ns/ gst/typefind/ gsttypefindfunctions.c,
unless there’s a good reason (like library dependenciga)tid elsewhere. The reason for this
centralization is to decreate the number of plugins thatinede loaded in order to detect a stream’s
type. Below is an example that will recognize AVI files, whigtart with a “RIFF” tag, then the size of
the file and then an “AVI " tag:

static void
gst _mny_typefind_function (GstTypeFind *tf,

gpoi nt er dat a)
{
guint8 xdata = gst_type_find_peek (tf, 0, 12);
if (data &&
GUI NT32_FROM LE (&((guint32 x) data)[0]) == GST_MAKE_FOURCC ("R ,’I","F ,"F) &&
GUI NT32_FROM LE (&((guint32 *) data)[2]) == GST_MAKE_FOURCC (A" ,"V ., 1"," ")) {

gst _type_find_suggest (tf, GST_TYPE_FI ND_MAXI MUM
gst _caps_new_si npl e ("video/ x-nsvi deo", NULL));
}
}

static gbool ean
plugin_init (GstPlugin *plugin)

{
static gchar *exts[] = { "avi", NULL };
if ('gst_type_find_ register (plugin, "", GST_RANK PRI MARY,
gst _ny_typefind_function, exts,
gst _caps_new_si npl e ("vi deo/ x- msvi deo",
NULL), NULL))
return FALSE;
}

Note thatgst - pl ugi ns/ gst/ t ypefind/ gsttypefindfuncti ons. c has some simplification
macros to decrease the amount of code. Make good use of thasewant to submit typefinding
patches with new typefind functions.

43

Chapter 13. Types and Properties

Autoplugging will be discussed in great detail in the chap#dledWriting an Autoplugger

13.3. List of Defined Types

Below is a list of all the defined types in GStreamer. They ali 8p in separate tables for audio, video,
container, subtitle and other types, for the sake of redithalBelow each table might follow a list of
notes that apply to that table. In the definition of each typetry to follow the types and rules as
defined by IANA (http://www.iana.org/assignmentsmedigeis) for as far as possible.

Jump directly to a specific table:

« Table of Audio Types

- Table of Video Types

- Table of Container Types
- Table of Subtitle Types

« Table of Other Types

Note that many of the properties are metuired but ratheroptionalproperties. This means that most of
these properties can be extracted from the container hdadehat - in case the container header does
not provide these - they can also be extracted by parsingrbans header or the stream content. The
policy is that your element should provide the data that @wes about by only parsing its own content,
not another element’s content. Example: the AVI headeriges/samplerate of the contained audio
stream in the header. MPEG system streams don’t. This mbabhart AVI stream demuxer would
provide samplerate as a property for MPEG audio streamsiealsean MPEG demuxer would not. A
decoder needing this data would require a stream parsetwebe two extract this from the header or
calculate it from the stream.

Table 13-1. Table of Audio Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

All audio types.

audio/* | All rate integer | greater | The sample rate of the data, in samples (per channel)
audio than O |per second.
types | channelsnteger | greater | The number of channels of audio data.
than 0

All raw audio types.

44

Chapter 13. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x4{ Un- endianngsteger | G_BIG_ENiRIANer of bytes in a sample. The value
raw-int | struc- (1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
tured or (byte-order is “least significant byte first”). The value
and G_LITT& BNDIENDIAN (1234) means “big-endian” (byte
uncom- (4321) | order is “most significant byte first”).
pressed signed |boolear| TRUE | Whether the values of the integer samples are signed or
raw or not. Signed samples use one bit to indicate sign
fixed- FALSE | (negative or positive) of the value. Unsigned samples
integer are always positive.
audio | yigth |integer | greater | Number of bits allocated per sample.
data. than O
depth |integer | greater | The number of bits used per sample. This must be |ess
than O |[than or equal to the width: If the depth is less than the
width, the low bits are assumed to be the ones used. For
example, a width of 32 and a depth of 24 means that
each sample is stored in a 32 bit word, but only the low
24 bits are actually used.
audio/x4{ Un- endianngsteger | G_BIG_ENiRIANer of bytes in a sample. The value
raw- struc- (1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
float tured or (byte-order is “least significant byte first”). The value
and G_LITT|& BNDIANDIAN (1234) means “big-endian” (byte
uncom- (4321) |order is “most significant byte first”).
pressed width |integer | greater | The amount of bits used and allocated per sample.
raw than 0
floating-
point
audio | pffer- integer | Any The number of frames per buffer. The reason for this
data. | frames property is that the element does not need to reuse
buffers or use data spanned over multiple buffers, sp
this property - when used rightly - will decrease
latency. Note that some people think that this propefty
is very ugly, whereas others think it is vital for the use
of GStreamer in professional audio applications. Thg
special value zero is reserved and implies that size s

variable between buffers.

All encoded aud

io types.

audio/x-
ac3

AC-3
or A52
audio

streams,.

There are currently no specific properties defined o
needed for this type.

r

45

Chapter 13. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x{ ADPCM layout | string The layout defines the packing of the samples in the
adpcm | Audio “quick- |stream. In ADPCM, most formats store multiple
streams. time”, |samples per channel together. This number of samples
“dvi”, |differs per format, hence the different layouts. On thg
“mi- long term, we probably want this variable to die and use
crosoft”| something more descriptive, but this will do for now.
or
“4xm”.
block_aligneger | Any Chunk buffer size.
audio/x4 Audio There are currently no specific properties defined of
cinepak| as pro- needed for this type.
vided
ina
Cinepak
(Quick-
time)
stream.
audio/x4 Audio There are currently no specific properties defined of
dv as pro- needed for this type.
vided
ina
Digital
Video
stream.
audio/xq Free There are currently no specific properties defined of
flac Loss- needed for this type.
less
Audio
codec
(FLAC).
audio/x4 Data There are currently no specific properties defined of
gsm en- needed for this type.
coded
by the
GSM
codec.
audio/xq A-Law There are currently no specific properties defined of
alaw | Audio. needed for this type.

46

Chapter 13. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x4{ Mu- There are currently no specific properties defined of
mulaw | Law needed for this type.
Audio.
audio/x{ MACE | maceversiteger |3 or6 | The version of the MACE audio codec used to encade
mace |Audio the stream.
(used in
Quick-
time).
audio/mpAgdio | mpegversitager | 1, 2 or | The MPEG-version used for encoding the data. The
data 4 value 1 refers to MPEG-1, -2 and -2.5 layer 1, 2 or 3.
com- The values 2 and 4 refer to the MPEG-AAC audio
pressed encoding schemes.
using | framed | boolean O or 1 | A true value indicates that each buffer contains exactly
the one frame. A false value indicates that frames and
MPEG buffers do not necessarily match up.
audio
encod- |layer |integer |1, 2, or | The compression scheme layer used to compress the
ing 3 data(only if mpegversion=1)
sce-
hem. - - - — -
bitrate |integer | greater | The bitrate, in bits per second. For VBR (variable
than O |bitrate) MPEG data, this is the average bitrate.
audio/x4 Data There are currently no specific properties defined of
gdm2 |en- needed for this type.
coded
by the
QDM
version
2
codec.
audio/x{ Realmepiaversiofinteger |1 or 2 | The version of the Real Audio codec used to encode
pn- Audio the stream. 1 stands for a 14k4 stream, 2 stands forja
realaudialata. 28k8 stream.
audio/x4 Data There are currently no specific properties defined of
speex |en- needed for this type.
coded
by the
Speex
audio
codec

a7

Chapter 13. Types and Properties

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x- Vorbis There are currently no specific properties defined of
vorbis |audio needed for this type.

data
audio/xq Windowsvmaversioteger | 1,2 or 3| The version of the WMA codec used to encode the
wma | Media stream.

Audio
audio/xq Ensonid There are currently no specific properties defined of
paris | PARIS needed for this type.

audio
audio/xq Amiga There are currently no specific properties defined of
SVX IFF/ needed for this type.

SVX8/

SV16

audio
audio/x{ Sphere There are currently no specific properties defined of
nist NIST needed for this type.

audio
audio/xq Sound There are currently no specific properties defined of
vocC Blaster needed for this type.

VOC

audio
audio/x- Berkeley/IRCAM/CARL There are currently no specific properties defined of
ircam |audio needed for this type.
audio/xq Sonic There are currently no specific properties defined of
w64 Foundry’s needed for this type.

64 bit

RIFF/WRAV

Table 13-2. Table of Video Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

All video types.

video/* | All width |integer | greater | The width of the video image
video than 0

types | height |integer | greater | The height of the video image
than 0

48

Chapter 13. Types and Properties

Mime
Type

Descrip

iBroperty

frameratelouble

Property
Type

Property
Values

greater

Property Description

The (average) framerate in frames per second. Note

y

ly

rder

[0)

re

m.

than O |that this property does not guaranteaimnyway that it
will actually come close to this value. If you need a
fixed framerate, please use an element that provides
that (such as “videodrop”).
All raw video types.
video/x-| YUV |format |fourcc | YUY2, | The layout of the video. See FourCC definition site
raw- (or YVYU, | (http://www.fourcc.org/) for references and definition
yuv Y'Cb’Cr| UYVY, |YUY2, YVYU and UYVY are 4:2:2 packed-pixel,
video Y41P, |Y41Pis 4:1:1 packed-pixeland IYU2 is 4:4:4
format. IYU2, |packed-pixel. Y42B is 4:2:2 planar, YV12 and 1420 are
Y42B, |4:2:0planar, Y41B is 4:1:1 planar and YUV9 and
YV12, [YVU9 are 4:1:0 planar. Y800 contains Y-samples or
1420, | (black/white).
Y41B,
YUV9,
YVU9,
Y800
video/x-| Red- |bpp integer | greater | The number of bits allocated per pixel. This is usua
raw-rgb| Green- than 0 |16, 24 or 32.
Blue |depth |integer |greater | The number of bits used per pixel by the R/G/B
(RBG) than 0 | components. This is usually 15, 16 or 24.
video. endiannasteger | G_BIG_|ENiRlANer of bytes in a sample. The value
(1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
or (byte-order is “least significant byte first”). The value
G_LITT|& BNDIANDIAN (1234) means “big-endian” (byte
(4321) | order is “most significant byte first”). For 24/32bpp,
this should always be big endian because the byte ¢
can be given in both.
red_masinteger | any The masks that cover all the bits used by each of th
green_mask samples. The mask should be given in the endianness
and specified above. This means that for 24/32bpp, the
blue_mask masks might be opposite to host byte order (if you 4
working on little-endian computers).
All encoded video types.
video/x- 3ivx There are currently no specific properties defined of
3ivx video. needed for this type.
video/x- DivX | divxvergiotieger | 3, 4 or | Version of the DivX codec used to encode the strea
divx video. 5

49

Chapter 13. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
video/x- Digital | systemgtoembean FALSE | Indicates that this streami®ta system container
dx Video. stream.
video/x-| FFMpeg ffvversiginteger | 1 Version of the FFMpeg video codec used to encode the
ffv video. stream.
video/x-| H-263 There are currently no specific properties defined of
h263 |video. needed for this type.
video/x-| H-264 There are currently no specific properties defined of
h264 |video. needed for this type.
video/x-| Huffyuv There are currently no specific properties defined of
huffyuv | video. needed for this type.
video/x- Indeo |indeoversiteger | 3 Version of the Indeo codec used to encode this stream.
indeo |video.
video/x-| Motion- There are currently no specific properties defined of
ipeg JPEG needed for this type. Note that video/x-jpeg only
video. applies to Motion-JPEG pictures (YUY2 colourspace).
RGB colourspace JPEG images are referred to as
image/jpeg (JPEG image).
video/mpd®EG | mpegvelrsitager | 1, 2 or | Version of the MPEG codec that this stream was
video. 4 encoded with. Note that we have different mimetypes
for 3ivx, XviD, DivX and "standard" ISO MPEG-4.
This isnota good thing and we're fully aware of this.
However, we do not have a solution yet.
systemstbeatean FALSE | Indicates that this stream it a system container
stream.
video/x- Microsoftmsmpegirgegien | 41, 42 | Version of the MS-MPEG-4-like codec that was used
msmpegMPEG- or43 |to encode this version. A value of 41 refers to MS
4 video MPEG 4.1, 42 to 4.2 and 43 to version 4.3.
devia-
tions.
video/x-| Microsoftnsvidegwueteien | 1 Version of the codec - always 1.
msvideo&btdeac 1
(oldish
codec).

50

Chapter 13. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
video/x-| Realmeflimversiomteger | 1, 2 or | Version of the Real Video codec that this stream was
pn- video. 3 encoded with.
realvidep
video/x-| RLE layout |string |"microsofi"fhe RLE format inside the Microsoft AVI container
rle anima- or has a different byte layout than the RLE format inside
tion "quick- | Apple’s Quicktime container; this property keeps track
format. time" | of the layout.
depth |integer | 1to 64 | Bitdepth of the used palette. This means that the palette
that belongs to this format defines 2”depth colors.
palette |dasaBuffer Buffer containing a color palette (in native-endian
RGBA) used by this format. The buffer is of size
4*2"depth.
video/x-| Sorensesvqgversjamteger | 1 or 3 | Version of the Sorensen codec that the stream was
svq Video. encoded with.
video/x-| Tarkin There are currently no specific properties defined of
tarkin | video. needed for this type.
video/x-| Theora There are currently no specific properties defined of
theora |video. needed for this type.
video/x-| VP-3 There are currently no specific properties defined of
vp3 video. needed for this type. Note that we have different
mimetypes for VP-3 and Theora, which is not
necessarily a good idea. This could probably be
improved.
video/x-| Windowswvmvversioteger | 1,2 or 3| Version of the WMV codec that the stream was
wmy Media encoded with.
Video
video/x-| XviD There are currently no specific properties defined of
xvid video. needed for this type.
All image types.
image/jpdgint There are currently no specific properties defined of
Picture needed for this type. Note that image/jpeg only applies
Expert to RGB-colourspace JPEG images; YUY2-colourspace
Group JPEG pictures are referred to as video/x-jpeg ("Motion
Image. JPEG").

51

Chapter 13. Types and Properties

er

r

er

r

r

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
image/prigprtable There are currently no specific properties defined of
Net- needed for this type.
work
Graph-
ics
Image.
Table 13-3. Table of Container Types
Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
video/x-| Advanced There are currently no specific properties defined of
ms-asf | Stream- needed for this type.
ing
Format
(ASF).
video/x- AVI. There are currently no specific properties defined of
msvided needed for this type.
video/x- Digital |systemgtoembean TRUE | Indicates that this is a container system stream rattj
dv Video. than an elementary video stream.
video/x-| Matroska. There are currently no specific properties defined o
matroskia needed for this type.
video/mpdgtion | systemgtbemean TRUE | Indicates that this is a container system stream rattj
Pic- than an elementary video stream.
tures
Expert
Group
System
Stream.
applicatj@dgogg There are currently no specific properties defined o
needed for this type.
video/quiQktickéme. There are currently no specific properties defined o
needed for this type.
video/x- Digital | systemgtoemiean TRUE | Indicates that this is a container system stream rather
pn- Video. than an elementary video stream.
realvidep

52

Chapter 13. Types and Properties

Mime | DescriptiBroperty Property Property Property Description

Type Type |Values
audio/x{ WAV. There are currently no specific properties defined of
wav needed for this type.

Table 13-4. Table of Subtitle Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

None defined yet.

Table 13-5. Table of Other Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

None defined yet.

53

Chapter 14. Request and Sometimes pads

Until now, we've only dealt with pads that are always avd#alblowever, there’s also pads that are only
being created in some cases, or only if the application retgibe pad. The first is calledsametimes

the second is calledraquestpad. The availability of a pad (always, sometimes or reQuest be seen in

a pad’s template. This chapter will discuss when each ofvtlead useful, how they are created and when
they should be disposed.

14.1. Sometimes pads

A “sometimes” pad is a pad that is created under certain ¢i@mgdi, but not in all cases. This mostly
depends on stream content: demuxers will generally paessttbkam header, decide what elementary
(video, audio, subtitle, etc.) streams are embedded its&system stream, and will then create a
sometimes pad for each of those elementary streams. At itschwice, it can also create more than one
instance of each of those per element instance. The onltaliion is that each newly created pad should
have a unique name. Sometimes pads are disposed when Hra sfiéa is disposed, too (i.e. when going
from PAUSED to the READY state). You shoumt dispose the pad on EOS, because someone might
re-activate the pipeline and seek back to before the ersfre&m point. The stream should still stay

valid after EOS, at least until the stream data is disposedny case, the element is always the owner of
such a pad.

The example code below will parse a text file, where the fing 1§ a number (n). The next lines all start
with a number (0 to n-1), which is the number of the source pat which the data should be sent.

foo
bar
boo
bye

NeERO®

The code to parse this file and create the dynamic “sometipass, looks like this:

typedef struct _GstMFilter {
[..]

gbool ean firstrun;

GLi st *srcpadli st;
} GstMWFilter;

static void

gst_ny filter_base_ init (GstMFilterd ass xkl ass)

{
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);
static GstStaticPadTenpl ate src_factory =
GST_STATI C_PAD_TEMPLATE (

54

Chapter 14. Request and Sometimes pads

"src_992d",
GST_PAD_SRC,
GST_PAD_SOVETI MES,
GST_STATI C_CAPS (" ANY")
)
[--]
gst _el ement _cl ass_add_pad_tenpl ate (el enent _cl ass,
gst _static_pad_tenplate_get (&src_factory));
[--]
}

static void
gst_ny filter_init (GstMyFilter *filter)

{

[--]
filter->firstrun = TRUE;
filter->srcpadlist = NULL;

}

| *

* Get one line of data - w thout new ine.
*/

static GstBuffer =
gst_ny filter_getline (GstMFilter *filter)

{
gui nt 8 *dat a;
gint n, num
/+ max. line length is 512 characters - for safety */
for (n =0; n < 512; n++) {
num = gst _bytestream peek_bytes (filter->bs, &ata, n + 1);
if (num!=n + 1)
return NULL;
/* new ine? =/
if (data[n] == "\n") {
Gst Buf fer xbuf = gst_buffer_new and_alloc (n + 1);
gst _bytestream peek_bytes (filter->bs, &data, n);
mencpy (GST_BUFFER DATA (buf), data, n);
GST_BUFFER_DATA (buf)[n] = "\0";
gst _bytestream flush_fast (filter->bs, n + 1);
return buf;
}
}
}

static void
gst _nmy_filter_l oopfunc (GstEl enent *el ement)

{
Gst WFilter =filter = GST_MY_FILTER (el enent);

55

Chapter 14. Request and Sometimes pads

Gst Buf f er *buf;
Gst Pad *pad;
gint num n;

[+ parse header */

if (filter->firstrun) {
Gst El enent Cl ass Kkl ass;
Gst PadTenpl ate *tenpl ;
gchar *padnane;

if (!'(buf = gst_ny filter_getline (filter))) {

gst _elenent_error (el ement, STREAM READ, (NULL),
("Stream contains no header"));

return;
}
num = atoi (GST_BUFFER_DATA (buf));
gst_buffer_unref (buf);

/+ for each of the streans, create a pad */
kl ass = GST_ELEMENT_GET_CLASS (filter);
tenpl = gst_elenent_class_get_pad_tenplate (klass, "src_%02d");
for (n =0; n < num n++) {
padnane = g_strdup_printf ("src_%2d", n);
pad = gst_pad_new fromtenplate (tenpl, padnane);
g_free (padnane);

[+ here, you would set _getcaps () and _link () functions x/

gst _el emrent _add_pad (el enent, pad);
filter->srcpadlist = g_list_append (filter->srcpadlist, pad);
}
}

/+* and now, sinply parse each |line and push over =*/
if (!'(buf = gst_ny filter_getline (filter))) {
Gst Event *event = gst_event _new (GST_EVENT_EOCS);
GLi st *padlist;

for (padlist = srcpadlist;
padlist !'= NULL; padlist = g_list_next (padlist)) {
pad = GST_PAD (padlist->data);
gst _event _ref (event);
gst _pad_push (pad, GST_DATA (event));
}
gst _event _unref (event);
gst _el ement _set_eos (el enent);

return;

}

[+ parse stream nunber and go beyond the ':’ in the data =*/
num = atoi (GST_BUFFER DATA (buf));
if (num>=0 & num< g_list_length (filter->srcpadlist)) {

56

Chapter 14. Request and Sometimes pads
pad = GST_PAD (g_list_nth_data (filter->srcpadlist, nunj;

/* magi c buffer parsing foo */

for (n = 0; GST_BUFFER_DATA (buf)[n] !'=":" &&
GST_BUFFER _DATA (buf)[n] !'="'\0"; n++)
i f (GST_BUFFER DATA (buf)[n] !'="\0") {

Gst Buf fer *sub;

[+ create subbuffer that starts right past the space. The reason
* that we don’t just forward the data pointer is because the
* pointer is no longer the start of an allocated bl ock of menory,
* but just a pointer to a position sonewhere in the mddle of it.
* That cannot be freed upon disposal, so we’'d either crash or have
* a menl eak. Creating a subbuffer is a sinple way to solve that. =/
sub = gst_buffer_create_sub (buf, n + 1, GST_BUFFER SIZE (buf) - n - 1);
gst _pad_push (pad, GST_DATA (sub));
}

}
gst _buffer_unref (buf);

}

Note that we use a lot of checks everywhere to make sure taathtent in the file is valid. This has two
purposes: first, the file could be erronous, in which case weemt a crash. The second and most
important reason is that - in extreme cases - the file couldsked maliciously to cause undefined
behaviour in the plugin, which might lead to security issuwda/aysassume that the file could be used to
do bad things.

14.2. Request pads

“Request” pads are similar to sometimes pads, except thatst are created on demand of something
outside of the element rather than something inside theaxiérihis concept is often used in muxers,
where - for each elementary stream that is to be placed inutpubsystem stream - one sink pad will be
requested. It can also be used in elements with a variabléeuaf input or outputs pads, such as the

t ee (multi-output),swi t ch oraggr egat or (both multi-input) elements. At the time of writing this g
unclear to me who is responsible for cleaning up the creaaeldapd how or when that should be done.
Below is a simple example of an aggregator based on requést pa

static GstPad * gst_ny_filter_request_new pad (GstEl enent el ement ,
Gst PadTenpl ate *tenpl,
const gchar *namne) ;

static void
gst_ny filter_base_init (GstMFilterd ass xkl ass)

{
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);

57

Chapter 14. Request and Sometimes pads

static GstStaticPadTenpl ate sink_factory =
GST_STATI C_PAD_TEMPLATE (

"sink_%d",

GST_PAD _SI NK,

GST_PAD_REQUEST,

GST_STATI C_CAPS (" ANY")
)
]

gst _el ement _cl ass_add_pad_t enpl ate (kl ass,
gst _static_pad_tenplate_get (&sink_factory));

}

[

static void
gst_nmy filter_class_init (GstMFilterd ass *kl ass)

{
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);

[--]

el enent _cl ass->request _new _pad = gst_ny_filter_request_new pad;

}

static GstPad =

gst_mny_filter_request_new pad (GstEl enent el enent,
Gst PadTenpl ate *tenpl,
const gchar *name)
{
Gst Pad *pad;

Gst MyFi | t er | nput Cont ext *cont ext;

context = g_new0 (GstMFilterlnputContext, 1);

pad = gst_pad_new fromtenplate (tenpl, nane);

gst _el ement _set_private_data (pad, context);

/+* normally, you would set _link () and _getcaps () functions here */

gst _el enment _add_pad (el enent, pad);

return pad;

The_l oop () function is the same as the one given previouslyiti-Input Elements

58

Chapter 15. Clocking

When playing complex media, each sound and video samplelmeystiyed in a specific order at a
specific time. For this purpose, GStreamer provides a spmization mechanism.

15.1. Types of time

There are two kinds of time in GStream@tock timeis an absolute time. By contrastement timeis
the relative time, usually to the start of the current metfi@ssn. The element time represents the time
that should have a media sample that is being processed ljetment at this time. The element time is
calculated by adding an offset to the clock time.

15.2. Clocks

GStreamer can use different clocks. Though the system tamdve used as a clock, soundcards and
other devices provides a better time source. For this ressoe elements provide a clock. The method
get _cl ock is implemented in elements that provide one.

As clocks return an absolute measure of time, they are natliyaused directly. Instead, a reference to a
clock is stored in any element that needs it, and it is usextniaty by GStreamer to calculate the element
time.

15.3. Flow of data between elements and time

Now we will see how time information travels the pipeline iffefent states.

The pipeline starts playing. The source element typicaligwks the time of each sampleFirst, the
source element sends a discontinous event. This everg¢garformation about the current relative time
of the next sample. This relative time is arbitrary, but itshibe consistent with the timestamp that will
be placed in buffers. It is expected to be the relative timiéostart of the media stream, or whatever
makes sense in the case of each media. When receiving ittiteeedements adjust their offset of the
element time so that this time matches the time written iretrent.

Then the source element sends media samples in bufferselEnigent places a timestamp in each buffer
saying when the sample should be played. When the buffehsdhe sink pad of the last element, this
element compares the current element time with the timgstafrthe buffer. If the timestamp is higher or
equal it plays the buffer, otherwise it waits until the tinogpiace the buffer arrives with

gst _el ement _wai t ().

59

Chapter 15. Clocking

If the stream is seeked, the next samples sent will have atam® that is not adjusted with the element
time. Therefore, the source element must send a discorstienent.

15.4. Obligations of each element.

Let us clarify the contract between GStreamer and each eleiméhe pipeline.

15.4.1. Source elements

Source elements (or parsers of formats that provide nofitime, such as MPEG, as explained above)
must place a timestamp in each buffer that they deliver. Tiggroof the time used is arbitrary, but it
must match the time delivered in the discontinous eventl§sémy). However, it is expected that the
origin is the origin of the media stream.

In order to initialize the element time of the rest of the pipe, a source element must send a
discontinous event before starting to play. In additiotgredeeking, a discontinious event must be sent,
because the timestamp of the next element does not matclethere time of the rest of the pipeline.

15.4.2. Sink elements

If the element is intended to emit samples at a specific tiea (ime playing), the element should
require a clock, and thus implement the metked_cl ock.

In addition, before playing each sample, if the current @entime is less than the timestamp in the
sample, it wait until the current time arrives should @t _el ement _wai t () ? See an example in
Data processing, events, synchronization and clocks

Notes

1. Sometimes itis a parser element the one that knows the fimiestance if a pipeline contains a
filesrc element connected to a MPEG decoder element, thesfasthe one that knows the time of
each sample, because the knowledge of when to play eachesangphbedded in the MPEG format.
In this case this element will be regarded as the source eleimethis discussion.

2. With some schedulergst _el ement _wai t () blocks the pipeline. For instance, if there is one
audio sink element and one video sink element, while theceeléiment is waiting for a sample the
video element cannot play other sample. This behaviourdeudiscussion, and might change in a
future release.

60

Chapter 16. Supporting Dynamic Parameters

Sometimes object properties are not powerful enough torobthite parameters that affect the behaviour
of your element. When this is the case you can expose theamptars as Dynamic Parameters which

can be manipulated by any Dynamic Parameters aware applicat

Throughout this section, the terdparamswill be used as an abbreviation for "Dynamic Parameters".

16.1. Comparing Dynamic Parameters with GObject

Properties

Your first exposure to dparams may be to convert an existiagent from using object properties to
using dparams. The following table gives an overview of tifteence between these approaches. The
significance of these differences should become appairtentda.

Object Properties

Dynamic Parameters

Parameter definition

Class level at compile time

Any level at run time

Getting and setting

Implemented by element
subclass as functions

Handled entirely by dparams
subsystem

Extra objects required

None - all functionality is
derived from base GObject

Element needs to create and st
aGst DPar amvanager at object
creation

ore

Frequency and resolution of
updates

Object properties will only be
updated between calls to _get,
_chainor _loop

dparams can be updated at any
rate independent of calls to _ge
_chainor _loop upto

—

sample-level accuracy

16.2. Getting Started

The dparams subsystem is contained withingbecont r ol library. You need to include the header in

your element’s source file:

#i ncl ude <gst/control/control.h>

Even though thegst cont r ol library may be linked into the host application, you shoulake sure it is
loaded in youmpl ugi n_i ni t function:

static gbool ean

plugin_init (Gvbdul e *nodul e,

Gst Pl ugi n *pl ugi n)

61

Chapter 16. Supporting Dynamic Parameters

/* | oad dparam support library */
if ('gst_library load ("gstcontrol"))
{

gst_info ("exanple: could not |oad support library: 'gstcontrol’\n");
return FALSE;

}

You need to store an instance@ft DPar amanager in your element’s struct:

struct _GstExanple {
Gst El enent el enent;

Gst DPar amvanager *dpman;

TheGst DPar amvanager can be initialised in your element’s init function:

static void
gst _exanple_init (GstExanple *exanpl e)
{

exanpl e- >dpman = gst_dpman_new (" exanpl e_dpnman", GST_ELEMENT(exanple));

16.3. Defining Parameter Specifications

You can define the dparams you need anywhere within your eltug will usually need to do so in
only a couple of places:

- Inthe elementni t function, just after the call tgst _dpnan_new

« Whenever a new pad is created so that parameters can affagalag into or out of a specific pad. An
example of this would be a mixer element where a separatensparameter is needed on every pad.

62

Chapter 16. Supporting Dynamic Parameters

There are three different ways the dparams subsystem carppeameters into your element. Which one
you use will depend on how that parameter is used within yment. Each of these methods has its
own function to define a required dparam:

» gst_dpnman_add_requi red_dparam direct
- gst_dpnman_add_requi red_dparam cal | back
« gst_dprman_add_requi red_dparam array

These functions will return TRUE if the required dparam weded successfully.

The following function will be used as an example.

gbool ean

gst _dpnan_add_requi red_dparam di rect (Gst DParamvanager *dpmnan,
GPar anfSpec *par am spec,
gbool ean is_| og,
gbool ean is_rate,
gpoi nter updat e_dat a)

The common parameters to these functions are:

« Gst DPar amvanager =*dpnan the element’s dparam manager
. GPar anSpec =*par am spec the param spec which defines the required dparam

- gbool ean i s_| og whether this dparam value should be interpreted on a log ¢sath as a
frequency or a decibel value)

+ gbool ean i s_rat e whether this dparam value is a proportion of the sample Fairexample with a
sample rate of 44100, 0.5 would be 22050 Hz and 0.25 would B23.#z.

16.3.1. Direct Method

This method is the simplest and has the lowest overhead fanpters which change less frequently
than the sample rate. First you need somewhere to store tampter - this will usually be in your
element’s struct.

struct _GstExanple {
Gst El enent el enent;

Gst DPar amvanager *dpman;
gf l oat vol une;

63

Chapter 16. Supporting Dynamic Parameters

Then to define the required dparam just e¢alt _dpman_add_r equi r ed_dpar am di r ect and pass in
the location of the parameter to change. In this case theitocis & exanpl e- >vol une) .

gst _dpnman_add_requi red_dparam direct (
exanpl e- >dpnan,
g_param spec_fl oat ("vol une", "Vol une", "Vol une of the audi 0",
0.0, 1.0, 0.8, G PARAM READVWRI TE),
FALSE,
FALSE,
&(exanpl e- >vol une)

You can now usexanpl e- >vol ume anywhere in your element knowing that it will always conttie
correct value to use.

16.3.2. Callback Method

This should be used if the you have other values to calculatever a parameter changes. If you used
the direct method you wouldn't know if a parameter had chdrsgeyou would have to recalculate the
other values every time you needed them. By using the cdlliveathod, other values only have to be
recalculated when the dparam value actually changes.

The following code illustrates an instance where you migantto use the callback method. If you had a
volume dparam which was represented by a gfloat number, yeoremt may only deal with integer
arithmetic. The callback could be used to calculate they@tecaler when the volume changes. First you
will need somewhere to store these values.

struct _GstExanple {
Gst El enent el enent ;

Gst DPar amvanager *dpnan;
gf l oat vol une_f;
gi nt vol urme_i ;

};...

When the required dparam is defined, the callback funaf&in exanpl e_updat e_vol ume and some
user data (which in this case is our element instance) isspasgo the call to
gst _dpnan_add_r equi red_dpar am cal | back.

gst _dpnan_add_r equi red_dpar am cal | back (

64

Chapter 16. Supporting Dynamic Parameters

exanpl e- >dpman,

g_param spec_fl oat ("vol une", " Vol une", "Vol une of the audi 0",
0.0, 1.0, 0.8, G PARAM READVWRI TE),

FALSE,

FALSE,

gst _exanpl e_updat e_vol une,

exanpl e

The callback function needs to conform to this signature

t ypedef void (*Gst DPMJpdat eFuncti on) (Gval ue *val ue, gpointer data);

In our example the callback function looks like this

static void
gst _exanpl e_updat e_vol une(Gval ue xval ue, gpointer data)
{
Gst Exanpl e rexanpl e = (Gst Exanpl ex) dat a;
g_return_if_fail (GST_I S_EXAMPLE(exanpl e));

exanpl e- >vol une_f g_val ue_get _fl oat (val ue);
exanpl e- >vol une_i = exanpl e->vol une_f * 8192;

Now exanpl e- >vol ume_i can be used elsewhere and it will always contain the coredaev

16.3.3. Array Method

This method is quite different from the other two. It couldtheught of as a specialised method which
should only be used if you need the advantages that it previdstead of giving the element a single
value it provides an array of values where each item in theeyarorresponds to a sample of audio in your
buffer. There are a couple of reasons why this might be useful

- Certain optimisations may be possible since you can iten&te your dparams array and your buffer
data together.

- Some dparams may be able to interpolate changing values aathple rate. This would allow the
array to contain very smoothly changing values which maydogiired for the stability and quality of
some DSP algorithms.

The array method is currently the least mature of the threthoas and is not yet ready to be used in
elements, but plugin writers should be aware of its existdocthe future.

65

Chapter 16. Supporting Dynamic Parameters

16.4. The Data Processing Loop

This is the most critical aspect of the dparams subsystenrealgies to elements. In a traditional audio
processing loop, Bior loop will usually iterate over each sample in the buffer,qgassing one sample at a
time until the buffer is finished. A simplified loop with no errchecking might look something like this.

static void
exanpl e_chain (GstPad *pad, GstBuffer =*buf)

{

gf l oat =fl oat_dat a;

int j;

Gst Exanpl e *exanpl e = GST_EXAMPLE(GST_OBJECT_PARENT (pad));
int numsanpl es = GST_BUFFER_SI ZE(buf)/si zeof (gf | oat);
float _data = (gfloat *)GST_BUFFER _DATA(buf);

for (j =0; j < numsanples; j++) {
float _data[j] *= exanpl e->vol une;

}

To make this dparams aware, a couple of changes are needed.

static void
exanpl e_chain (GstPad *pad, GstBuffer =*buf)

{
int j =0;
Gst Exanpl e *exanpl e = GST_EXAMPLE(GST_OBJECT_PARENT (pad));
int numsanpl es = GST_BUFFER_SI ZE(buf)/si zeof (gf | oat);
gfloat *float_data = (gfloat *)GST_BUFFER_DATA(buf);
int frame_countdown = GST_DPMAN_PREPROCESS(exanpl e- >dpnman, num sanpl es, GST_BUFFER_TI MEST/
whi | e (GST_DPMAN_PROCESS COUNTDOWN(exanpl e- >dprman, franme_countdown, j)) {
float_data[j++] *= exanpl e->vol ung;
}
}

The biggest changes here are 2 new maaess, DPMAN_PREPROCESS and
GST_DPMAN_PROCESS_COUNTDOWN. You will also notice that the for loop has become a while loop
GST_DPMAN_PROCESS_COUNTDOWN s called as the condition for the while loop so that any respli
dparams can be updated in the middle of a buffer if requir&is 1B because one of the required
behaviours of dparams is that they cansaenple accurateThis means that parameters change at the
exact timestamp that they are supposed to - not after theittudis finished being processed.

66

Chapter 16. Supporting Dynamic Parameters

It may be alarming to see a macro as the condition for a whap lbut it is actually very efficient. The
macro expands to the following.

#defi ne GST_DPMAN_PROCESS COUNTDOWN(dprman, frane_countdown, frame_count) \
(frame_countdown-- || \
(franme_count down = GST_DPMAN_PROCESS(dprman, frame_count)))

So as long aér ame_count down is greater than 0GST_DPMAN_PROCESS will not be called at all. Also
in many caseszST_DPMAN_PROCESS will do nothing and simply return 0, meaning that there is naren
data in the buffer to process.

The macraGST_DPVAN_PREPROCESS will do the following:

- Update any dparams which are due to be updated.
- Calculate how many samples should be processed beforexheegeired update

- Return the number of samples until next update, or the numtsamples in the buffer - whichever is
less.

In fact GST_DPMAN_PROCESS may do the same things @ST_DPMAN_PREPROCESS depending on the
mode that the dparam manager is running in (see below).

16.4.1. DParam Manager Modes

A brief explanation of dparam manager modes might be usefid Bven though it doesn’t generally
affect the way your element is written. There are differeaysmedia applications will be used which
require that an element’s parameters be updated in ditflgrdmese include:

- Timelined- all parameter changes are known in advance before themegaslrun.

- Realtime low-latency Nothing is known ahead of time about when a parameter migdge.
Changes need to be propagated to the element as soon adgossib

When a dparam-aware application gets the dparam managan flement, the first thing it will do is set
the dparam manager mode. Current modes ayachr onous" and"asynchr onous" .

If you are in a realtime low-latency situation then theynchr onous" mode is appropriate. During
GST_DPMAN_PREPROCESS this mode will poll all dparams for required updates and pigate them.
GST_DPMAN_PROCESS will do nothing in this mode. To then achieve the desiredreyethe size of the
buffers needs to be reduced so that the dparams will be plotatpdates at the desired frequency.

In a timelined situation, theasynchr onous" mode will be required. This mode hasn't actually been
implemented yet but will be described anyway. T685_DPMAN_PREPROCESS call will precalculate
when and how often each dparam needs to update for the duddtibe current buffer. From then on
GST_DPMAN_PROCESS will propagate the calculated updates each time it is callgd end of the buffer.
If the application is rendering to disk in non-realtime, thader could be sped up by increasing the

67

Chapter 16. Supporting Dynamic Parameters

buffer size. In the asynchr onous" mode this could be done without affecting the sample acguhc
the parameter updates

16.4.2. Dynamic Parameters for Video

All of the explanation so far has presumed that the buffetaios audio data with many samples. Video
should be regarded differently since a video buffer oftemtams only 1 frame. In this case some of the
complexity of dparams isn’t required but the other benefitsrsake it useful for video parameters. If a
buffer only contains one frame of video, only a single cals8T DPMAN_PREPROCESS should be
required. For more than one frame per buffer, treat it theesasithe audio case.

68

Chapter 17. MIDI

WRITEME

69

Chapter 18. Interfaces

Previously, in the chaptekdding Argumentswe have introduced the concept of GObject properties of
controlling an element’s behaviour. This is very powerhulf it has two big disadvantages: first of all, it
is too generic, and second, it isn’t dynamic.

The first disadvantage is related to the customizabilithefénd-user interface that will be built to

control the element. Some properties are more importantdtizers. Some integer properties are better
shown in a spin-button widget, whereas others would be betpgesented by a slider widget. Such
things are not possible because the Ul has no actual meanthg application. A Ul widget that
represents a bitrate property is the same as a Ul widgetepatsents the size of a video, as long as both
are of the samePar anSpec type. Another problem, is that things like parameter gragpfunction
grouping, or parameter coupling are not really possible.

The second problem with parameters are that they are nonaignn many cases, the allowed values for
a property are not fixed, but depend on things that can onlyebected at runtime. The names of inputs
fora TV card in a video4linux source element, for example, aaly be retrieved from the kernel driver
when we've opened the device; this only happens when theeglegoes into the READY state. This
means that we cannot create an enum property type to shototthis user.

The solution to those problems is to create very specialigees of controls for certain often-used
controls. We use the concept of interfaces to achieve this.bBsis of this all is the glib

GTypel nt er f ace type. For each case where we think it's useful, we've crebtiifaces which can be
implemented by elements at their own will. We've also crdateamall extension tGTypel nt er f ace
(which is static itself, too) which allows us to query forenfiace availability based on runtime properties.
This extension is calledGst | npl enent sl nt er f ace
(../../gstreamer/html/Gstimplementsinterface.html).

One important note: interfaces dotreplace properties. Rather, interfaces should be haitt to
properties. There are two important reasons for this. Birstl, properties can be saved in XML files.
Second, properties can be specified on the commandjite (aunch).

18.1. How to Implement Interfaces

Implementing interfaces is intiated in thget _t ype () of your element. You can register one or more
interfaces after having registered the type itself. Soneriaces have dependencies on other interfaces
or can only be registered by certain types of elements. Ydibeinotified of doing that wrongly when
using the element: it will quit with failed assertions, whiwill explain what went wrong. In the case of
GStreamer, the only dependency thaimeinterfaces have isGst | npl enent sl nter f ace
(../..Igstreamer/html/Gstimplementsinterface.htiér interface, we will indicate clearly when it
depends on this extension. If it does, you need to regispgraatiforthatinterface before registering
support for the interface that you're wanting to supporte Bxample below explains how to add support

70

Chapter 18. Interfaces

for a simple interface with no further dependencies. For alexplanation on
Gst | npl enent sl nt er f ace (../../gstreamer/html/Gstimplementsinterface.htsgg the next section
about the mixer interfacédlixer Interface

static void gst_ny filter_sone_interface_init (GstSonelnterface xiface);

GType
gst_ny _filter_get_type (void)
{
static Glype ny_filter_type = 0;

if ('my_filter_type) {
static const GIypelnfo nmy_filter_info
sizeof (Gst MFilterd ass),
(GBasel nitFunc) gst_ny filter_base_init,
NULL,
(GO asslnitFunc) gst_ny filter_class_init,
NULL,
NULL,
sizeof (GstMyFilter),
0,
(G nstancelnitFunc) gst_ny filter_init
b
static const Anterfacelnfo some_interface_info = {
(G nterfacelnitFunc) gst_ny filter_sone_interface_init,
NULL,
NULL

b

{

my_filter_type =
g_type_register_static (GST_TYPE_MY_FILTER,
"Gst WFilter",
&y _filter_info, 0);
g_type_add_interface_static (ny_filter_type,
GST_TYPE_SOVE_| NTERFACE,
&some_interface_info);

}

return ny_filter_type;
}

static void
gst_ny filter_sone_interface_init (GstSonelnterface xiface)

{

/* here, you would set virtual function pointers in the interface */

}

71

Chapter 18. Interfaces

18.2. Mixer Interface

The goal of the mixer interface is to provide a simple yet pduléAPI to applications for audio

hardware mixer/volume control. Most soundcards have hardwmixers, where volume can be changed,
they can be muted, inputs can be modified to mix their contegatwhat will be read from the device by
applications (in our case: audio source plugins). The ninterface is the way to control those. The
mixer interface can also be used for volume control in soféa.g. the “volume” element). The end
goal of this interface is to allow development of hardwarkiate control applications and for the control
of audio volume and input/output settings.

The mixer interface requires thesst | npl enent sl nterface
(../..Igstreamer/html/Gstimplementsinterface.htmi¢iface to be implemented by the element. The
example below will feature both, so it serves as an examplté Gst | npl ement sl nterface
(../..Igstreamer/html/Gstimplementsinterface.httol, In this interface, it is required to set a function
pointer for the supported () function. If you don't, this function will always return FARE (default
implementation) and the mixer interface implementatiolh mat work. For the mixer interface, the only
required functionis i st _tracks (). All other function pointers in the mixer interface are aptal,
although it is strongly recommended to set function pomtfer at least thget _vol une () and

set _vol une () functions. The API reference for this interface documelmésgoal of each function, so
we will limit ourselves to the implementation here.

The following example shows a mixer implementation for awafe N-to-1 element. It does not show
the actual process of stream mixing, that is far too comf@it#or this guide.

#i ncl ude <gst/ m xer/ m xer. h>

typedef struct _GstMFilter {
[--]

gi nt vol une;

GLi st *tracks;
} GstMWFilter;

static void gst_ny filter_inplenents_interface_init (GstlnplenmentslnterfaceC ass *iface);
static void gst_ny filter_mxer_interface_init (GstM xerCl ass *iface);

Glype
gst_ny_filter_get_type (void)
{
[..]
static const Anterfacelnfo inplements_interface_info = {
(A nterfacelnitFunc) gst_ny filter_inplenents_interface_init,
NULL,
NULL
b
static const Anterfacelnfo mixer_interface_info = {
(G nterfacelnitFunc) gst_ny filter_mxer_interface_init,
NULL,
NULL

b

72

Chapter 18. Interfaces

g_type_add_interface_static (ny_filter_type,
GST_TYPE_| MPLEMVENTS_| NTERFACE,
& nmpl ements_i nterface_info);
g_type_add_interface_static (ny_filter_type,
GST_TYPE_M XER,
&m xer _interface_info);
[..]
}

static void
gst_nmy filter_init (GstMFilter *filter)
{
Gst M xer Track *track = NULL;
[--]
filter->volune = 100;
filter->tracks = NULL;
track = g_object_new (GST_TYPE_M XER TRACK, NULL);
track->l abel = g_strdup ("MTrack");
track->num channel s = 1;
track->m n_vol une = 0;
track->max_vol une = 100;
track->fl ags = GST_M XER_TRACK_ SOFTWARE;
filter->tracks = g_list_append (filter->tracks, track);

}

static gbool ean
gst_nmy filter_interface_supported (Gstlnplenmentsinterface *iface,
Glype i face_type)
{
g_return_val _if_fail (iface_type == GST_TYPE_M XER, FALSE);

/+ for the sake of this exanple, we'll always support it. However, nornally,
* you woul d check whet her the device you've opened supports m xers. x/
return TRUE;

}

static void
gst_ny filter_inplements_interface_init (GstlnplenmentslnterfaceC ass *iface)

{

i face->supported = gst_my_filter_interface_supported;

}

| *

* This function returns the list of support tracks (inputs, outputs)
* on this elenent instance. Elenents usually build this list during
* init () or when going fromNULL to READY.

*/

static const Gist =
gst_ny filter_mxer_list_tracks (GstM xer *m xer)

{
Gst WFilter »filter = GST_MY_FILTER (m xer);

73

Chapter 18. Interfaces

return filter->tracks;

}

| *

* Set volume. volunes is an array of size track->num channels, and
* each value in the array gives the wanted vol une for one channel
* on the track.

*/

static void

gst_nmy _filter_m xer_set_volume (GstM xer *mioxer,
Gst M xer Track *track,
gi nt *vol unes)

{

Gst WFilter »filter = GST_MY_FILTER (m xer);
filter->volume = vol umes[0];

g_print ("Volunme set to %\ n", filter->volune);

}

static void

gst_ny _filter_m xer_get_volume (GstM xer *mioxer,
Gst M xer Track *track,
gi nt *vol unes)

{
Gst WFilter *filter = GST_MY_FILTER (m xer);

volunes[0] = filter->vol uneg;

}

static void
gst_ny _filter_mxer_interface_init (GstM xerd ass =i face)

{
/+* the mxer interface requires a definition of the m xer type:
* hardware or software? =/
GST_M XER TYPE (iface) = GST_M XER_SOFTWARE;

/* virtual function pointers */

iface->list_tracks = gst_ny _filter_m xer_|ist_tracks;
iface->set_volune = gst_ny filter_m xer_set_vol une;
i face->get _volume = gst_ny_filter_nmi xer_get_vol une;

}

The mixer interface is very audio-centric. However, witle goftware flag set, the mixer can be used to
mix any kind of stream in a N-to-1 element to join (not aggtedjestreams together into one output
stream. Conceptually, that's called mixing too. You canaglgvuse the element factory’s “category” to
indicate type of your element. In a software element thaesbandom streams, you would not be
required to implement theget _vol une () or_set _vol une () functions. Rather, you would only

74

Chapter 18. Interfaces

implement the set _record () to enable or disable tracks in the output stream. to maketbatea
mixer-implementing element is of a certain type, check fleenent factory’s category.

18.3. Tuner Interface

As opposed to the mixer interface, that's used to join togethstreams into one output stream by
mixing all streams together, the tuner interface is used-io{4 elements too, but instead of mixing the
input streams, it will select one stream and push the dataabfstream to the output stream. It will
discard the data of all other streams. There is a flag that@e$ whether this is a software-tuner (in
which case it is a pure software implementation, with N siakkpand 1 source pad) or a hardware-tuner,
in which case it only has one source pad, and the whole streltti®n process is done in hardware.
The software case can be used in elements sustvidch The hardware case can be used in elements
with channel selection, such as video source elementsréy4#l2src, etc.). If you need a specific
element type, use the element factory’s “category” to make that the element is of the type that you
need. Note that the interface itself is highly analog-videatric.

This interface requires theGst | npl enensl nt er f ace
(../..Igstreamer/html/Gstimplementsinterface.htmi¢rface to work correctly.

The following example shows how to implement the tuner fiaige in an element. It does not show the
actual process of stream selection, that is irrelevantfisrgection.

#i ncl ude <gst/tuner/tuner. h>

typedef struct _GstMFilter {
[..]

gint active_input;

GLi st *channel s;
} GstMWFilter;

static void gst_ny filter_inplenents_interface_init (GstlnplenmentslnterfaceC ass *iface);
static void gst_ny filter_tuner_interface_init (GstTunerC ass *iface);

Glype
gst_ny_filter_get_type (void)
{
[..]
static const Anterfacelnfo inplements_interface_info = {
(G nterfacelnitFunc) gst_ny filter_inplenents_interface_init,
NULL,
NULL
b
static const Anterfacelnfo tuner_interface_info = {
(G nterfacelnitFunc) gst_ny filter_tuner_interface_init,
NULL,
NULL

i

75

Chapter 18. Interfaces

g_type_add_interface_static (ny_filter_type,
GST_TYPE_| MPLEMVENTS_| NTERFACE,
& nmpl ements_i nterface_info);
g_type_add_interface_static (ny_filter_type,
GST_TYPE_TUNER,
& unerr_interface_info);
[..]
}

static void
gst_ny_filter_init (GstMyFilter xfilter)
{
Gst Tuner Channel *channel = NULL;
[--]
filter->active_input = O;
filter->channels = NULL;
channel = g_object_new (GST_TYPE_TUNER CHANNEL, NULL);
channel - >l abel = g_strdup ("M/Channel ");
channel - >fl ags = GST_TUNER_CHANNEL_ | NPUT;
filter->channels = g_list_append (filter->channels, channel);

}

static gbool ean
gst_mny _filter_interface_supported (Gstlnplenmentsinterface *iface,
GType i face_type)
{
g_return_val _if_fail (iface_type == GST_TYPE_TUNER, FALSE);

/+ for the sake of this exanple, we'll always support it. However, nornally,
* you woul d check whether the device you've opened supports tuning. =/
return TRUE;

}

static void
gst_ny filter_inplements_interface_init (GstlnplenmentslnterfaceC ass *iface)

{

i face->supported = gst_my_filter_interface_supported;

}

static const Gist =
gst_ny _filter_tuner_list_channels (GstTuner *tuner)

{
Gst WFilter *filter = GST_MY_FILTER (tuner);

return filter->channels;

}

static Gst Tuner Channel =
gst_mny_filter_tuner_get_channel (GstTuner =*tuner)

{
Gst WFilter »filter = GST_MY_FILTER (tuner);

76

Chapter 18. Interfaces

return g_list_nth_data (filter->channels,
filter->active_input);

}

static void
gst_mny_filter_tuner_set_channel (GstTuner xtuner,
Gst Tuner Channel =*channel)

{
Gst WFilter »filter = GST_MY_FILTER (tuner);
filter->active_input = g_list_index (filter->channels, channel);
g_assert (filter->active_input >= 0);

}

static void
gst_ny _filter_tuner_interface_init (GstTunerd ass *iface)

{
iface->list_channels = gst_my_filter_tuner_list_channels;
i face->get _channel = gst_ny_filter_tuner_get_channel;
i face->set _channel = gst_ny_filter_tuner_set_channel;

}

As said, the tuner interface is very analog video-centtifedtures functions for selecting an input or
output, and on inputs, it features selection of a tuningdeswy if the channel supports frequency-tuning
on that input. Likewise, it allows signal-strength-aciugyrif the input supports that. Frequency tuning
can be used for radio or cable-TV tuning. Signal-strengtimisndication of the signal and can be used
for visual feedback to the user or for autodetection. Nexh#d, it also features norm selection, which is
only useful for analog video elements.

18.4. Color Balance Interface

WRITEME

18.5. Property Probe Interface

Property probing is a generic solution to the problem thapprties’ value lists in an enumeration are
static. We've shown enumerationsAdding ArgumentsProperty probing tries to accomplish a goal
similar to enumeration lists: to have a limited, explicétlof allowed values for a property. There are two
differences between enumeration lists and probing. irstiumerations only allow strings as values;
property probing works for any value type. Secondly, thetents of a probed list of allowed values may
change during the life of an element. The contents of an enatioa list are static. Currently, property
probing is being used for detection of devices (e.g. for Ogients, Video4linux elements, etc.). It
could - in theory - be used for any property, though.

77

Chapter 18. Interfaces

Property probing stores the list of allowed (or recommendatles in eaGval ueAr r ay and returns that
to the user. NULL is a valid return value, too. The processropprty probing is separated over two
virtual functions: one for probing the property to createMal ueAr r ay, and one to retrieve the current
Gval ueArray. Those two are separated because probing might take a loed $everal seconds). Also,
this simpliies interface implementation in elements. farapplication, there are functions that wrap
those two. For more information on this, have a look at the Asfdrence for th&st Pr oper t yPr obe
interface.

Below is a example of property probing for the audio filteme&t; it will probe for allowed values for
the “silent” property. Indeed, this value is a gboolean spiésn’t make much sense. Then again, it’s
only an example.

#i ncl ude <gst/ propertyprobe/ propertyprobe. h>
static void gst_ny filter_probe_interface_init (GstPropertyProbelnterface *iface);

Glype
gst_ny _filter_get_type (void)
{
[--]
static const Anterfacelnfo probe_interface_info = {
(A nterfacelnitFunc) gst_ny filter_probe_interface_init,
NULL,
NULL
s
[..]
g_type_add_interface_static (ny_filter_type,
GST_TYPE_PROPERTY_PROBE,
&probe_interface_info);
[..]
}

static const GList =
gst _ny _filter_probe_get_properties (GstPropertyProbe xprobe)

{
Gbj ect C ass *klass = G OBJECT_CET_CLASS (probe);
static GList *props = NULL;
if (!props) {
GPar anfSpec *pspec;
pspec = g_object_class_find_property (klass, "silent");
props = g_list_append (props, pspec);
}
return props;
}

static gbool ean
gst_ny_filter_probe_needs_probe (GstPropertyProbe *probe,
gui nt prop_id,

78

Chapter 18. Interfaces
const GPar anSpec *pspec)
gbool ean res = FALSE;

switch (prop_id) {
case ARG SI LENT:
res = FALSE;
br eak;
defaul t:
G _OBJECT_WARN | NVALI D_PROPERTY_I D (probe, prop_id, pspec);
br eak;

}

return res;

}

static void

gst_mny_filter_probe_probe_property (GstPropertyProbe *probe,
gui nt prop_id,
const GPar anSpec *pspec)

{
switch (prop_id) {
case ARG _SI LENT:
/+ don’t need to do nuch here... */
br eak;
defaul t:
G _OBJECT_WARN_| NVALI D_PROPERTY_I D (probe, prop_id, pspec);
br eak;
}
}

static Gval ueArray =
gst_nmy filter_get_silent_values (GstMFilter *filter)

{
Gval ueArray *array = g_value_array_new (2);
Gval ue value = { 0 };
g_value_init (&value, G TYPE BOCLEAN);
[+ add TRUE */
g_val ue_set _bool ean (&val ue, TRUE);
g_val ue_array_append (array, &val ue);
[+ add FALSE */
g_val ue_set _bool ean (&val ue, FALSE);
g_val ue_array_append (array, &value);
g_val ue_unset (&val ue);
return array;

}

static Gval ueArray =

79

Chapter 18. Interfaces

gst_mny_filter_probe_get_val ues (GstPropertyProbe *probe,
gui nt prop_id,
const GPar anSpec *pspec)

Gst MFilter *filter = GST_MY_FILTER (probe);
GVal ueArray »array = NULL;

switch (prop_id) {
case ARG SI LENT:
array = gst_ny filter_get_silent_values (filter);
br eak;
defaul t:
G _OBJECT_WARN_| NVALI D_PROPERTY_I D (probe, prop_id, pspec);
br eak;

}

return array,

}

static void
gst_nmy filter_probe_interface_init (GstPropertyProbelnterface *iface)

{
i face->get _properties = gst_ny_filter_probe_get_properties;
i face->needs_probe = gst_ny_filter_probe_needs_probe;
i face->probe_property = gst_ny_filter_probe_probe_property;
i face->get _val ues = gst_ny_filter_probe_get_val ues;

}

You don't need to support any functions for getting or settmalues. All that is handled via the standard
Gbj ect _set_property () and_get property () functions.

18.6. X Overlay Interface

An X Overlay is basically a video output in a XFree86 drawabllements implementing this interface
will draw video in a X11 window. Through this interface, ajgaltions will be proposed 2 different
modes to work with a plugin implemeting it. The first mode isasgive mode where the plugin owns,
creates and destroys the X11 window. The second mode is ige autde where the application handles
the X11 window creation and then tell the plugin where it ddautput video. Let’s get a bit deeper in
those modes...

A plugin drawing video output in a X11 window will need to habat window at one stage or another.
Passive mode simply means that no window has been given b before that stage, so the plugin
created the window by itself. In that case the plugin is resjide of destroying that window when it's
not needed anymore and it has to tell the applications thahdow has been created so that the
application can use it. This is done using tiezve_xwi ndow_i d signal that can be emitted from the
plugin with thegst _x_over| ay_got _xwi ndow_i d method.

80

Chapter 18. Interfaces

As you probably guessed already active mode just meansggad{ 11 window to the plugin so that
video output goes there. This is done usingdhe_x_over| ay_set _xwi ndow_i d method.

It is possible to switch from one mode to another at any monsenthe plugin implementing this
interface has to handle all cases. There are only 2 methatpliigins writers have to implement and
they most probably look like that :

static void
gst_ny_filter_set_xw ndow_ id (GstXOverlay *overlay, Xl D xwi ndow_id)

{
Gst WFilter »ny_filter = GST_MY_FILTER (overl ay);

if (my_filter->w ndow)
gst_nmy _filter_destroy_w ndow (ny_filter->w ndow);

my_filter->w ndow = xwi ndow_i d;

}

static void
gst_ny_filter_get_desired_size (Gst XOverlay *overl ay,
guint =wi dth, guint xheight)

{
Gst MFilter *ny _filter = GST_MY_FILTER (overl ay);
*width = ny_filter->w dth;
*hei ght = ny_filter->height;

}

static void
gst_nmy filter_xoverlay_init (GstXOverlayd ass =i face)
{

i face->set xw ndow_ id

= gst_ny_filter_set_xw ndow_i d;
i face->get _desired_size =

gst_ny_filter_get_desired_size;

}

You will also need to use the interface methods to fire sigwailsn needed such as in the pad link
function where you will know the video geometry and maybeteehe window.

static MyFilterWndow *
gst_mny_filter_wi ndow create (GstMyFilter »ny_filter, gint w dth, gint height)

{
MyFi | t er W ndow *wi ndow = g_new (M/FilterWndow, 1);

gst _x_overlay_got _xwi ndow_id (GST_X OVERLAY (ny_filter), w ndow >w n);
}

static GstPadLi nkReturn
gst_nmy filter_sink_link (GstPad *pad, const GstCaps *caps)
{

Gst WFilter »ny_filter = GST_MY_FILTER (overl ay);

81

Chapter 18. Interfaces

gint wi dth, height;
gbool ean ret;

ret = gst_structure_get_int (structure, "width", &w dth);
ret & gst_structure_get_int (structure, "height", &height);
if ('ret) return GST_PAD_LI NK_REFUSED,

if (I'ny_filter->w ndow)
ny_filter->wi ndow = gst_ny_filter_create_w ndow (nmy_filter, w dth, height);

gst _x_overlay_got _desired_size (GST_X OVERLAY (ny_filter),
wi dt h, height);

18.7. Navigation Interface

WRITEME

82

Chapter 19. Tagging (Metadata and Streaminfo)

Tags are pieces of information stored in a stream that artheatontent itself, but they rathdescribe

the content. Most media container formats support taggirane way or another. Ogg uses
VorbisComment for this, MP3 uses ID3, AVl and WAV use RIFR$HO list chunk, etc. GStreamer
provides a general way for elements to read tags from tharsteind expose this to the user. The tags (at
least the metadata) will be part of the stream inside thelipgeThe consequence of this is that
transcoding of files from one format to another will autoroally preserve tags, as long as the input and
output format elements both support tagging.

Tags are separated in two categories in GStreamer, evegtitapplications won'’t notice anything of
this. The first are callethetadatathe second are callesfreaminfo Metadata are tags that describe the
non-technical parts of stream content. They can be changhdwtneeding to re-encode the stream
completely. Examples are “author”, “title” or “album”. Tle®ntainer format might still need to be
re-written for the tags to fit in, though. Streaminfo, on thieey hand, are tags that describe the stream
contents technically. To change them, the stream needsr®é&ecoded. Examples are “codec” or
“bitrate”. Note that some container formats (like ID3) gmarious streaminfo tags as metadata in the
file container, which means that they can be changed so tatitn’t match the content in the file
anymore. Still, they are called metadata becdasknically they can be changed without re-encoding
the whole stream, even though that makes them invalid. fildssuch metadata tags will have the same
tag twice: once as metadata, once as streaminfo.

A tag reading element is call&thgGet t er in GStreamer. A tag writer is callethgSet t er
(../..Igstreamer/html/GstTagSetter.html). An elemempisorting both can be used in a tag editor for quick
tag changing.

19.1. Reading Tags from Streams

The basic object for tags is@t TagLi st (../../gstreamer/html/gstreamer-GstTagList.html). An
element that is reading tags from a stream should create ptydaglist and fill this with individual tags.
Empty tag lists can be created wight _tag_I| i st _new (). Then, the element can fill the list using
gst_tag_list_add_values () .Note thatan element probably reads metadata as stringgaloes
might not necessarily be strings. Be sure to gise_val ue_t r ansf orm () to make sure that your data
is of the right type. After data reading, the application bemotified of the new taglist by calling

gst _el enent _found_tags (). Thetags should also be part of the datastream, so theydsheul
pushed over all source pads. The functign_event _new_tag () creates an event from a taglist. This
can be pushed over source pads ugisig_pad_push (). Simple elements with only one source pad
can combine all these steps all-in-one by using the funeféan el ement _f ound_t ags_f or _pad ().

The following example program will parse a file and parse thi& és metadata/tags rather than as actual
content-data. It will parse each line as “name:value”, elreme is the type of metadata (title, author,
...) and value is the metadata value. Thyet | i ne () is the same as the one givenSometimes pads

83

static void
gst _nmy_filter_l oopfunc (GstEl enent *el ement)

Chapter 19. Tagging (Metadata and Streaminfo)

{
Gst MyFilter =filter = GST_MY_FILTER (el enent);
Gst Buf f er *buf;
Gst TagLi st *taglist = gst_tag_list_new ();
/* get each line and parse as netadata */
while ((buf = gst_nmy filter_getline (filter))) {
gchar *line = GST_BUFFER _DATA (buf), =*colon_pos, *type = NULL;a
/* get the position of the ':’ and go beyond it =/
if (!'(colon_pos = strchr (line, ":")))
goto next:
/+* get the string before that as type of netadata */
type = g_strndup (line, colon_pos - line);
/* content is one character beyond the ’:’ x/
col on_pos = &col on_pos[1];
if (*colon_pos == "\0")
got o next;
/* get the netadata category, it’'s value type, store it in that
* type and add it to the taglist. =/
if (gst_tag exists (type)) {
Gvalue from={ 0}, to={ 0};
Glype to_type;
to_type = gst_tag _get_type (type);
g_value_init (& rom G_TYPE STRING ;
g_value_set_string (& rom col on_pos);
g_value_init (& o, to_type);
g_value_transform (& rom &to);
g_val ue_unset (& rom;
gst _tag_list_add_values (taglist, GST_TAG MERGE_APPEND,
type, &t o, NULL);
g_val ue_unset (&to);
}
next :
g_free (type);
gst _buffer_unref (buf);
}
/+ signal netadata */

gst _el ement _found_tags_for_pad (elenment, filter->srcpad, 0, taglist);
gst _tag list _free (taglist);

/+ send ECS */
gst _pad_send_event (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EQS)));
gst _el ement _set_eos (el ement);

84

Chapter 19. Tagging (Metadata and Streaminfo)

We currently assume the core to alredahypwthe mimetypedst _t ag_exi sts ()). You can add new
tags to the list of known tags usimgt _tag_regi ster (). Ifyou think the tag will be useful in more
cases than just your own element, it might be a good idea titémldst t ag. c instead. That's up to you
to decide. If you want to do it in your own element, it's eastesegister the tag in one of your class init
functions, preferrablycl ass_init ().

static void
gst_nmy filter_class_init (GstMFilterd ass *kl ass)

{
[..]
gst _tag_register ("nmy_tag_nanme", GST_TAG FLAG META,

G_TYPE_STRI NG,
_("my own tag"),
_("atag that is specific to my own elenent"),
NULL) ;

[..]

}

19.2. Writing Tags to Streams

Tag writers are the opposite of tag readers. Tag writers takg metadata tags into account, since that's
the only type of tags that have to be written into a stream.\ilidigrs can receive tags in three ways:
internal, application and pipeline. Internal tags are ta&gsl by the element itself, which means that the
tag writer is - in that case - a tag reader, too. Applicatiggstare tags provided to the element via the
TagSetter interface (which is just a layer). Pipeline tagstags provided to the element from within the
pipeline. The element receives such tags via the GST_EVHNG event, which means that tags
writers should automatically be event aware. The tag wisteesponsible for combining all these three
into one list and writing them to the output stream.

The example below will receive tags from both applicatiod pipeline, combine them and write them to
the output stream. It implements the tag setter so appicaitan set tags, and retrieves pipeline tags
from incoming events.

Glype
gst_ny_filter_get_type (void)
{
[--]
static const Anterfacelnfo tag_setter_info = {
NULL,

85

Chapter 19. Tagging (Metadata and Streaminfo)

NULL,
NULL
}s

[--]
g_type_add_interface_static (ny_filter_type,
GST_TYPE_TAG SETTER,
& ag_setter_info);
[--]
}

static void
gst_ny filter_init (GstMFilter *filter)
{
GST_FLAG SET (filter, GST_ELEMENT_EVENT_AWARE);
[--]
}

| *
* Wite one tag.
*

static void
gst_nmy filter_wite_tag (const GstTagList *taglist,

const gchar *t agnane,
gpoi nt er dat a)
{

Gst WFilter »filter = GST_MY_FILTER (data);

GstBuffer xbuffer;

guint numvalues = gst_tag |list_get_tag_size (list, tag_nane), n;

const Gval ue *from

Gvalue to = { 0 };

g_value_init (& o, G TYPE_STRI NG ;

for (n = 0; n < numyval ues; n++) {
from= gst_tag_list_get_value_index (taglist, tagnanme, n);
g_value_transform(from &to);
buf = gst_buffer_new ();
GST_BUFFER _DATA (buf) = g_strdup_printf ("%: %", tagnane,

g_val ue_get_string (& o0));

GST_BUFFER_SI ZE (buf) = strlen (GST_BUFFER _DATA (buf));
gst _pad_push (filter->srcpad, GST_DATA (buf));

}

g_val ue_unset (&to);

}

static void
gst_ny_filter_l oopfunc (GstEl enent *el ement)
{
Gst WFilter =filter = GST_MY_FILTER (el enent);
Gst TagSetter *tagsetter = GST_TAG SETTER (el enent);

86

Chapter 19. Tagging (Metadata and Streaminfo)

Gst Dat a *dat a;

Gst Event *event;

gbool ean eos = FALSE;

Gst TagLi st *taglist = gst_tag_list_new ();

while (!eos) {
data = gst_pad_pull (filter->sinkpad);

/+ W' re not very much interested in data right now */
if (GST_I S_BUFFER (data))

gst _buffer_unref (GST_BUFFER (data));
event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT TAG
gst _tag_list_insert (taglist, gst_event_tag_get_list (event),
GST_TAG_MERGE_PREPEND) ;
gst _event _unref (event);

br eak;
case GST_EVENT_ ECs:
eos = TRUE;
gst _event _unref (event);
br eak;
defaul t:
gst _pad_event _default (filter->sinkpad, event);
br eak;

}
}

/+* merge tags with the ones retrieved fromthe application =/
if (gst_tag setter_get list (tagsetter)) {

gst _tag list_insert (taglist,

gst _tag setter_get list (tagsetter),

gst _tag_setter_get_nerge_node (tagsetter));

}

[+ wite tags */
gst _tag list_foreach (taglist, gst_mnmy filter_wite tag, filter);

/+ signal ECS =*/
gst _pad_push (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EQOS)));
gst _el ement _set_eos (el enent);

Note that normally, elements would not read the full stre@fofe processing tags. Rather, they would
read from each sinkpad until they've received data (sings tsually come in before the first data
buffer) and process that.

87

Chapter 20. Events: Seeking, Navigation and
More

There are many different event types but only 2 ways they i@k across the pipeline: downstream or
upstream. It is very important to understand how both of ¢hosthods work because if one elementin
the pipeline is not handling them correctly the whole evgstam of the pipeline is broken. We will try
to explain here how these methods work and how elements pposad to implement them.

20.1. Downstream events

Downstream events are received through the sink pad’s datdflepending if your element is loop or
chain based you will receive events in your loop/chain figrcas a GstData withst _pad_pul | or
directly in the function call arguments. So when receiviagaflow from the sink pad you have to check
first if this data chunk is an event. If that’s the case you &heleat kind of event it is to react on relevant
ones and then forward others downstream ugistg pad_event _def aul t . Here is an example for
both loop and chain based elements.

/+ Chain based el enent =*/

static void

gst_ny _filter_chain (GstPad =+pad,
Gst Dat a *dat a)

{
Gst MFilter =filter = GST_MY_FILTER (gst_pad_get_parent (pad));

if (GST_IS_EVENT (data)) {
Gst Event *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT ECs:
[end-of -stream we should close down all streamleftovers here */
gst_ny _filter_stop_processing (filter);
[+ fall-through to default event handling */
defaul t:
gst _pad_event _default (pad, event);
br eak;
}

return;

}
}

[+ Loop based el ement =*/
static void
gst_nmy filter_|l oop (GstElenent *el enent)

{
Gst WFilter =filter = GST_MY_FILTER (el enent);

88

Chapter 20. Events: Seeking, Navigation and More
Gst Data *data = NULL;
data = gst_pad_pull (filter->sinkpad);

if (GST_IS_EVENT (data)) {
Gst Event *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {

case GST_EVENT ECs:
[end-of -stream we should close down all streamleftovers here */
gst_ny _filter_stop_processing (filter);
[+ fall-through to default event handling */

defaul t:
gst _pad_event _default (filter->sinkpad, event);
br eak;

}

return;

}

20.2. Upstream events

Upstream events are generated by an element somewheregipéti@e and sent using the

gst _pad_send_event function. This function simply realizes the pad and calldiefault event handler
of that pad. The default event handler of padgss_pad_event _def aul t , it basically sends the event
to the peer pad. So upstream events always arrive on the drafyaur element and are handled by the
default event handler except if you override that handldrandle it yourself. There are some specific
cases where you have to do that :

« If you have multiple sink pads in your element. In that case will have to decide which one of the
sink pads you will send the event to.

« If you need to handle that event locally. For example a retidg event that you will want to convert
before sending it upstream.

The processing you will do in that event handler does noty@adtter but there are important rules you
have to absolutely respect because one broken elementtenadfier is breaking the whole pipeline
event handling. Here they are :

* Always forward events you won’'t handle upstream using tekaditgst _pad_event _def aul t
method.

* If you are generating some new event based on the one yowedaon’t forget to gst_event_unref
the event you received.

89

Chapter 20. Events: Seeking, Navigation and More

» Event handler function are supposed to return TRUE or FAliREcating if the event has been

handled or not. Never simply return TRUE/FALSE in that hamaixcept if you really know that you
have handled that event.

Here is an example of correct upstream event handling fougiplthat wants to modify navigation
events.

static gbool ean
gst_ny_filter_handl e_src_event (GstPad *pad,

{

Gst Event *event)
Gst MFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_ NAVI GATI ON:
Gst Event *new_event = gst_event_new (GST_EVENT_NAVI GATI ON) ; ;
/+ Create a new event based on received one and then send it =*/

gst _event _unref (event);
return gst_pad_event _default (pad, new event);
defaul t:
/+ Falling back to default event handling for that pad */
return gst_pad_event_default (pad, event);

20.3. All Events Together

In this chapter follows a list of all defined events that areently being used, plus how they should be
used/interpreted. Events are stored iBsaEvent (../../gstreamer/html/gstreamer-GstEvent.html)
structure, which is simply a big C union with the types forleagent in it. For the next development
cycle, we intend to switch events over@et St r uct ur e
(../..Igstreamer/html/gstreamer-GstStructure.htinl),you don’t need to worry about that too much for
now.

In this chapter, we will discuss the following events:

End of Stream (EOS)
Flush

Stream Discontinuity
Seek Request
Stream Filler

Interruption

90

Chapter 20. Events: Seeking, Navigation and More

- Navigation

« Tag (metadata)

20.3.1. End of Stream (EOS)

End-of-stream events are sent if the stream that an elererds®ut is finished. An element receiving
this event (from upstream, so it receives it on its sinkpaitl\generally forward the event further
downstream and set itself to EO§s€ _el enent _set _eos ()).gst _pad_event _default () takes
care of all this, so most elements do not need to supporttkisteExceptions are elements that explicitly
need to close a resource down on EOS, and N-to-1 elements thaitthe stream itself isot a resource
that should be closed down on EOS! Applications might seek bma point before EOS and set the
pipeline to PLAYING again. N-to-1 elements have been disedgreviously irMulti-Input Elements

The EOS event (GST_EVENT_EOS) has no properties, and thegsitone of the simplest events in
GStreamer. It is created usiggt _event _new (GST_EVENT_ECS) ; .

Some elements support the EOS event upstream, too. Thalsidye element to go into EOS as soon as
possible and signal the EOS event forward downstream. Shiseéful for elements that have no concept
of end-of-stream themselves. Examples are TV card sowsicelsp card sources, etc. This is not (yet)
part of the official specifications of this event, though.

20.3.2. Flush

The flush event is being sent downstream if all buffers antiesin the pipeline should be emptied.
“Queue” elements will empty their internal list of bufferdven they receive this event, for example. File
sink elements (e.g. “filesink”) will flush the kernel-to-Risache { dat async () orfflush ())when
they receive this event. Normally, elements receiving évisnt will simply just forward it, since most
filter or filter-like elements don’t have an internal cachelafa.gst _pad_event _default () does

just that, so for most elements, it is enough to forward theneusing the default event handler.

The flush event is created witfst _event _new (GST_EVENT_FLUSH) ; . Like the EOS event, it has no
properties.

20.3.3. Stream Discontinuity

A discontinuity event is sent downstream to indicate a diionity in the data stream. This can happen
because the application used the seek event to seek to redtffesition in the stream, but it can also be
because a real-time network source temporarily lost th@ection. After the connection is restored, the
data stream will continue, but not at the same point wheretitagt. Therefore, a discontinuity event is
being sent downstream, too.

91

Chapter 20. Events: Seeking, Navigation and More

Depending on the element type, the event can simply be foedansingyst _pad_event _def aul t

(), orit should be parsed and a modified event should be sentanlast is true for demuxers, which
generally have a byte-to-time conversion concept. Theinirs usually byte-based, so the incoming
event will have an offset in byte units (GST_FORMAT_BYTE®). Elements downstream, however,
expect discontinuity events in time units, so that it can $eduto update the pipeline clock. Therefore,
demuxers and similar elements should not forward the ebemparse it, free it and send a new
discontinuity event (in time units, GST_FORMAT_TIME) fbdr downstream.

The discontinuity event is created using the functisn_event _new_di sconti nuous (). It should
set a boolean value which indicates if the discontinuitynéi®@sent because of a new media type (this
can happen if - during iteration - a new location was set ontaark source or on a file source). then, it
should give a list of formats and offsets in that format. Tisedhould be terminated by 0 as format.

static void
my_filter_some_function (GstMFilter *filter)

{
Gst Event *event;
[..]
event = gst_event_new di sconti nuous (FALSE,
GST_FORMAT_BYTES, O,
GST_FORMAT_TI ME, O,
0);
gst _pad_push (filter->srcpad, GST_DATA (event));
[..]
}

Elements parsing this event can use macros and functiomsésgthe various properties.
GST_EVENT_DI SCONT_NEW MEDI A (event) checks the new-media boolean value.

gst _event _di scont _get _val ue (event, format, &val ue) gets the offset of the new stream
position in the specified format. If that format was not sfiediwhen creating the event, the function
returns FALSE.

20.3.4. Seek Request

Seek events are meant to request a new stream position tergienthis new position can be set in
several formats (time, bytes or “units” [a term indicatimgrhes for video, samples for audio, etc.]).
Seeking can be done with respect to the end-of-file, stafileobr current position, and can happen in
both upstream and downstream direction. Elements recgsgek events should, depending on the
element type, either forward it (filters, decoders), chathgeformat in which the eventis given and
forward it (demuxers), handle the event by changing the Biater in their internal stream resource (file
sources) or something else.

Seek events are, like discontinuity events, built up usiogjtns in specified formats (time, bytes,
units). They are created using the functgst _event _new_seek (), where the first argumentis the
seek type (indicating with respect to which position [catrend, start] the seek should be applied, and

92

Chapter 20. Events: Seeking, Navigation and More

the format in which the new position is given (time, bytestslnand an offset which is the requested
position in the specified format.

static void
ny_filter_some_function (Gst MyFilter *filter)

{

Gst Event *event;
[-.]
/* seek to the start of a resource */
event = gst_event _new seek (GST_SEEK SET | GST_FORMAT_BYTES, 0);
gst _pad_push (filter->srcpad, GST_DATA (event));
[--]
}

Elements parsing this event can use macros and functiomséssthe properties. The seek type can be
retrieved usingsST_EVENT_SEEK_TYPE (event) . This seek type contains both the indicator of with
respect to what position the seek should be applied, andtheat in which the seek event is given. To
get either one of these properties separatelyG33e EVENT_SEEK_FORMAT (event) or
GST_EVENT_SEEK_METHOD (event). The requested position is available through
GST_EVENT_SEEK_OFFSET (event), and is given in the specified format.

20.3.5. Stream Filler

The filler event is, as the name says, a “filler” of the streantivihas no special meaning associated
with itself. It is used to provide data to downstream elera@md should be interpreted as a way of
assuring that the normal data flow will continue further detweam. The event is especially intended for
real-time MIDI source elements, which only generate datamégomethinghangesMIDI decoders will
therefore stall if nothing changes for several secondstla@e:fore playback will stop. The filler event is
sent downstream to assure the MIDI decoder that nothingggdrso that the normal decoding process
will continue and playback will, too. Unless you intend torkavith MIDI or other
control-language-based data types, you don’t need thigteYeu can mostly simply forward it with

gst _pad_event _default ().

The stream filler is created usingt _event _new (GST_EVENT_FI LLER) ; . It has no properties.

20.3.6. Interruption

The interrupt event is generated by queue elements and eenstream if a timeout occurs on the
stream. The scheduler will use this event to get back in its main loop and schedule other elements.
This prevents deadlocks or a stream stall if no data is géexver a part of the pipeline for a
considerable amount of time. The scheduler will processeatient internally, so any normal elements do
not need to generate or handle this event at all.

93

Chapter 20. Events: Seeking, Navigation and More

The difference between the filler event and the interrupheigethat the filler event is a real part of a
pipeline, so it will reach fellow elements, which can useitdo nothing else than what | used to do".
The interrupt event never reaches fellow elements.

The interrupt eventgst _event _new (GST_EVENT_I NTERRUPT) ;) has no properties.

20.3.7. Navigation

WRITEME

20.3.8. Tag (metadata)

Tagging events are being sent downstream to indicate tlseaaparsed from the stream data. This is
currently used to preserve tags during stream transcodimg 6ne format to the other. Tags are
discussed extensively Dhapter 19Most elements will simply forward the event by calling

gst _pad_event _default ().

The tag event is created using the functign _event _new tag (). It requires afilled taglist as
argument.

Elements parsing this event can use the fungji®in event _tag_get _|ist (event) to acquire the
taglist that was parsed.

94

V. Other Element Types

By now, we have looked at pretty much any feature that can beedded into a GStreamer element.
However, we have limited ourselves to the simple model ofterfdlement. In this chapter, we will look
at the specific difficulties and things to keep in mind whertingi specific types of elements. We will
discuss output elements (sinks), input elements (sourtes}N elements, N-to-1 elements, N-to-N
elements, autopluggers and managers. Some of these nefpegaents that don’t actually exist. Rather,
they represent a general concept.

Chapter 21. Writing a Source

Source elements are the start of a data streaming pipelinec& elements have no sink pads and have
one or more source pads. We will focus on single-sourcepadestts here, but the concepts apply
equally well to multi-sourcepad elements. This chaptelexiplain the essentials of source elements,
which features it should implement and which it doesn’t hayend how source elements will interact
with other elements in a pipeline.

21.1. The get()-function

Source elements have the special option of havingea () -function rather than al oop () - or
_chain ()-function. A_get () -function is called by the scheduler every time the next ellets needs
data. Apart from corner cases, every source element wiltwabe get () -based.

static GstData * gst_ny_source_get (GstPad *pad);

static void
gst_nmy_source_init (Gst MySource *src)
{
[..]
gst _pad_set _get function (src->srcpad, gst_ny_source_get);

}

static GstData *
gst _nmy_source_get (GstPad *pad)

{
GstBuffer xbuffer;

buffer = gst_buffer_new ();

GST_BUFFER _DATA (buf) = g_strdup ("hello pipeline!'");
GST_BUFFER_SI ZE (buf) = strlen (GST_BUFFER DATA (buf));
/+* termnating '/0 */

GST_BUFFER_MAZSI ZE (buf) = GST_BUFFER_SI ZE (buf) + 1;

return GST_DATA (buffer);

21.2. Events, querying and converting

One of the most important functions of source elements iygeément correct query, convert and event
handling functions. Those will continuously describe therent state of the stream. Query functions can
be used to get stream properties such as current positioleagth. This can be used by fellow elements
to convert this same value into a different unit, or by apgjias to provide information about the

96

Chapter 21. Writing a Source

length/position of the stream to the user. Conversion fonstare used to convert such values from one
unit to another. Lastly, events are mostly used to seek tiipos inside the stream. Any function is
essentially optional, but the element should try to prowgenuch information as it knows. Note that
elements providing an event function should also list teepported events in arget _event _mask

() function. Elements supporting query operations shoutdhis supported operations in a

_get _query_types () function. Elements supporting either conversion or qugrgrations should
also implementaget _formats () function.

An example source element could, for example, be an elerhantontinuously generates a wave tone at
44,1 kHz, mono, 16-bit. This element will generate 44100@sdmples per second or 88,2 kB/s. This
information can be used to implement such functions:

static GstFormat * gst_my_source_format _|ist (GstPad *pad) ;
static Gst QueryType * gst_nmy_source_query_list (GstPad *pad) ;
static gbool ean gst_ny_source_convert (GstPad *pad,

Gst For mat fromfnt,

gi nt 64 fromyval,

Gst For mat *to_fnt,

gi nt 64 *to_val);
static gbool ean gst_ny_source_query (GstPad *pad,

Gst QueryType type,
Gst For mat *to_fnt,
gi nt 64 *to_val);

static void
gst_my_source_init (Gst MySource *src)

{
[-.]
gst _pad_set _convert_function (src->srcpad, gst_my_source_convert);
gst _pad_set _formats_function (src->srcpad, gst_mny_source_format_list);
gst _pad_set _query_function (src->srcpad, gst_my_source_query);
gst _pad_set _query_type_function (src->srcpad, gst_ny_source_query_list);
}
| *

* This function returns an enuneration of supported Gst Format

* types in the query() or convert() functions. See gst/gstformat.h
*» for a full list.

*/

static GstFormat =

gst _mnmy_source_format _|ist (GstPad *pad)

{

static const GstFormat formats[] = {

GST_FORMAT_TI ME,
GST_FORVAT_DEFAULT, /* nmeans "audi o sanpl es" */
GST_FORMAT_BYTES,
0

97

Chapter 21. Writing a Source

return fornmats;

* This function returns an enuneration of the supported query()

* operations. Since we generate audio internally, we only provide

* an indication of how many sanples we've played so far. File sources
* or such elenents could al so provide GST_QUERY_TOTAL for the total

* stream |l ength, or other things. See gst/gstquery.h for details.

static Gst QueryType *
gst _my_source_query_list (GstPad *pad)
{
static const GstQueryType query_types[] = {
GST_QUERY_PCSI Tl ON,
0,
s

return query_types;

}

| *
* And bel ow are the | ogical inplenentations.
*

static gbool ean
gst _my_source_convert (GstPad *pad,
Gst Format fromfnt,
gi nt 64 fromyval,
Gst Format *to_fnt,
gi nt 64 *to_val)
{
ghbool ean res = TRUE;
Gst MySource *src = GST_MY_SOURCE (gst_pad_get _parent (pad));

switch (fromfnt) {
case GST_FORMAT_TI MVE:
switch (*to_fnt) {
case GST_FORVAT_TI ME:
[+ nothing */
br eak;

case GST_FORVAT_BYTES:
xto_val = fromval / (GST_SECOND / (44100 * 2));
br eak;

case GST_FORVAT_DEFAULT:
*to_val = fromval / (GST_SECOND / 44100);
br eak;

defaul t:
res = FALSE;

98

Chapter 21. Writing a Source

br eak;

}

br eak;

case GST_FORVAT_BYTES:
switch (*to_fnt) {
case GST_FORVAT_TI ME:
*to_val = fromval » (GST_SECOND / (44100 * 2));
br eak;

case GST_FORVAT_BYTES:
[+ nothing */
br eak;

case GST_FORVAT_ DEFAULT:
*to val = fromval / 2;
br eak;

defaul t:
res = FALSE;
br eak;

}

br eak;

case GST_FORVAT_DEFAULT:
switch (*to_fnt) {
case GST_FORVAT_TI ME:
*to_val = fromval * (GST_SECOND / 44100);
br eak;

case GST_FORVAT_BYTES:
*to val = fromval * 2;
br eak;

case GST_FORVAT_DEFAULT:
[+ nothing */
br eak;

defaul t:
res = FALSE;
br eak;

}

br eak;

defaul t:
res = FALSE;
br eak;

}

return res;

}

static gbool ean

99

Chapter 21. Writing a Source

gst _my_source_query (GstPad *pad,

Gst QueryType type,
Gst For mat *to_fnt,
gi nt 64 *to_val)

Gst MySource *src = GST_MY_SCOURCE (gst_pad_get _parent (pad));
gbool ean res = TRUE;

switch (type) {
case GST_QUERY_POSI TI ON:
res = gst_pad_convert (pad, GST_FORMAT_BYTES, src->total_bytes,
to fm, to_val);
br eak;

defaul t:
res = FALSE;
br eak;

}

return res;

Be sure to increase src->total_bytes after each call to yger () function.

Event handling has already been explained previously irteats chapter.

21.3. Time, clocking and synchronization

The above example does not provide any timing info, but wiffise for elementary data sources such as
a file source or network data source element. Things becdgtelglmore complicated, but still very
simple, if we create artificial video or audio data sourceshsas a video test image source or an
artificial audio source (e.@i nesr c orsi | ence). It will become more complicated if we want the
element to be a realtime capture source, such as a videa&lowrce (for reading video frames from a
TV card) or an ALSA source (for reading data from soundcatgssrted by an ALSA-driver). Here, we
will need to make the element aware of timing and clocking.

Timestamps can essentially be generated from all the irdbom given above without any difficulty. We
could add a very small amount of code to generate perfeatigstamped buffers from ouget
() -function:

static void
gst_ny_source_init (Gst MySource *src)

{
[--]

src->total _bytes = 0;

}

100

Chapter 21. Writing a Source

static GstData *
gst _nmy_source_get (GstPad *pad)

{
Gst MySource *src = GST_MY_SOURCE (gst_pad_get _parent (pad));
Gst Buf f er *buf;
Gst Format fnt = GST_FORMAT_TI ME;
[..]
GST_BUFFER_DURATI ON (buf) = GST_BUFFER_SI ZE (buf) * (GST_SECOND / (44100 * 2));
GST_BUFFER_TI MESTAMWP (buf) = src->total _bytes » (GST_SECOND / (44100 * 2));
src->total _bytes += GST_BUFFER_SI ZE (buf);
return GST_DATA (buf);
}

static GstStateReturn
gst _my_source_change_state (GstEl enent =*el enent)

{
Gst MySource *src = GST_MY_SOURCE (el enent);
switch (GST_STATE_PENDI NG (el enent)) {
case GT_STATE PAUSED TO READY:
src->total _bytes = 0;
br eak;
defaul t:
br eak;
}
if (GST_ELEMENT_CLASS (parent_class)->change_state)
return GST_ELEMENT_CLASS (parent_cl ass)->change_state (el enment);
return GST_STATE_SUCCESS;
}

That wasn’t too hard. Now, let's assume real-time elemériisse can either have hardware-timing, in
which case we can rely on backends to provide sync for us (iolwtase you probably want to provide

a clock), or we will have to emulate that internally (e.g. tmaire sync in artificial data elements such as
si nesrc). Let’s first look at the second option (software sync). Tha fhption (hardware sync +
providing a clock) does not require any special code witpeesto timing, and the clocking section
already explained how to provide a clock.

enum {

ARG 0,
[..]

ARG SYNC,
[..]
}

static void
gst _my_source_class_init (Gst MySourceC ass *kl ass)

101

Chapter 21. Writing a Source

{
Gbj ect Cl ass *obj ect_class = G OBJECT_CLASS (kl ass);
-]
g_object_class_install _property (object_class, ARG SYNC,
g_param spec_bool ean ("sync", "Sync", "Synchronize to clock",
FALSE, G _PARAM READWRI TE));

[.

[.-]
}

static void
gst_my_source_init (Gst MySource *src)
{
[..]
src->sync = FALSE;
}

static GstData *
gst _nmy_source_get (GstPad *pad)
{
Gst MySource *src = GST_MY_SOURCE (gst_pad_get _parent (pad));
Gst Buf fer *buf;
[--]
if (src->sync) {
/+ wait on clock */
gst _el ement _wait (GST_ELEMENT (src), GST_BUFFER TI MESTAMP (buf));

}

return GST_DATA (buf);
}

static void

gst _my_source_get _property (GObj ect *0bj ect,
gui nt prop_id,
GPar anfSpec *pspec,
Gval ue +xval ue)

{
Gst MySource *src = GST_MY_SOURCE (gst_pad_get _parent (pad));

switch (prop_id) {
[..]
case ARG _SYNC
g_val ue_set _bool ean (val ue, src->sync);

br eak;
[..]
}
}
static void
gst _nmy_source_get _property (Gbj ect *0bj ect,
gui nt prop_id,

GPar anfspec *pspec,
const Gval ue *val ue)

102

Chapter 21. Writing a Source
Gst MySource *src = GST_MY_SOURCE (gst_pad_get _parent (pad));

switch (prop_id) {
[..]
case ARG_SYNC:
src->sync = g_val ue_get _bool ean (val ue);
br eak;

Most of this is GObject wrapping code. The actual code to diwsoe-sync (in the get () -function)
is relatively small.

21.4. Using special memory

In some cases, it might be useful to use specially allocatony (e.gnmap () 'ed DMA'able

memory) in your buffers, and those will require special Hangwhen they are being dereferenced. For
this, GStreamer uses the concept of buffer-free functibhese are special functions pointers that an
element can set on buffers that it created itself. The givection will be called when the buffer has
been dereferenced, so that the element can clean up or rearsery internally rather than using the
default implementation (which simply calls f ree () on the data pointer).

static void
gst _my_source_buffer_free (GstBuffer xbuf)

{
Gst MySource *src = GST_MY_SOURCE (GST_BUFFER_PRI VATE (buf));

/+* do useful things here, like re-queueing the buffer which
* makes it available for DVA again. The default handler wll
* not free this buffer because of the GST_BUFFER_DONTFREE
* flag. */

}

static GstData *

gst _nmy_source_get (GstPad *pad)

{

Gst MySource *src = GST_MY_SOURCE (gst_pad_get _parent (pad));
Gst Buf fer *buf;

-]
buf = gst_buffer_new ();

GST_BUFFER_FREE_DATA FUNC (buf) = gst_ny_source_buffer_free;
GST_BUFFER_PRI VATE (buf) = src;

GST_BUFFER_FLAG_SET (buf, GST_BUFFER_READONLY | GST_BUFFER DONTFREE) ;

[.-]

return GST_DATA (buf);

103

Chapter 21. Writing a Source

Note that this concept shouttbtbe used to decrease the number of calls made to functionsasuch
g_nal I oc () inside your element. We have better ways of doing that elsesv{GStreamer core, Glib,
Glibc, Linux kernel, etc.).

104

Chapter 22. Writing a Sink

Sinks are output elements that, opposite to sources, haseuroe pads and one or more (usually one)
sink pad. They can be sound card outputs, disk writers, édtis. Ghapter will discuss the basic
implementation of sink elements.

22.1. Data processing, events, synchronization and
clocks

Except for corner cases, sink elements will_lshai n () -based elements. The concept of such
elements has been discussed before in detail, so that vskipped here. What is very important in sink
elements, specifically in real-time audio and video soufsesh a®sssi nk or xi magesi nk), is event
handling in the chai n () -function, because most elements rely on EOS-handlingeo$itik element,
and because A/V synchronization can only be perfect if teneht takes this into account.

How to achieve synchronization between streams dependéether you're a clock-providing or a
clock-receiving element. If you're the clock provider, yoan do with time whatever you want. Correct
handling would mean that you check whether the end of thequewbuffer (if any) and the start of the
current buffer are the same. If so, there’s no gap betweetwih@nd you can continue playing right
away. If there is a gap, then you'll need to wait for your clackeach that time. How to do that depends
on the element type. In the case of audio output elementsywgpold output silence for a while. In the
case of video, you would show background color. In case diittedy show no subtitles at all.

In the case that the provided clock and the received clockatréhe same (or in the case where your
element provides no clock, which is the same), you simplyt feaithe clock to reach the timestamp of
the current buffer and then you handle the data in it.

A simple data handling function would look like this:

static void
gst_ny_sink_chain (GstPad =*pad,
Gst Dat a *dat a)
{
Gst MySi nk *sink = GST_MY_SINK (gst_pad_get _parent (pad));
Gst Buf fer =buf;
Gst Cl ockTine tine;

/+* only needed if the elenment is GST_EVENT_AWARE =*/
if (GST_IS EVENT (data)) {
Gst Event *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {

case GST_EVENT_ ECs:
[if your elenent provides a clock, disable (inactivate) it here]

105

Chapter 22. Writing a Sink
[+ pass-through */

defaul t:
[+ the default handl er handl es discontinuities, even if your
* el enent provides a clock! */
gst _pad_event _default (pad, event);
br eak;

}

return;

}

buf = GST_BUFFER (dat a)
if (GST_BUFFER_TIME_I S_VALID (buf))
time = GST_BUFFER_TI MESTAMP (buf);
el se
time = sink->expected_next_tine;

/* Synchronization - the property is only useful in case the
* el enent has the option of not syncing. So it is not useful
+ for hardware-sync (clock-providing) elenents. */

if (sink->sync) {

/+* This check is only needed if you provide a clock. Else,
* you can al ways execute the ’'else’ clause. */

i f (sink->provided_clock == sink->received_cl ock) {
[+ GST_SECOND / 10 is 0,1 sec, it's an arbitrary value. The
* casts are needed because else it’'l|l be unsigned and we

* won't detect negative values. */
if (lIlabs ((gint64) sink->expected_next_time - (gint64) tine) >
(GST_SECOND / 10)) {
| so are we ahead or behind? =/
if (time > sink->expected_tine) {
[+ we need to wait a while... In case of audio, output
* silence. In case of video, output background col or.
* | n case of subtitles, display nothing. =*/
[--]
} else {
[+ Drop data. =/
[--]
}
}
} else {
/* You coul d do nore sophisticated things here, but we'll
* keep it sinple for the purpose of the exanmple. =/
gst _element _wait (GST_ELEMENT (sink), tine);
}
}

/* And now handl e the data. =*/

-]

106

Chapter 22. Writing a Sink

22.2. Special memory

Like source elements, sink elements can sometimes proxtdenally allocated (such as X-provided or
DMA‘able) memory to elements earlier in the pipeline, aneréby prevent the need foencpy () for
incoming data. We do this by providing a pad-allocate-nftiaction.

static GstBuffer = gst_my_sink _buffer_allocate (GstPad *pad,
gui nt 64 of fset,
gui nt size);

static void
gst_ny_sink_init (GstMSink *sink)
{
[-.]
gst _pad_set _bufferal |l oc_function (sink->sinkpad,
gst_ny_sink_buffer_allocate);

}

static void
gst_ny_sink_buffer_free (GstBuffer =*buf)

{
Gst MySi nk *sink = GST_MY_SI NK (GST_BUFFER PRI VATE (buf));

/* Do whatever is needed here. */
[--]
}

static GstBuffer =*

gst _nmy_sink_buffer_allocate (GstPad *pad,
gui nt 64 of f set,
gui nt si ze)

{
Gst Buf fer xbuf = gst_buffer_new ();
/* So here it’s up to you to wap your private buffers and
* return that. =*/
GST_BUFFER_FREE_DATA FUNC (buf) = gst_my_sink_buffer_free;
GST_BUFFER_PRI VATE (buf) = si nk;
GST_BUFFER_FLAG_SET (buf, GST_BUFFER_DONTFREE) ;
[..]
return buf;
}

107

Chapter 23. Writing a 1-to-N Element, Demuxer
or Parser

1-to-N elements don’t have much special needs or requiresiieat haven’t been discussed already. The
most important thing to take care of in 1-to-N elements @Biliket ee-elements or so) is to use proper
buffer refcounting and caps negotiation. If those two aketecare of (see theee element if you need
example code), there’s little that can go wrong.

Demuxers are the 1-to-N elements that need very specialttemegh. They are responsible for
timestamping raw, unparsed data into elementary video dioaireams, and there are many things that
you can optimize or do wrong. Here, several culprits will bertioned and common solutions will be
offered. Parsers are demuxers with only one source pad, isg only cut the stream into buffers, they
don't touch the data otherwise.

23.1. Demuxer Caps Negotiation

Demuxers will usually contain several elementary streamd,each of those streams’ properties will be
defined in a stream header at the start of the file (or, ratlregm) that you're parsing. Since those are
fixed and there is no possibility to negotiate stream pragewith elements earlier in the pipeline, you
should always use explicit caps on demuxer source padsprénents a whole lot of caps negotiation or
re-negotiation errors.

23.2. Data processing and downstream events

Data parsing, pulling this into subbuffers and sending th#he source pads of the elementary streams is
the one single most important task of demuxers and parsestslly, an element will have d oop ()
function using thebyt est r eamobject to read data. Try to have a single point of data reafilorg the
bytestream object. In this single point, fmperevent handling (in case there is any) grdpererror
handling in case that's needed. Make your element as faleitant as possible, but do not go further than
possible.

23.3. Parsing versus interpreting

One particular convention that GStreamer demuxers foltothat of separation of parsing and
interpreting. The reason for this is maintainability, @aand code reuse. An easy example of this is
something like RIFF, which has a chunk header of 4 bytes, #Hength indicator of 4 bytes and then the
actual data. We write special functions to read one chungetk a chunk ID and all those; that’s the

108

Chapter 23. Writing a 1-to-N Element, Demuxer or Parser

parsingpart of the demuxer. Then, somewhere else, we like to wraenthin data processing function,
which calls this parse function, reads one chunk and then dita the data whatever it needs to do.

Some example code for RIFF-reading to illustrate the abeegioints:

static gbool ean
gst _nmy_denuxer _peek (Gst MyDenuxer =*denux,

{

}

gui nt 32 *id,
gui nt 32 *Si ze)

gui nt 8 *dat a;

whil e (gst_bytestream peek_bytes (denux->bs, &data, 4) != 4) {
gui nt 32 renai ni ng;
Gst Event =*event;

gst _bytestream get _status (denux->bs, &renaining, &event);
if (event) {
Gst Event Type type = GST_EVENT_TYPE (event);

[+ or maybe custom event handling, up to you - we |ose reference! x/
gst _pad_event _default (denux->si nkpad, event);

if (type == GST_EVENT_EQS)
return FALSE;
} else {
GST_ELEMENT_ERROR (denux, STREAM READ, (NULL), (NULL));
return FALSE;
}
}

*id = GU NT32_FROM LE (((guint32 *) data)[0]);
*size = GQUINT32_FROM LE (((guint32 *) data)[0]);

return TRUE;

static void
gst _nmy_denuxer _| oop (GstEl ement =*el ement)

{

}

Gst MyDemuxer *denux = GST_MY_DEMUXER (el enent);
guint32 id, size;

if (!gst_ny_denuxer_peek (demux, & d, &size))
return;

switch (id) {

[.. normal chunk handling ..]

}

109

Chapter 23. Writing a 1-to-N Element, Demuxer or Parser

Reason for this is that event handling is now centralizechia jplace and thel oop () functionis a lot
cleaner and more readable. Those are common code prattitesince the mistake ofot using such
common code practices has been made too often, we explioithtion this here.

23.4. Simple seeking and indexes

Sources will generally receive a seek event in the exactatggformat by the element. Demuxers,
however, can not seek in themselves directly, but need teecbffom one unit (e.g. time) to the other
(e.g. bytes) and send a new event to its sink pad. Given b@sconvert () -function (or, more
general: unit conversion) is the most important functioa ilemuxer. Some demuxers (AVI, Matroska)
and parsers will keep an index of all chunks in a stream, yitstimprove seeking precision and
secondly so they won't lose sync. Some other demuxers vak flee stream directly without index (e.g.
MPEG, Ogg) - usually based on something like a cumulativateit and then find the closest next
chunk from their new position. The best choice depends offottmeat.

Note that it is recommended for demuxers to implement ewemyersion and query handling functions
(using time units or s0), in addition to the ones (usuallyytehunits) provided by the pipeline source
element.

110

Chapter 24. Writing a N-to-1 Element or Muxer

N-to-1 elements have been previously mentioned and disdussothChapter 14and inChapter 12

The main noteworthy thing about N-to-1 elements is that #teyuldalways without any single
exception, be | oop () -based. Apart from that, there is not much general that yad e know. We

will discuss one special type of N-to-1 elements here, theseg muxers. The first two of these sections
apply to N-to-1 elements in general, though.

24.1. The Data Loop Function

As previously mentioned i€hapter 12N-to-1 elements generally try to have one buffer from eack s
pad and then handle the one with the earliest timestampeB®yme exceptions to this rule, we will
come to those later. This only works if all streams actuatigtimuously provide input. There might be
cases where this is not true, for example subtitles (theghtiie no subtitle for a while), overlay images
and so forth. For this purpose, there issel ect () function in GStreamer. It checks whether input is
available on a (list of) pad(s). In this way, you can skip awerpads that are 'non- continuous’.

/+ Pad selection is currently broken, FIXME sone day =*/

24.2. Events in the Loop Function

N-to-1 elements using a cache will sometimes receive eyantsit is often unclear how to handle those.
For example, how do you seek to a frame incartputfile (and what's the point of it anyway)? So, do
discontinuity or seek events make sense, and should younese’t

24.2.1. Discontinuities and flushes

Don’t do anything. They specify a discontinuity in the out@nd you should continue to playback as
you would otherwise. You generally do not need to put a dinaity in the output stream in muxers;
you would have to manually start adapting timestamps ofutiftames (if appliccable) to match the
previous timescale, though. Note that the output datarstsfeuld be continuous. For other types of
N-to-1-elements, it is generally fine to forward the dis@ounity once it has been received from all pads.
This depends on the specific element.

24.2.2. Seeks

Depends on the element. Muxers would generally not impleinés) because the concept of seeking in
anoutputstream at frame level is not very useful. Seeking at byte lese be useful, but that is more

111

Chapter 24. Writing a N-to-1 Element or Muxer

generally dondy muxerson sink elements.

24.2.3. End-of-Stream

Speaks for itself.

24.3. Negotiation

Most container formats will have a fair amount of issues witlanging content on an elementary stream.
Therefore, you should not allow caps to be changed once gatarted using data from them. The
easiest way to achieve this is by using explicit caps, whatetbeen explained before. However, we're
going to use them in a slightly different way then what youised to, having the core do all the work for
us.

The idea is that, as long as the stream/file headers have eotiréten yet and no data has been
processed yet, a stream is allowed to renegotiate. Aftépihiat, the caps should be fixed, because we
can only use a stream once. Caps may then only change witlatoaved range (think MPEG, where
changes in FPS are allowed), or sometimes not at all (sucbauilio). In order to do that, we will,
after data retrieval and header writing, set an explicitsoap each sink pad, that is the minimal caps
describing the properties of the format that may not chaAgean example, for MPEG audio inside an
MPEG system stream, this would mean a wide caps of audio/mjiegnpegversion=1 and layer=[1,2].
For the same audio type in MPEG, though, the sampleratatdjtayer and number of channels would
become static, too. Since the (request) pads will be remetweh the stream ends, the static caps will
cease to exist too, then. While the explicit caps exist, thenk () - function will not be called, since
the core will do all necessary checks for us. Note that thegnty of using explicit caps should be added
along with the actual explicit caps, not any earlier.

Below here follows the simple example of an AVI muxer’s audéps negotiation. The i nk
() -function is fairly normal, but the Loop () -function does some of the tricks mentioned above. There
isno_get caps () - function since the pad template contains all that inforameélready (not shown).

static GstPadLi nkReturn

gst _avi _nmux_audi o_l i nk (Gst Pad *pad,
const Gst Caps *caps)

{
Gst Avi Mux *nmux = GST_AVI _MJX (gst_pad_get _parent (pad));
Gst Structure *str = gst_caps_get_structure (caps, 0);
const gchar *mime = gst_structure_get_name (str);

if (!strcnp (str, "audio/ npeg")) {
/+* get version, nake sure it's 1, get layer, nake sure it’'s 1-3,
* then create the 2-byte audio tag (0x0055) and fill an audio
* streamstructure (strh/strf). =/

[--]

112

[..

}

Chapter 24. Writing a N-to-1 Element or Muxer

return GST_PAD LI NK OK;
} else if !strcnp (str, "audio/x-rawint")) {
/* See above, but now with the raw audio tag (0x0001). =/
[-.]
return GST_PAD LI NK_COK;
} else [..]

]

static void
gst _avi _nmux_| oop (GstEl ement el enent)

{

[

Gst Avi Mux *nmux = GST_AVI _MJX (el enent);
-1
/* As we get here, we should have witten the header if we hadn’'t done
* that before yet, and we’re supposed to have an internal buffer from
* each pad, also fromthe audio one. So here, we check agai n whet her
* this is the first run and if so, we set static caps. */
if (mux->first_cycle) {

const GList *xpadlist = gst_elenment_get_pad_list (el enent);

Glist *xitem

for (item= padlist; item!= NULL; item= item>next) {
Gst Pad *pad = item >dat a;
Cst Caps *caps;

if (!GST_PAD IS SINK (pad))
conti nue;

[+ set static caps here */
if (!strncnp (gst_pad_get_nane (pad), "audio ", 6)) {
[+ the strf is the struct you filled in the _link () function. =/
switch (strf->format) {
case 0x0055: /* nmp3 */
caps = gst_caps_new si npl e ("audi o/ npeg",
"npegversion", G TYPE_INT, 1,

"l ayer™, G TYPE_I NT, 3,
"bitrate", G TYPE_I NT, strf->av_bps,
"rate", G TYPE I NT, strf->rate,
"channel s", G TYPE_I NT, strf->channels,
NULL) ;

br eak;

case 0x0001: /* pcm */
caps = gst_caps_new sinple ("audi o/ x-rawint",

[--1);

br eak;
[--]
}
} else if (!strncnp (gst_pad_get_nane (pad), "video ", 6)) {
[--]
} else {
g_warning ("oi!");
conti nue;

113

Chapter 24. Writing a N-to-1 Element or Muxer

}

[+ set static caps */
gst _pad_use_explicit_caps (pad);
gst _pad_set _explicit_caps (pad, caps);
}
}
]

/* Next runs will never be the first again. =*/
mux->first_cycle = FALSE;

[

}

Note that there are other ways to achieve that, which mighisieéul for more complex cases. This will
do for the simple cases, though. This method is providedtpl#y negotiation and renegotiation in
muxers, it is not a complete solution, nor is it a pretty one.

24.4. Markup vs. data processing

As we noted on demuxers before, we love common programmiraglgans such as clean, lean and
mean code. To achieve that in muxers, it's generally a goed id separate the actual data stream
markup from the data processing. To illustrate, here’s hdvrAuxers should write out RIFF tag chunks:

static void

gst _avi _nmux_write_chunk (GstAvi Mux =*nux,
gui nt 32 id,
Gst Buf fer +dat a)

Gst Buf fer *hdr;

hdr = gst_buffer_new and_all oc (8);
((guint32 *) GST_BUFFER DATA (buf))[0] = GUINT32_TO LE (id);
((guint32 *) GST_BUFFER _DATA (buf))[1] = GUINT32_TO LE (GST_BUFFER_SI ZE (data));

gst _pad_push (nux->srcpad, hdr);
gst _pad_push (nux->srcpad, data);

}

static void
gst _avi _nmux_| oop (GstEl ement el enent)

{
Gst Avi Mux *nmux = GST_AVI _MJX (el enent);
Gst Buf f er *buf;
[..]
buf = gst_pad_pull (rmux->sinkpad[O0]);
[..]
gst _avi _mux_write_chunk (GST_MAKE_FOURCC ('0',’'0’,’d’,’b"), buf);
}

114

Chapter 24. Writing a N-to-1 Element or Muxer

In general, try to program clean code, that should covetynatich everything.

115

Chapter 25. Writing a N-to-N element

FIXME: write.

116

Chapter 26. Writing an Autoplugger

FIXME: write.

117

Chapter 27. Writing a Manager

Managers are elements that add a function or unify the fanctf another (series of) element(s).
Managers are generallyGst Bi n with one or more ghostpads. Inside them is/are the actualesigs)
that matters. There is several cases where this is usefubéxXaonple:

- To add support for private events with custom event handbtrenother element.
« To add support for custom padjuery () or_convert () handling to another element.

- To add custom data handling before or after another elesydata handler function (generally its
_chain () function).

This chapter will explain the setup of managers. As a speekf@nple, we will try to add EOS event
support to source elements. This can be used to finish cagtan audio stream to a file. Source
elements normally don’t do any EOS handling at all, so a maniagerfect to extend those element’s
functionalities.

Specifically, this element will contain two child elemerttse actual source element and a “helper
element” that implement an event handler on its source plid.évent handler will respond to EOS
events by storing them internally and returning the eveath@r than data) on the next call to thget

() function. After that, it will go into EOS and set the parentdahereby the contained source element)
to EOS as well. Other events will be forwarded to the souremeht, which will handle them as usual.

118

V. Appendices

This chapter contains things that don’t belong anywhere els

Chapter 28. Things to check when writing an
element

This chapter contains a fairly random selection of thingst@ care of when writing an element. It's up
to you how far you're going to stick to those guidelines. Hoerekeep in mind that when you're writing
an element and hope for it to be included in the mainstreame@Bter distribution, ihas tomeet those
requirements. As far as possible, we will try to explain whgge requirements are set.

28.1. About states

- Make sure the state of an element gets reset when goirgdLto. Ideally, this should set all object
properties to their original state. This function shoulsiabe called from _init.

- Make sure an element forgegserythingabout its contained stream when going freAUSED to
READY. In READY, all stream states are reset. An element that goes FISED to READY and back to
PAUSED should start reading the stream from he start again.

- People that usgst-launch for testing have the tendency to not care about cleaning hig.iwrong.
An element should be tested using various applicationsyeviesting not only means to “make sure it
doesn’t crash”, but also to test for memory leaks using teoth asvalgrind. Elements have to be
reusable in a pipeline after having been reset.

28.2. Debugging

- Elements shouldeveruse their standard output for debugging (using functiocb stspri ntf ()
org_print ()).Instead, elements should use the logging functions geal/by GStreamer, named
GST_DEBUG (), GST_LOG (), GST_I NFO (), GST_WARNI NG () andGST_ERROR () . The various
logging levels can be turned on and off at runtime and canlleussed for solving issues as they turn
up. Instead ofsST_LOG () (as an example), you can also &S LOG OBJECT () to print the
object that you're logging output for.

- ldeally, elements should use their own debugging cate®ogt elements use the following code to
do that:

GST_DEBUG_CATEGORY_STATI C (nyel enent _debug) ;
#defi ne GST_CAT_DEFAULT nyel enent _debug

-]

static void
gst _nyel enent _class_init (Gst Wel enent Cl ass *kl ass)
{
[..]
GST_DEBUG _CATEGORY_INI'T (nyel ement _debug, "nmnyel enent”,
0, "My own elenent");

120

Chapter 28. Things to check when writing an element

At runtime, you can turn on debugging using the commandIptéa --gst-debug=myelement: 5.

28.3. Querying, events and the like

All elements to which it applies (sources, sinks, demuxghsuld implement query functions on their
pads, so that applications and neighbour elements canseiipgecurrent position, the stream length
(if known) and so on.

All elements that are event-aware (thé8T_ELEMENT_EVENT_AWARE flag is set) should implement
event handling foall events, either specifically or usingt _pad_event _default (). Elements
that you should handle specifically are the interrupt eviardrder to properly bail out as soon as
possible if state is changed. Events may never be droppedsispecifically intended.

Loop-based elements should always implement event hapdtmrder to prevent hangs (infinite
loop) on state changes.

28.4. Testing your element

gst-launch is nota good tool to show that your element is finished. Applicatisuch as Rhythmbox
and Totem (for GNOME) or AmaroK (for KDEjre. gst-launch will not test various things such as
proper clean-up on reset, interrupt event handling, qugrgind so on.

Parsers and demuxers should make sure to check their imputt ¢annot be trusted. Prevent possible
buffer overflows and the like. Feel free to error out on unxexable stream errors. Test your demuxer
using stream corruption elements suctbhasaknydat a (included in gst-plugins). It will randomly
insert, delete and modify bytes in a stream, and is therefgeod test for robustness. If your element
crashes when adding this element, your element needs fixiihgrrors out properly, it's good

enough. Ideally, it'd just continue to work and forward dasamuch as possible.

Demuxers should not assume that seeking works. Be preparectk with unseekable input streams
(e.g. network sources) as well.

Sources and sinks should be prepared to be assigned anloitietteen the one they expose
themselves. Always use the provided clock for synchroionatlse you'll get A/V sync issues.

121

Chapter 29. GStreamer licensing

29.1. How to license the code you write for GStreamer

GStreamer is a plugin-based framework licensed under theLL Ghe reason for this choice in licensing
is to ensure that everyone can use GStreamer to build afiplisausing licenses of their choice.

To keep this policy viable, the GStreamer community has naaféev licensing rules for code to be
included in GStreamer’s core or GStreamer’s official moduli&e our plugin packages. We require that
all code going into our core package is LGPL. For the plugidezave require the use of the LGPL for

all plugins written from scratch or linking to external ldmies. The only exception to this is when
plugins contain older code under more liberal license (liie MPL or BSD). They can use those
licenses instead and will still be considered for inclusidfe do not accept GPL code to be added to our
plugins module, but we do accept LGPL-licensed pluginsgiamexternal GPL library. The reason for
demanding plugins be licensed under the LGPL, even wheiyasPL library, is that other developers
might want to use the plugin code as a template for plugingrmto non-GPL libraries.

We also plan on splitting out the plugins using GPL librairgs a separate package eventually and
implement a system which makes sure an application will eddlide to access these plugins unless it
uses some special code to do so. The point of this is not t&I@&1 -licensed plugins from being used
and developed, but to make sure people are not unintenityonalating the GPL license of said plugins.

This advisory is part of a bigger advisory with a FAQ which yaan find on the GStreamer website
(http://gstreamer.freedesktop.org/documentatioerfiging.html)

122

	GStreamer Plugin Writer's Guide (0.8.11)
	Table of Contents
	List of Tables
	I. Introduction
	Chapter 1. Preface
	1.1. Who Should Read This Guide?
	1.2. Preliminary Reading
	1.3. Structure of This Guide

	Chapter 2. Basic Concepts
	2.1. Elements and Plugins
	2.2. Pads
	2.3. Data, Buffers and Events
	2.3.1. Buffer Allocation

	2.4. Mimetypes and Properties
	2.4.1. The Basic Types

	II. Building a Plugin
	Chapter 3. Constructing the Boilerplate
	3.1. Getting the GStreamer Plugin Templates
	3.2. Using the Project Stamp
	3.3. Examining the Basic Code
	3.4. GstElementDetails
	3.5. GstStaticPadTemplate
	3.6. Constructor Functions
	3.7. The plugininit function

	Chapter 4. Specifying the pads
	4.1. The link function
	4.2. The getcaps function
	4.3. Explicit caps

	Chapter 5. The chain function
	Chapter 6. What are states?
	6.1. Managing filter state

	Chapter 7. Adding Arguments
	Chapter 8. Signals
	Chapter 9. Building a Test Application
	Chapter 10. Creating a Filter with a Filter Factory
	III. Advanced Filter Concepts
	Chapter 11. How scheduling works
	11.1. The Basic Scheduler
	11.2. The Optimal Scheduler

	Chapter 12. How a loopfunc works
	12.1. MultiInput Elements
	12.2. The Bytestream Object
	12.3. Adding a second output
	12.4. Modifying the test application

	Chapter 13. Types and Properties
	13.1. Building a Simple Format for Testing
	13.2. Typefind Functions and Autoplugging
	13.3. List of Defined Types

	Chapter 14. Request and Sometimes pads
	14.1. Sometimes pads
	14.2. Request pads

	Chapter 15. Clocking
	15.1. Types of time
	15.2. Clocks
	15.3. Flow of data between elements and time
	15.4. Obligations of each element.
	15.4.1. Source elements
	15.4.2. Sink elements

	Chapter 16. Supporting Dynamic Parameters
	16.1. Comparing Dynamic Parameters with GObject Properties
	16.2. Getting Started
	16.3. Defining Parameter Specifications
	16.3.1. Direct Method
	16.3.2. Callback Method
	16.3.3. Array Method

	16.4. The Data Processing Loop
	16.4.1. DParam Manager Modes
	16.4.2. Dynamic Parameters for Video

	Chapter 17. MIDI
	Chapter 18. Interfaces
	18.1. How to Implement Interfaces
	18.2. Mixer Interface
	18.3. Tuner Interface
	18.4. Color Balance Interface
	18.5. Property Probe Interface
	18.6. X Overlay Interface
	18.7. Navigation Interface

	Chapter 19. Tagging (Metadata and Streaminfo)
	19.1. Reading Tags from Streams
	19.2. Writing Tags to Streams

	Chapter 20. Events: Seeking, Navigation and More
	20.1. Downstream events
	20.2. Upstream events
	20.3. All Events Together
	20.3.1. End of Stream (EOS)
	20.3.2. Flush
	20.3.3. Stream Discontinuity
	20.3.4. Seek Request
	20.3.5. Stream Filler
	20.3.6. Interruption
	20.3.7. Navigation
	20.3.8. Tag (metadata)

	IV. Other Element Types
	Chapter 21. Writing a Source
	21.1. The get()function
	21.2. Events, querying and converting
	21.3. Time, clocking and synchronization
	21.4. Using special memory

	Chapter 22. Writing a Sink
	22.1. Data processing, events, synchronization and clocks
	22.2. Special memory

	Chapter 23. Writing a 1toN Element, Demuxer or Parser
	23.1. Demuxer Caps Negotiation
	23.2. Data processing and downstream events
	23.3. Parsing versus interpreting
	23.4. Simple seeking and indexes

	Chapter 24. Writing a Nto1 Element or Muxer
	24.1. The Data Loop Function
	24.2. Events in the Loop Function
	24.2.1. Discontinuities and flushes
	24.2.2. Seeks
	24.2.3. EndofStream

	24.3. Negotiation
	24.4. Markup vs. data processing

	Chapter 25. Writing a NtoN element
	Chapter 26. Writing an Autoplugger
	Chapter 27. Writing a Manager
	V. Appendices
	Chapter 28. Things to check when writing an element
	28.1. About states
	28.2. Debugging
	28.3. Querying, events and the like
	28.4. Testing your element

	Chapter 29. GStreamer licensing
	29.1. How to license the code you write for GStreamer

