1 | /* $NetBSD: linux_futex.c,v 1.35 2016/08/15 09:20:11 maxv Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 2005 Emmanuel Dreyfus, all rights reserved. |
5 | * |
6 | * Redistribution and use in source and binary forms, with or without |
7 | * modification, are permitted provided that the following conditions |
8 | * are met: |
9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. |
11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in the |
13 | * documentation and/or other materials provided with the distribution. |
14 | * 3. All advertising materials mentioning features or use of this software |
15 | * must display the following acknowledgement: |
16 | * This product includes software developed by Emmanuel Dreyfus |
17 | * 4. The name of the author may not be used to endorse or promote |
18 | * products derived from this software without specific prior written |
19 | * permission. |
20 | * |
21 | * THIS SOFTWARE IS PROVIDED BY THE THE AUTHOR AND CONTRIBUTORS ``AS IS'' |
22 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
23 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
24 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS |
25 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
26 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
27 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
28 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
29 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
30 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
31 | * POSSIBILITY OF SUCH DAMAGE. |
32 | */ |
33 | |
34 | #include <sys/cdefs.h> |
35 | __KERNEL_RCSID(1, "$NetBSD: linux_futex.c,v 1.35 2016/08/15 09:20:11 maxv Exp $" ); |
36 | |
37 | #include <sys/param.h> |
38 | #include <sys/time.h> |
39 | #include <sys/systm.h> |
40 | #include <sys/proc.h> |
41 | #include <sys/lwp.h> |
42 | #include <sys/queue.h> |
43 | #include <sys/condvar.h> |
44 | #include <sys/mutex.h> |
45 | #include <sys/kmem.h> |
46 | #include <sys/kernel.h> |
47 | #include <sys/atomic.h> |
48 | |
49 | #include <compat/linux/common/linux_types.h> |
50 | #include <compat/linux/common/linux_emuldata.h> |
51 | #include <compat/linux/common/linux_exec.h> |
52 | #include <compat/linux/common/linux_signal.h> |
53 | #include <compat/linux/common/linux_futex.h> |
54 | #include <compat/linux/common/linux_sched.h> |
55 | #include <compat/linux/common/linux_machdep.h> |
56 | #include <compat/linux/linux_syscallargs.h> |
57 | |
58 | struct futex; |
59 | |
60 | struct waiting_proc { |
61 | struct futex *wp_futex; |
62 | kcondvar_t wp_futex_cv; |
63 | TAILQ_ENTRY(waiting_proc) wp_list; |
64 | bool wp_onlist; |
65 | }; |
66 | struct futex { |
67 | void *f_uaddr; |
68 | int f_refcount; |
69 | uint32_t f_bitset; |
70 | LIST_ENTRY(futex) f_list; |
71 | TAILQ_HEAD(, waiting_proc) f_waiting_proc; |
72 | }; |
73 | |
74 | static LIST_HEAD(futex_list, futex) futex_list; |
75 | static kmutex_t futex_lock; |
76 | |
77 | #define FUTEX_LOCK mutex_enter(&futex_lock) |
78 | #define FUTEX_UNLOCK mutex_exit(&futex_lock) |
79 | #define FUTEX_LOCKASSERT KASSERT(mutex_owned(&futex_lock)) |
80 | |
81 | #define FUTEX_SYSTEM_LOCK KERNEL_LOCK(1, NULL) |
82 | #define FUTEX_SYSTEM_UNLOCK KERNEL_UNLOCK_ONE(0) |
83 | |
84 | #ifdef DEBUG_LINUX_FUTEX |
85 | int debug_futex = 1; |
86 | #define FUTEXPRINTF(a) do { if (debug_futex) printf a; } while (0) |
87 | #else |
88 | #define FUTEXPRINTF(a) |
89 | #endif |
90 | |
91 | void |
92 | linux_futex_init(void) |
93 | { |
94 | FUTEXPRINTF(("%s: initializing futex\n" , __func__)); |
95 | mutex_init(&futex_lock, MUTEX_DEFAULT, IPL_NONE); |
96 | } |
97 | |
98 | void |
99 | linux_futex_fini(void) |
100 | { |
101 | FUTEXPRINTF(("%s: destroying futex\n" , __func__)); |
102 | mutex_destroy(&futex_lock); |
103 | } |
104 | |
105 | static struct waiting_proc *futex_wp_alloc(void); |
106 | static void futex_wp_free(struct waiting_proc *); |
107 | static struct futex *futex_get(void *, uint32_t); |
108 | static void futex_ref(struct futex *); |
109 | static void futex_put(struct futex *); |
110 | static int futex_sleep(struct futex **, lwp_t *, int, struct waiting_proc *); |
111 | static int futex_wake(struct futex *, int, struct futex *, int); |
112 | static int futex_atomic_op(lwp_t *, int, void *); |
113 | |
114 | int |
115 | linux_sys_futex(struct lwp *l, const struct linux_sys_futex_args *uap, register_t *retval) |
116 | { |
117 | /* { |
118 | syscallarg(int *) uaddr; |
119 | syscallarg(int) op; |
120 | syscallarg(int) val; |
121 | syscallarg(const struct linux_timespec *) timeout; |
122 | syscallarg(int *) uaddr2; |
123 | syscallarg(int) val3; |
124 | } */ |
125 | struct linux_timespec lts; |
126 | struct timespec ts = { 0, 0 }; |
127 | int error; |
128 | |
129 | if ((SCARG(uap, op) & LINUX_FUTEX_CMD_MASK) == LINUX_FUTEX_WAIT && |
130 | SCARG(uap, timeout) != NULL) { |
131 | if ((error = copyin(SCARG(uap, timeout), |
132 | <s, sizeof(lts))) != 0) { |
133 | return error; |
134 | } |
135 | linux_to_native_timespec(&ts, <s); |
136 | } |
137 | return linux_do_futex(l, uap, retval, &ts); |
138 | } |
139 | |
140 | int |
141 | linux_do_futex(struct lwp *l, const struct linux_sys_futex_args *uap, register_t *retval, struct timespec *ts) |
142 | { |
143 | /* { |
144 | syscallarg(int *) uaddr; |
145 | syscallarg(int) op; |
146 | syscallarg(int) val; |
147 | syscallarg(const struct linux_timespec *) timeout; |
148 | syscallarg(int *) uaddr2; |
149 | syscallarg(int) val3; |
150 | } */ |
151 | int val, val3; |
152 | int ret; |
153 | int error = 0; |
154 | struct futex *f; |
155 | struct futex *newf; |
156 | int tout; |
157 | struct futex *f2; |
158 | struct waiting_proc *wp; |
159 | int op_ret, cmd; |
160 | clockid_t clk; |
161 | |
162 | cmd = SCARG(uap, op) & LINUX_FUTEX_CMD_MASK; |
163 | val3 = SCARG(uap, val3); |
164 | |
165 | if (SCARG(uap, op) & LINUX_FUTEX_CLOCK_REALTIME) { |
166 | switch (cmd) { |
167 | case LINUX_FUTEX_WAIT_BITSET: |
168 | case LINUX_FUTEX_WAIT: |
169 | clk = CLOCK_REALTIME; |
170 | break; |
171 | default: |
172 | return ENOSYS; |
173 | } |
174 | } else |
175 | clk = CLOCK_MONOTONIC; |
176 | |
177 | /* |
178 | * Our implementation provides only private futexes. Most of the apps |
179 | * should use private futexes but don't claim so. Therefore we treat |
180 | * all futexes as private by clearing the FUTEX_PRIVATE_FLAG. It works |
181 | * in most cases (ie. when futexes are not shared on file descriptor |
182 | * or between different processes). |
183 | * |
184 | * Note that we don't handle bitsets at all at the moment. We need |
185 | * to move from refcounting uaddr's to handling multiple futex entries |
186 | * pointing to the same uaddr, but having possibly different bitmask. |
187 | * Perhaps move to an implementation where each uaddr has a list of |
188 | * futexes. |
189 | */ |
190 | switch (cmd) { |
191 | case LINUX_FUTEX_WAIT: |
192 | val3 = FUTEX_BITSET_MATCH_ANY; |
193 | /*FALLTHROUGH*/ |
194 | case LINUX_FUTEX_WAIT_BITSET: |
195 | if ((error = ts2timo(clk, 0, ts, &tout, NULL)) != 0) { |
196 | if (error != ETIMEDOUT) |
197 | return error; |
198 | /* |
199 | * If the user process requests a non null timeout, |
200 | * make sure we do not turn it into an infinite |
201 | * timeout because tout is 0. |
202 | * |
203 | * We use a minimal timeout of 1/hz. Maybe it would make |
204 | * sense to just return ETIMEDOUT without sleeping. |
205 | */ |
206 | if (SCARG(uap, timeout) != NULL) |
207 | tout = 1; |
208 | else |
209 | tout = 0; |
210 | } |
211 | FUTEX_SYSTEM_LOCK; |
212 | if ((error = copyin(SCARG(uap, uaddr), |
213 | &val, sizeof(val))) != 0) { |
214 | FUTEX_SYSTEM_UNLOCK; |
215 | return error; |
216 | } |
217 | |
218 | if (val != SCARG(uap, val)) { |
219 | FUTEX_SYSTEM_UNLOCK; |
220 | return EWOULDBLOCK; |
221 | } |
222 | |
223 | FUTEXPRINTF(("FUTEX_WAIT %d.%d: val = %d, uaddr = %p, " |
224 | "*uaddr = %d, timeout = %lld.%09ld\n" , |
225 | l->l_proc->p_pid, l->l_lid, SCARG(uap, val), |
226 | SCARG(uap, uaddr), val, (long long)ts->tv_sec, |
227 | ts->tv_nsec)); |
228 | |
229 | |
230 | wp = futex_wp_alloc(); |
231 | FUTEX_LOCK; |
232 | f = futex_get(SCARG(uap, uaddr), val3); |
233 | ret = futex_sleep(&f, l, tout, wp); |
234 | futex_put(f); |
235 | FUTEX_UNLOCK; |
236 | futex_wp_free(wp); |
237 | |
238 | FUTEXPRINTF(("FUTEX_WAIT %d.%d: uaddr = %p, " |
239 | "ret = %d\n" , l->l_proc->p_pid, l->l_lid, |
240 | SCARG(uap, uaddr), ret)); |
241 | |
242 | FUTEX_SYSTEM_UNLOCK; |
243 | switch (ret) { |
244 | case EWOULDBLOCK: /* timeout */ |
245 | return ETIMEDOUT; |
246 | break; |
247 | case EINTR: /* signal */ |
248 | return EINTR; |
249 | break; |
250 | case 0: /* FUTEX_WAKE received */ |
251 | FUTEXPRINTF(("FUTEX_WAIT %d.%d: uaddr = %p, got it\n" , |
252 | l->l_proc->p_pid, l->l_lid, SCARG(uap, uaddr))); |
253 | return 0; |
254 | break; |
255 | default: |
256 | FUTEXPRINTF(("FUTEX_WAIT: unexpected ret = %d\n" , ret)); |
257 | break; |
258 | } |
259 | |
260 | /* NOTREACHED */ |
261 | break; |
262 | |
263 | case LINUX_FUTEX_WAKE: |
264 | val = FUTEX_BITSET_MATCH_ANY; |
265 | /*FALLTHROUGH*/ |
266 | case LINUX_FUTEX_WAKE_BITSET: |
267 | /* |
268 | * XXX: Linux is able cope with different addresses |
269 | * corresponding to the same mapped memory in the sleeping |
270 | * and the waker process(es). |
271 | */ |
272 | FUTEXPRINTF(("FUTEX_WAKE %d.%d: uaddr = %p, val = %d\n" , |
273 | l->l_proc->p_pid, l->l_lid, |
274 | SCARG(uap, uaddr), SCARG(uap, val))); |
275 | |
276 | FUTEX_SYSTEM_LOCK; |
277 | FUTEX_LOCK; |
278 | f = futex_get(SCARG(uap, uaddr), val3); |
279 | *retval = futex_wake(f, SCARG(uap, val), NULL, 0); |
280 | futex_put(f); |
281 | FUTEX_UNLOCK; |
282 | FUTEX_SYSTEM_UNLOCK; |
283 | |
284 | break; |
285 | |
286 | case LINUX_FUTEX_CMP_REQUEUE: |
287 | FUTEX_SYSTEM_LOCK; |
288 | |
289 | if ((error = copyin(SCARG(uap, uaddr), |
290 | &val, sizeof(val))) != 0) { |
291 | FUTEX_SYSTEM_UNLOCK; |
292 | return error; |
293 | } |
294 | |
295 | if (val != val3) { |
296 | FUTEX_SYSTEM_UNLOCK; |
297 | return EAGAIN; |
298 | } |
299 | |
300 | FUTEXPRINTF(("FUTEX_CMP_REQUEUE %d.%d: uaddr = %p, val = %d, " |
301 | "uaddr2 = %p, val2 = %d\n" , |
302 | l->l_proc->p_pid, l->l_lid, |
303 | SCARG(uap, uaddr), SCARG(uap, val), SCARG(uap, uaddr2), |
304 | (int)(unsigned long)SCARG(uap, timeout))); |
305 | |
306 | FUTEX_LOCK; |
307 | f = futex_get(SCARG(uap, uaddr), val3); |
308 | newf = futex_get(SCARG(uap, uaddr2), val3); |
309 | *retval = futex_wake(f, SCARG(uap, val), newf, |
310 | (int)(unsigned long)SCARG(uap, timeout)); |
311 | futex_put(f); |
312 | futex_put(newf); |
313 | FUTEX_UNLOCK; |
314 | |
315 | FUTEX_SYSTEM_UNLOCK; |
316 | break; |
317 | |
318 | case LINUX_FUTEX_REQUEUE: |
319 | FUTEX_SYSTEM_LOCK; |
320 | |
321 | FUTEXPRINTF(("FUTEX_REQUEUE %d.%d: uaddr = %p, val = %d, " |
322 | "uaddr2 = %p, val2 = %d\n" , |
323 | l->l_proc->p_pid, l->l_lid, |
324 | SCARG(uap, uaddr), SCARG(uap, val), SCARG(uap, uaddr2), |
325 | (int)(unsigned long)SCARG(uap, timeout))); |
326 | |
327 | FUTEX_LOCK; |
328 | f = futex_get(SCARG(uap, uaddr), val3); |
329 | newf = futex_get(SCARG(uap, uaddr2), val3); |
330 | *retval = futex_wake(f, SCARG(uap, val), newf, |
331 | (int)(unsigned long)SCARG(uap, timeout)); |
332 | futex_put(f); |
333 | futex_put(newf); |
334 | FUTEX_UNLOCK; |
335 | |
336 | FUTEX_SYSTEM_UNLOCK; |
337 | break; |
338 | |
339 | case LINUX_FUTEX_FD: |
340 | FUTEXPRINTF(("%s: unimplemented op %d\n" , __func__, cmd)); |
341 | return ENOSYS; |
342 | case LINUX_FUTEX_WAKE_OP: |
343 | FUTEX_SYSTEM_LOCK; |
344 | |
345 | FUTEXPRINTF(("FUTEX_WAKE_OP %d.%d: uaddr = %p, op = %d, " |
346 | "val = %d, uaddr2 = %p, val2 = %d\n" , |
347 | l->l_proc->p_pid, l->l_lid, |
348 | SCARG(uap, uaddr), cmd, SCARG(uap, val), |
349 | SCARG(uap, uaddr2), |
350 | (int)(unsigned long)SCARG(uap, timeout))); |
351 | |
352 | FUTEX_LOCK; |
353 | f = futex_get(SCARG(uap, uaddr), val3); |
354 | f2 = futex_get(SCARG(uap, uaddr2), val3); |
355 | FUTEX_UNLOCK; |
356 | |
357 | /* |
358 | * This function returns positive number as results and |
359 | * negative as errors |
360 | */ |
361 | op_ret = futex_atomic_op(l, val3, SCARG(uap, uaddr2)); |
362 | FUTEX_LOCK; |
363 | if (op_ret < 0) { |
364 | futex_put(f); |
365 | futex_put(f2); |
366 | FUTEX_UNLOCK; |
367 | FUTEX_SYSTEM_UNLOCK; |
368 | return -op_ret; |
369 | } |
370 | |
371 | ret = futex_wake(f, SCARG(uap, val), NULL, 0); |
372 | futex_put(f); |
373 | if (op_ret > 0) { |
374 | op_ret = 0; |
375 | /* |
376 | * Linux abuses the address of the timespec parameter |
377 | * as the number of retries |
378 | */ |
379 | op_ret += futex_wake(f2, |
380 | (int)(unsigned long)SCARG(uap, timeout), NULL, 0); |
381 | ret += op_ret; |
382 | } |
383 | futex_put(f2); |
384 | FUTEX_UNLOCK; |
385 | FUTEX_SYSTEM_UNLOCK; |
386 | *retval = ret; |
387 | break; |
388 | default: |
389 | FUTEXPRINTF(("%s: unknown op %d\n" , __func__, cmd)); |
390 | return ENOSYS; |
391 | } |
392 | return 0; |
393 | } |
394 | |
395 | static struct waiting_proc * |
396 | futex_wp_alloc(void) |
397 | { |
398 | struct waiting_proc *wp; |
399 | |
400 | wp = kmem_zalloc(sizeof(*wp), KM_SLEEP); |
401 | cv_init(&wp->wp_futex_cv, "futex" ); |
402 | return wp; |
403 | } |
404 | |
405 | static void |
406 | futex_wp_free(struct waiting_proc *wp) |
407 | { |
408 | |
409 | cv_destroy(&wp->wp_futex_cv); |
410 | kmem_free(wp, sizeof(*wp)); |
411 | } |
412 | |
413 | static struct futex * |
414 | futex_get(void *uaddr, uint32_t bitset) |
415 | { |
416 | struct futex *f; |
417 | |
418 | FUTEX_LOCKASSERT; |
419 | |
420 | LIST_FOREACH(f, &futex_list, f_list) { |
421 | if (f->f_uaddr == uaddr) { |
422 | f->f_refcount++; |
423 | return f; |
424 | } |
425 | } |
426 | |
427 | /* Not found, create it */ |
428 | f = kmem_zalloc(sizeof(*f), KM_SLEEP); |
429 | f->f_uaddr = uaddr; |
430 | f->f_bitset = bitset; |
431 | f->f_refcount = 1; |
432 | TAILQ_INIT(&f->f_waiting_proc); |
433 | LIST_INSERT_HEAD(&futex_list, f, f_list); |
434 | |
435 | return f; |
436 | } |
437 | |
438 | static void |
439 | futex_ref(struct futex *f) |
440 | { |
441 | |
442 | FUTEX_LOCKASSERT; |
443 | |
444 | f->f_refcount++; |
445 | } |
446 | |
447 | static void |
448 | futex_put(struct futex *f) |
449 | { |
450 | |
451 | FUTEX_LOCKASSERT; |
452 | |
453 | f->f_refcount--; |
454 | if (f->f_refcount == 0) { |
455 | KASSERT(TAILQ_EMPTY(&f->f_waiting_proc)); |
456 | LIST_REMOVE(f, f_list); |
457 | kmem_free(f, sizeof(*f)); |
458 | } |
459 | } |
460 | |
461 | static int |
462 | futex_sleep(struct futex **fp, lwp_t *l, int timeout, struct waiting_proc *wp) |
463 | { |
464 | struct futex *f; |
465 | int ret; |
466 | |
467 | FUTEX_LOCKASSERT; |
468 | |
469 | f = *fp; |
470 | wp->wp_futex = f; |
471 | TAILQ_INSERT_TAIL(&f->f_waiting_proc, wp, wp_list); |
472 | wp->wp_onlist = true; |
473 | ret = cv_timedwait_sig(&wp->wp_futex_cv, &futex_lock, timeout); |
474 | |
475 | /* |
476 | * we may have been requeued to a different futex before we were |
477 | * woken up, so let the caller know which futex to put. if we were |
478 | * woken by futex_wake() then it took us off the waiting list, |
479 | * but if our sleep was interrupted or timed out then we might |
480 | * need to take ourselves off the waiting list. |
481 | */ |
482 | |
483 | f = wp->wp_futex; |
484 | if (wp->wp_onlist) { |
485 | TAILQ_REMOVE(&f->f_waiting_proc, wp, wp_list); |
486 | } |
487 | *fp = f; |
488 | return ret; |
489 | } |
490 | |
491 | static int |
492 | futex_wake(struct futex *f, int n, struct futex *newf, int n2) |
493 | { |
494 | struct waiting_proc *wp; |
495 | int count = 0; |
496 | |
497 | FUTEX_LOCKASSERT; |
498 | |
499 | /* |
500 | * wake up up to n threads waiting on this futex. |
501 | */ |
502 | |
503 | while (n--) { |
504 | wp = TAILQ_FIRST(&f->f_waiting_proc); |
505 | if (wp == NULL) |
506 | return count; |
507 | |
508 | KASSERT(f == wp->wp_futex); |
509 | TAILQ_REMOVE(&f->f_waiting_proc, wp, wp_list); |
510 | wp->wp_onlist = false; |
511 | cv_signal(&wp->wp_futex_cv); |
512 | count++; |
513 | } |
514 | if (newf == NULL) |
515 | return count; |
516 | |
517 | /* |
518 | * then requeue up to n2 additional threads to newf |
519 | * (without waking them up). |
520 | */ |
521 | |
522 | while (n2--) { |
523 | wp = TAILQ_FIRST(&f->f_waiting_proc); |
524 | if (wp == NULL) |
525 | return count; |
526 | |
527 | KASSERT(f == wp->wp_futex); |
528 | TAILQ_REMOVE(&f->f_waiting_proc, wp, wp_list); |
529 | futex_put(f); |
530 | |
531 | wp->wp_futex = newf; |
532 | futex_ref(newf); |
533 | TAILQ_INSERT_TAIL(&newf->f_waiting_proc, wp, wp_list); |
534 | count++; |
535 | } |
536 | return count; |
537 | } |
538 | |
539 | static int |
540 | futex_atomic_op(lwp_t *l, int encoded_op, void *uaddr) |
541 | { |
542 | const int op = (encoded_op >> 28) & 7; |
543 | const int cmp = (encoded_op >> 24) & 15; |
544 | const int cmparg = (encoded_op << 20) >> 20; |
545 | int oparg = (encoded_op << 8) >> 20; |
546 | int error, oldval, cval; |
547 | |
548 | if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) |
549 | oparg = 1 << oparg; |
550 | |
551 | /* XXX: linux verifies access here and returns EFAULT */ |
552 | |
553 | if (copyin(uaddr, &cval, sizeof(int)) != 0) |
554 | return -EFAULT; |
555 | |
556 | for (;;) { |
557 | int nval; |
558 | |
559 | switch (op) { |
560 | case FUTEX_OP_SET: |
561 | nval = oparg; |
562 | break; |
563 | case FUTEX_OP_ADD: |
564 | nval = cval + oparg; |
565 | break; |
566 | case FUTEX_OP_OR: |
567 | nval = cval | oparg; |
568 | break; |
569 | case FUTEX_OP_ANDN: |
570 | nval = cval & ~oparg; |
571 | break; |
572 | case FUTEX_OP_XOR: |
573 | nval = cval ^ oparg; |
574 | break; |
575 | default: |
576 | return -ENOSYS; |
577 | } |
578 | |
579 | error = ucas_int(uaddr, cval, nval, &oldval); |
580 | if (error || oldval == cval) { |
581 | break; |
582 | } |
583 | cval = oldval; |
584 | } |
585 | |
586 | if (error) |
587 | return -EFAULT; |
588 | |
589 | switch (cmp) { |
590 | case FUTEX_OP_CMP_EQ: |
591 | return (oldval == cmparg); |
592 | case FUTEX_OP_CMP_NE: |
593 | return (oldval != cmparg); |
594 | case FUTEX_OP_CMP_LT: |
595 | return (oldval < cmparg); |
596 | case FUTEX_OP_CMP_GE: |
597 | return (oldval >= cmparg); |
598 | case FUTEX_OP_CMP_LE: |
599 | return (oldval <= cmparg); |
600 | case FUTEX_OP_CMP_GT: |
601 | return (oldval > cmparg); |
602 | default: |
603 | return -ENOSYS; |
604 | } |
605 | } |
606 | |
607 | int |
608 | linux_sys_set_robust_list(struct lwp *l, |
609 | const struct linux_sys_set_robust_list_args *uap, register_t *retval) |
610 | { |
611 | /* { |
612 | syscallarg(struct linux_robust_list_head *) head; |
613 | syscallarg(size_t) len; |
614 | } */ |
615 | struct linux_emuldata *led; |
616 | |
617 | if (SCARG(uap, len) != sizeof(struct linux_robust_list_head)) |
618 | return EINVAL; |
619 | led = l->l_emuldata; |
620 | led->led_robust_head = SCARG(uap, head); |
621 | *retval = 0; |
622 | return 0; |
623 | } |
624 | |
625 | int |
626 | linux_sys_get_robust_list(struct lwp *l, |
627 | const struct linux_sys_get_robust_list_args *uap, register_t *retval) |
628 | { |
629 | /* { |
630 | syscallarg(int) pid; |
631 | syscallarg(struct linux_robust_list_head **) head; |
632 | syscallarg(size_t *) len; |
633 | } */ |
634 | struct proc *p; |
635 | struct linux_emuldata *led; |
636 | struct linux_robust_list_head *head; |
637 | size_t len; |
638 | int error = 0; |
639 | |
640 | p = l->l_proc; |
641 | if (!SCARG(uap, pid)) { |
642 | led = l->l_emuldata; |
643 | head = led->led_robust_head; |
644 | } else { |
645 | mutex_enter(p->p_lock); |
646 | l = lwp_find(p, SCARG(uap, pid)); |
647 | if (l != NULL) { |
648 | led = l->l_emuldata; |
649 | head = led->led_robust_head; |
650 | } |
651 | mutex_exit(p->p_lock); |
652 | if (l == NULL) { |
653 | return ESRCH; |
654 | } |
655 | } |
656 | #ifdef __arch64__ |
657 | if (p->p_flag & PK_32) { |
658 | uint32_t u32; |
659 | |
660 | u32 = 12; |
661 | error = copyout(&u32, SCARG(uap, len), sizeof(u32)); |
662 | if (error) |
663 | return error; |
664 | u32 = (uint32_t)(uintptr_t)head; |
665 | return copyout(&u32, SCARG(uap, head), sizeof(u32)); |
666 | } |
667 | #endif |
668 | |
669 | len = sizeof(*head); |
670 | error = copyout(&len, SCARG(uap, len), sizeof(len)); |
671 | if (error) |
672 | return error; |
673 | return copyout(&head, SCARG(uap, head), sizeof(head)); |
674 | } |
675 | |
676 | static int |
677 | handle_futex_death(void *uaddr, pid_t pid, int pi) |
678 | { |
679 | int uval, nval, mval; |
680 | struct futex *f; |
681 | |
682 | retry: |
683 | if (copyin(uaddr, &uval, sizeof(uval))) |
684 | return EFAULT; |
685 | |
686 | if ((uval & FUTEX_TID_MASK) == pid) { |
687 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
688 | nval = atomic_cas_32(uaddr, uval, mval); |
689 | |
690 | if (nval == -1) |
691 | return EFAULT; |
692 | |
693 | if (nval != uval) |
694 | goto retry; |
695 | |
696 | if (!pi && (uval & FUTEX_WAITERS)) { |
697 | FUTEX_LOCK; |
698 | f = futex_get(uaddr, FUTEX_BITSET_MATCH_ANY); |
699 | futex_wake(f, 1, NULL, 0); |
700 | FUTEX_UNLOCK; |
701 | } |
702 | } |
703 | |
704 | return 0; |
705 | } |
706 | |
707 | static int |
708 | fetch_robust_entry(struct lwp *l, struct linux_robust_list **entry, |
709 | struct linux_robust_list **head, int *pi) |
710 | { |
711 | unsigned long uentry; |
712 | |
713 | #ifdef __arch64__ |
714 | if (l->l_proc->p_flag & PK_32) { |
715 | uint32_t u32; |
716 | |
717 | if (copyin(head, &u32, sizeof(u32))) |
718 | return EFAULT; |
719 | uentry = (unsigned long)u32; |
720 | } else |
721 | #endif |
722 | if (copyin(head, &uentry, sizeof(uentry))) |
723 | return EFAULT; |
724 | |
725 | *entry = (void *)(uentry & ~1UL); |
726 | *pi = uentry & 1; |
727 | |
728 | return 0; |
729 | } |
730 | |
731 | /* This walks the list of robust futexes, releasing them. */ |
732 | void |
733 | release_futexes(struct lwp *l) |
734 | { |
735 | struct linux_robust_list_head head; |
736 | struct linux_robust_list *entry, *next_entry = NULL, *pending; |
737 | unsigned int limit = 2048, pi, next_pi, pip; |
738 | struct linux_emuldata *led; |
739 | unsigned long futex_offset; |
740 | int rc; |
741 | |
742 | led = l->l_emuldata; |
743 | if (led->led_robust_head == NULL) |
744 | return; |
745 | |
746 | #ifdef __arch64__ |
747 | if (l->l_proc->p_flag & PK_32) { |
748 | uint32_t u32s[3]; |
749 | |
750 | if (copyin(led->led_robust_head, u32s, sizeof(u32s))) |
751 | return; |
752 | |
753 | head.list.next = (void *)(uintptr_t)u32s[0]; |
754 | head.futex_offset = (unsigned long)u32s[1]; |
755 | head.pending_list = (void *)(uintptr_t)u32s[2]; |
756 | } else |
757 | #endif |
758 | if (copyin(led->led_robust_head, &head, sizeof(head))) |
759 | return; |
760 | |
761 | if (fetch_robust_entry(l, &entry, &head.list.next, &pi)) |
762 | return; |
763 | |
764 | #ifdef __arch64__ |
765 | if (l->l_proc->p_flag & PK_32) { |
766 | uint32_t u32; |
767 | |
768 | if (copyin(led->led_robust_head, &u32, sizeof(u32))) |
769 | return; |
770 | |
771 | head.futex_offset = (unsigned long)u32; |
772 | futex_offset = head.futex_offset; |
773 | } else |
774 | #endif |
775 | if (copyin(&head.futex_offset, &futex_offset, sizeof(unsigned long))) |
776 | return; |
777 | |
778 | if (fetch_robust_entry(l, &pending, &head.pending_list, &pip)) |
779 | return; |
780 | |
781 | while (entry != &head.list) { |
782 | rc = fetch_robust_entry(l, &next_entry, &entry->next, &next_pi); |
783 | |
784 | if (entry != pending) |
785 | if (handle_futex_death((char *)entry + futex_offset, |
786 | l->l_lid, pi)) |
787 | return; |
788 | |
789 | if (rc) |
790 | return; |
791 | |
792 | entry = next_entry; |
793 | pi = next_pi; |
794 | |
795 | if (!--limit) |
796 | break; |
797 | |
798 | yield(); /* XXX why? */ |
799 | } |
800 | |
801 | if (pending) |
802 | handle_futex_death((char *)pending + futex_offset, |
803 | l->l_lid, pip); |
804 | } |
805 | |